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ABSTRACT 

Single image dehazing is an ill-posed problem. Most existing 

works use the atmospheric scattering model (ASM) [1] and some 

natural priors to dehazing. Recently, DehazeNet [2] was developed   

using deep learning approach achieves the state-of-the-art results 

on many test hazy images, which motivates us to adopt the deep 

learning approach in this study. After carefully research on the 

essential principle of dehazing using ASM, we develop a novel 

end-to-end convolutional neural network to efficiently implement 

the inverse ASM for single image dehazing, which is termed as 

IASM-Net. Specifically, the ASM is equivalently decomposed into 

three sub-model and the IASM-Net is designed to model these sub-

model efficiently. Our study shows that IASM-Net is jointly 

optimized by minimizing the model error between the output and 

the clear ground truth, which gives better performance compared 

existing CNN-based transmission model approach [1,2]. To 

facilitate this study, a sufficient aerial image set containing more 

than 6K aerial photos is built to train and test our IASM-Net. 

Experimental results validate the effectiveness and efficiency of 

our well designed IASM-Net.  
 

Index Terms— Image dehazing, convolutional neural 

network, atmospheric scattering model 

1. INTRODUCTION 

Generally, the core of image dehazing is to estimate the scene 

transmission of the given hazy image. Then, based on the 

atmospheric scattering model (ASM), it is easy to infer the clear 

image free from haze. Existing mainstream methods exploit 

various kinds of natural priors to compute the transmission in the 

scenes, and achieve satisfying results. Tan proposes a novel haze 

removal method [3] under the assumption that the local contrast of 

the haze-free image is much higher than that in the haze image. 

Moreover, they get impressive results by maximizing the local 

contrast of the image based on Markov Random Field. Inspired by 

the statistical properties drawn from a large image set, He et al. 

discover a simple but effective prior named as dark channel prior 

(DCP), and apply it to restore haze free image form single input 

image [4]. However, such priors only work effectively when their 

assumptions are well met, and their assumptions do not hold for all 

cases. For example, when the values of scene objects are close to 

the atmospheric light, the assumption of DCP may become invalid. 

Because, in this case, the value in dark channel is close to zero.   

Recently, with the pervasive usage and the corresponding 

success of deep learning in computer vision, deep learning 

approaches also have been employed to solve dehaze problem [2]. 

As an example, DehazeNet proposed by Bolun Cai, applies a 

convolutional neural network (CNN) to learn the transmission 

function using hazy image in supervised manner [2], which gives 

state-of-arts. It is noted that with the estimated transimission 

function from DehazeNet, the dehazed image is computed by using 

the atmospheric scattering model (ASM). Motivated by the 

success of DehazeNet and our aerial image dehazing task in hand, 

we carried out experiments to dehaze the aerial images and we 

found that DehazeNet cannot give good results in cetain conditions, 

such as there are green region. Some examples can be found in 

Figure 6. These observations tell us the dehazing approach 

proposed in [2] can be improved.  

From application aspect, unmanned aerial vehicles (UAVs), 

considering their flexibility and utility, have been employed to 

carry out various tasks, such as city surveillance, aerial imagery, 

and so on. In aerial imagery, the visibility of the taken images is of 

great significance, while in the most industrialized cities haze does 

degrade the visual quality of images. Therefore, image dehazing is 

a highly desired technique, especially in the urban aerial imagery. 

In this study, we focus on the aerial image dehazing task for 

unmanned aerial vehicles and make an effort to develop more 

efficient dehazing method using deep learning approach. 

As existing studies show that the hazy images can be modelled 

by ASM which is a hazy image generation model and essentially 

show how the hazy images is formed. Obviously, the inverse 

process of ASM is exactly the dehazing model (IASM). Inspire by 

this, we firstly propose an end-to-end fully convolutional neural 

network to model IASM and results in the IASM-Net. To satisfy 

the assumptions developed for ASM and IASM, we work on image 

patch domain. Specifically, for the IASM-Net, its traning pairs are 

hazy image patches and their ground truth clean image patches, 

which is an end-to-end dehazing method. Different from CNN-

based approaches and DehazeNet, we do not estimate the 

intermeddle transmission model. Moreover, to further 

improvement the model convergence and computational efficiency, 

the IASM is decomposed into three sub-models and three sub-

systems corresponding to the three sub-models are carefully 

designed, which is introduced in Section 2 in details. 

      Summarily, our main contributions are given as follows. 

1) A simple but high-performance end-to-end method, IASM-

NET, for single image dehazing is proposed..  

2) An aerial image dataset for dehazing task is built, which 

contains more than 6000 hazy aerial images. 

3) Intensive experiments have been conducted to evlaute the 

dehazing performance. Comparisons are also given with the 

sate-of-arts. 

      The rest of this paper is organized as follows. In section II, we 

analyse and decompose ASM for haze removal, and then the 

design of our proposed IASM-Net is elaborated. In section III, our 

self-built aerial image set is described, and extensive experiments 

on natural hazy images are given to demonstrate the performance 

of IASM-Net. The conclusion is drawn in section IV. 

2. METHODOLOGY 

      This section firstly describes the principle of ASM and 

IASM for dehazing task. Then the design of IASM-Net is given.      
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2.1. Dehazing with inverse atmospheric scattering model 

      In the atmospheric scattering model, the generation of a hazy 

image is given by: 

𝑰(𝑥, 𝑦) = 𝑻(𝑥, 𝑦)𝑱(𝑥, 𝑦) + (1 − 𝑻(𝑥, 𝑦))𝐴 (1) 

where 𝑰 is the observed hazy image, 𝑱 is the real scene image (or 

clean image), 𝑻 is the transmission matrix where 𝑻(𝑥, 𝑦) ∈ (0,1). 

𝐴 is the global atmospheric light factor, and (𝑥, 𝑦) is the pixel 

index. Usually 𝐴 can be considered as  a constant due to its 

homogeneousness. 

With simple manipulation from (1),  𝑱(𝑥, 𝑦) can be determined 

as follows: 

 
𝑱(𝑥, 𝑦) =

𝑰(𝑥, 𝑦) − (1 − 𝑻(𝑥, 𝑦))𝐴

𝑻(𝑥, 𝑦)

=
1

𝑻(𝑥, 𝑦)
(𝑰(𝑥, 𝑦) − 𝐴) + 𝐴 

(2) 

From the second line of (2), it is observed that the real scene 

𝑱(𝑥, 𝑦) can be represented as three sub-models: 1) light 

normalization sub-model formulated by 𝑰(𝑥, 𝑦) − 𝐴; 2) reciprocal 

transmission sub-model formulated as 1/𝑻(𝑥, 𝑦) , and 3) fusion 

sub-model formulated by 
1

𝑻(𝑥,𝑦)
(𝑰(𝑥, 𝑦) − 𝐴) + 𝐴 . 

In details, for the light normalization model, it only contains a 

simple linear operation. For the reciprocal transmission sub-model, 

it is a reciprocal process of the transmission map according to 

some prior describe in [1] and [4]. Following [1,4], we derive how 

to determine 𝑻(𝑥, 𝑦). In most of the non-sky patches, at least one 

color channel has very low intensity at some pixels and its value 

tends to be zero. So we have: 

   min
𝑐∈{𝑟,𝑔,𝑏}

( min
(𝑥′,𝑦′)∈Ω(𝑥,𝑦)

𝑱𝑐(𝑥′, 𝑦′))) = 0                               (3) 

where 𝑱𝑐 is the color channels of 𝑱 and Ω(𝑥, 𝑦) is a local patch 

centered at (𝑥, 𝑦), We assume the atmospheric light A is give and 

A is always positive, and from (1) and (3) we obtain: 

             
𝑰(𝑥,𝑦)

𝐴
=

𝑻(𝑥,𝑦)𝑱(𝑥,𝑦)

𝐴
+ (1 − 𝑻(𝑥, 𝑦))                       (4) 

  min
𝑐∈{𝑟,𝑔,𝑏}

( min
(𝑥′,𝑦′)∈Ω(𝑥,𝑦)

𝑱𝑐(𝑥′,𝑦′)

𝐴
)) = 0                                (5) 

we take the min operation in the local patch on the haze imaging 

Equation (4) and then take the min operation on the RGB channel, 

and obtain: 

 ( min
𝑐∈{𝑟,𝑔,𝑏}

( min
(𝑥′,𝑦′)∈Ω(𝑥,𝑦)

𝑰𝑐(𝑥′,𝑦′)

𝐴𝑐 )) =

       𝑻(𝑥, 𝑦) ( min
𝑐∈{𝑟,𝑔,𝑏}

( min
(𝑥′,𝑦′)∈Ω(𝑥,𝑦)

𝑱𝑐(𝑥′,𝑦′)

𝐴𝑐 )) + (1 − 𝑻(𝑥, 𝑦)) (6) 

 

where 𝑰𝑐 and 𝐴𝑐 are the color channels of 𝑰 and 𝐴. Observe (5) and 

(6), we have: 

( min
𝑐∈{𝑟,𝑔,𝑏}

( min
(𝑥′,𝑦′)∈Ω(𝑥,𝑦)

𝑰𝑐(𝑥′,𝑦′)

𝐴𝑐 )) = 0 + (1 − 𝑻(𝑥, 𝑦))            (7) 

So the transmission matrix 𝑻 can be computed using 𝑰 and 𝐴 in the 

following way: 

𝑻(𝑥, 𝑦) = 1 − 𝜔 min
𝑐∈{𝑟,𝑔,𝑏}

( min
(𝑥′,𝑦′)∈Ω(𝑥,𝑦)

𝑰𝑐(𝑥′, 𝑦′)

𝐴𝑐 ) 
(8) 

𝜔  is a constant parameter to keep a little haze for the distant 

objects. It is obvious that 𝑻  is the result from the nonlinear 

mapping of the local patches from 𝑰  when considering 𝐴  is 

constant. Moreover, 𝑻  varies smoothly or stay stable locally 

according to the patch-based operation in (8).  

Based on the analysis and decomposition of IASM above, we 

make an effort to incorporate the structure of the sub-models in our 

end-to-end IASM-net design. The details are given next. 

2.2. The design of IASM-Net 

First of all, the IASM-Net is an end-to-end dehazing network 

working based on image pataches. IASM-Net takes a hazy image 

as input and output the dehazed one. Since dehazing process is 

patch-based and the operation in every patch has no difference, we 

choose convolutional neural network (CNN) and just make use of 

the CNN’s local sensing and weight sharing properties, without 

fully connection layer [5]. 

According to the IASM model given in the second line of (2), 

essentially, the designed IASM-Net will implement the nonlinear 

mapping in the form of F(I), where I is the hazed image pactch. 

Considering the sub-model explained in Section 2,1, we design F 

to consist the following three modules: 

1. The transmission module (TM): this module estimates local 

transmission on the extracted overlapping patches from the 

hazy image 𝑰. 

2. The light normalization module (LNM): this module 

calculates the global atmospheric light based on extracted 

overlapping patches from the hazy image 𝑰. 

3. The fusion module (FM): this module fuses the transmission 

information from the transmission module and the light 

normalization module into one image, and tunes it for better 

reconstruction and visual appealing.   

The architecture of our proposed IASM-Net is illustrated in 

Figure 1. Every convolutional layer has a kernel size of 33 except 

conv4 which has a kernel size of 55. And every operation of 

convolutional layer has a padding size of 1 except conv4 which has 

a padding size of 2. The conv1, conv2 and conv3 output 32 feature 

maps while the conv4 outputs 3 feature maps. So we input a three 

channels RGB image to the IASM-Net and obtain an output of 

three channels RGB image. This so called end-to-end operation 

makes our method simple and efficient. As shown in Figure 1, the 

transmission module consists of four layers, including two 

convolutional layers and two Rectified Linear Unit (ReLU) layers 

[6]. The nonlinear mapping brought by the convolutional operation 

and nonlinear active function can well estimate the transmission 

map using sufficient training data. Besides, the convolutional 

operation introduced by the convolutional layers ensure the local 

properties of 𝑻. Thus, transmission module does inherit the core 

properties of the light normalization operation in IASM. Let 

𝐹TM(𝑰) denote the output of transmission module, and it can be 

denoted as:  

                                                   𝐹TM(𝑰) = ReLU(𝑾2ReLU(𝑾1𝑰 + 𝐵1) + 𝐵2)        (9)          

where 𝑾𝑖  and 𝐵𝑖  are the weights and biases of the convolutional 

layer Convi, and ReLU(𝑥) = max (𝑥, 0). 

 Referring to Figure 1, for the light normalization module, one 

convolutional layer with a fixed bias (which is set to −𝐴) is used. 

Here the fixed bias is just used to simulate the light normalization 

operation. And the convolutional operations are employed to 

slightly adjust the normalized hazy images for better local 

perception. Let 𝐹LNM(𝑰) denote the output of light normalization 

module, and it is given as:  

𝐹LNM(𝑰) = 𝑾3𝑰 − 𝐴 (10) 

From Figure 1, we can see that, for the fusion module, it firstly 

applies an elementwise layer with the product operation to 
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combine the output from the transmission module and light 

normalization module respectively. Then, the fusion module 

employs a convolutional layer with a fixed bias (which is set to 𝐴) 

and a sigmoid function to tune the aforementioned product for 

better dehazing effects. Let 𝐹FM(𝑰)  denote the output of fusion 

module, and it is computed as: 

𝐹FM(𝑰) = S(𝑾4(𝐹TM(𝑰) ⊙ 𝐹LNM(𝑰)) + 𝐵4) (11) 

where S(𝑥) = 1/(1 + 𝑒−𝑥) and ⊙ is the Hadamard product. 

Let 𝑰𝑖  and 𝑱𝑖  denote the 𝑖th  input hazy image and real scene 

image, respectively, and 𝐹(𝑰𝑖) is the output from our IASM-Net. Θ 

is the parameters of the IASM-Net. Given a set of the hazy images 

{𝑰𝑖}  and its corresponding real scene images {𝑱𝑖}  where 𝑖 =
1,2, … , 𝑁, we adopt the following commonly used L2 loss function: 

            𝑙(Θ) =
1

𝑁
∑ ||𝐹(𝑰𝑖) − 𝑱𝑖||2𝑁

𝑖=1                                      (12)  

The loss is minimized by stochastic gradient descent with the 

standard back propagation. 

      It is noted that most of the mainstream DNN based dehazing 

methods are designed to learn the the transmission model, and then 

apply ASM to estimate the real scene image. We are not exactly 

sure the theoretical mechnism difference between our IASM-Net 

and the conventional DNN-based dehazing methods including 

DehazeNet [2]. Our experimental results show that our IASM-Net 

ourperforms the conventional approaches. One of the possible 

argument is that, for the conventional DNN-based dehazing 

methods, the combination of optimal models doesn’t guarantee a 

global optimum.e conventional DNN-based dehazing methods, the 

combination of optimal models doesn’t guarantee a global 

optimum. 

3. EXPERIMENTS AND RESULTS 

In this section, we firstly introduce how we build the training 

and testing datasets. Then the experimental settings and relevant 

compared results are given. 

3.1. Dataset  

Here we build an aerial image set for dehazing task, which 

contains more than six thousands of high-resolution (4000 × 3000 

with RGB three channels) aerial images captured by unmanned 

aerial vehicle. Specifically, only a small portion of them (50) is 

used to train the IASM-Net. In order to improve the generalization 

performance, we also collect another 20 high-resolution images 

from the internet that contain landscape and portrait. These 70 

images are split into two parts. The first part owns 63 images and 

is used for training. The rest 7 images are used for testing. 

  One challenge of training a CNN model to dehaze is that the 

hazy image of natural scene and its medium transmission maps are 

not massively available. To handle such challenge, hazy image 

synthesize method is employed. Specifically, based on the prior 

assumption we can regard the medium transmission map 𝑻(𝑥, 𝑦) as 

a constant 𝑡 in a small patch. Hence hazy images can be generated 

by a given value of 𝑡 based on the following equation. 

       𝑰𝑖 = 𝑱𝑖𝑡 + 𝐴(1 − 𝑡)                                             (13)  

where 𝐴 is set to 1 and 𝑡 is a random values between 0.6 and 1. 

The synthesized hazy images are generated based on patches. For 

training set, patches whose size is 32 × 32 are extracted from these 

high-resolution images with a step size 16. Totally, the 63 high-

resolution images and their corresponding hazy images will 

generate near 180K patch pairs (hazy ones and clear ones), 

meaning 𝑁 in (12) is around 180K in our experiments. We follow 

the same way to construct the testing set and the testing set has 

near 20K image patch pairs. 

3.2. Experimental settings 

We implement our IASM-Net using Caffe package [7]. The 

learning rate is fixed to 0.0001. The maximum training iteration is 

set to 30000. The tendency of testing loss is similar to the training 

loss. They are shown in Figure 2. The value of training loss and 

testing loss declines soon and reaches stabilization within 1000 

iterations. So our IASM-Net is easy to train. 

3.3. Experimental Results 

      In order to prove the validity of our neural network architecture 

design, we only change the 4 convolutional layers to be cascaded 

and remain all the other setting to perform the controlled 

experiments (termed as plainNet). We show the neural network 

architecture of plainNet in Figure 3. The value of training loss and 

testing loss reach stabilization within 2000 iterations which is 2 

time of the IASM-Net’s. So the design of our IASM-Net can also 

bring the advantage of neural network training. The experimental 

results are show in Figure 4. We can see that our well designed 

neural network IASM-Net can provide excellent dehazing results 

while the plain neural network plainNet can’t. So we can prove the 

validity of our IASM-Net. 

      To verify whether our IASM-Net can generate the transmission 

map of a hazy image, we extract the output of the transmission 

module and show it in Figure 5. In Figure 5 we can see that our 

design of transmission module work well. 

      The compared algorithms include He’s DCP [4] based method 

and Cai’s DehazeNet [2]. From the Figure 6, we show two 

dehazing results and its details of our method and the compared 

algorithms. It is noted that the result of our IASM-Net outperforms 

that of He’s method and DehazeNet. The first row of the Figure 6 

shows the local patches of the sky region, where it is clear that 

He’s method is not able to deal with this case. The sky region in 

the result yielded by DehazeNet is slightly purple while IASM-

  
Fig. 2 the tendency of IASM-Net’s training loss and 

testing loss with iteration number 

 

Fig .1 The architecture of our proposed IASM-Net 
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Net’s result is better on visual perception. In the third row we show 

another local patches, where we can see that the yellow flowers 

and the river in the result of IASM-Net’s is clearer than others. In 

the fourth and fifth rows, it is obvious that He’s method failed 

again to deal with the sky region. And it has some color bias. The 

result of DehazeNet in this case is too gloomy. From the third 

picture of the fifth row we can see that the sky is a little dim and 

the trees almost loss its texture. Meanwhile, the result produced by 

IASM-Net recovers more details of the trees’ texture than the 

result of DehazeNet. And it’s sky region looks nature.  
The blind test of subjective evaluation was performed to 

confirm the excellence of our method. We selected 10 hazy aerial 

images form the internet for dehazing with He’s method, 

DehazeNet and our method. Each method produced 10 outputs. We 

shuffle the results of each hazy image and respectively let 6 testing 

persons to pick out the clearest one with respect to the original 

hazy image. The method of the results that was picked out the most 

number of times implies it is the outstand one. The Figure 7 shows 

the result of the blind test and we can know that our method has 

the hightest times of being picked out.  

      We also compare our method with the compared algorithms on 

peak signal-to-noise ratio (PSNR). 20 high-resolution images are 

randomly chosen from our self-built aerial image set as the ground 

truth images. Based on the aforementioned synthesize method, we 

synthesize hazy images using the ground truth images and the 

value of t varies from 0.6 to 0.8 with a step size as 0.1. Then hazy 

images are dehazed by using different methods, and the PSNR 

values of these methods are computed by their results and the 

ground truth images.The results are given in Table 1.  

      From Table 1, it is noteworthy that our method outperforms 

He’s method and DehazeNet. As 𝑡 is equal to 0.6, 5.8dB and 1.5dB 

gain is achieved over He’s method and DehazeNet, respectively. 

With the increase of 𝑡, the performance of He’s method improves, 

that of DehazeNet degrades, while our IASM-Net stay stable.  

4. CONCLUSIONS 

      In this paper, we proposed a novel end-to-end deep 

convolutional neural network for single image dehazing, which is 

named as IASM-Net. The design of IASM-Net is inspired by the 

essential inverse atmospheric scattering model (IASM) to remove 

haze. By simulating IASM with specific three sub-model 

structures, IASM-Net retains the good interpretability and faster 

convergence and computational efficiency. To facilitate this 

research, a self-built aerial hazy image dataset has been established 

which has more than 6000 hazy aerial images. Experimental results 

verify that our IASM-Net performs well and achieves the state-of-

the-art dehazing effect. 
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Fig. 7 the result of subjective evaluation blind test for three 

dehazing methods 

Table 1. the results of PSNR on 20 images 
Methods 

𝑡 
He’s method DehazeNet Ours 

0.6 21.6501 25.9501 27.4507 

0.7 24.7070 26.8732 27.3748 

0.8 26.7914 24.6418 27.4507 

 
 

  

Fig .3 Architecture of the plain neural network (plainNet) 
 

 
          (a)                               (b)                           (c)  

Fig .4 Haze removal results of the controlled experiments.   (a) 

Input hazy images. (b) Results of plainNet. (c) Results of our 

IASM-Net. 

 
              (a)                            (b)                       (c)          (d) 

Fig .5 The transmission map generated by the transmission 

module of our IASM-Net. (a)(c) hazy input image. (b)(d) 

corresponding transmission map. 

 

 
(a)                  (b)                       (c)                     (d)               

Fig .6 Haze removal results with aerial images. (a) Input hazy 

images. (b) Results of He’s method. (c) Results of DehazeNet. 

(d) Results of our IASM-Net. The 2ed and 4th rows show the 

whole images while the 1st, 3rd and 5th show the local patch 

images for details comparison. 
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