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ABSTRACT 

 
Wireless capsule endoscopy (WCE) is an innovative solution for 

gastrointestinal disease detection. The image quality of WCE is not 

satisfactory for medical applications since some of them are dark 

or hazy. For the purpose of improving WCE image quality, we take 

a new way to establish a parametric image generation model 

(called WCE hazy model) between the captured image and the 

ideal image by considering adverse effects due to inhomogeneous 

lighting, unfocused and light reflection. Some experiments have 

been carried out to validate this model. Accordingly, the retinex 

theory and dark-channel prior have been adopted to estimate the 

model parameters adaptively. Hence, the WCE hazy image 

restoration is achieved by the inverse process of the hazy model. 

Intensive experiments have been conducted with hazy WCE 

images of the testers. Experimental results using the subjective and 

objective performance measures further verify the effectiveness of 

proposed method. 

 
Index Terms—wireless capsule endoscopy, image restoration, 

parametric generation model, retinex theory, dark-channel prior 

 

1. INTRODUCTION 

 
In the past year, digestive system cancer had been the second 

cancer-related killer in U.S.A. and caused 61,950 death [1]. Early 

detection and treatment of gastrointestinal disease are very crucial. 

Wireless capsule endoscopy (WCE) is an innovative solution for 

gastrointestinal disease detection. It was invented in 2000 and put 

in use in 2001 [2]. However, the images captured by WCE system 

are not as good as those taken by traditional endoscopy due to 

several hardware constraints [3]: 1) the battery capacity is limited 

resulting in inhomogeneous lighting, 2) the camera used in WCE is 

low-focal-length camera which may produce unfocused images; 3) 

complicated circumstance of gastrointestinal tract and moving 

imaging method also lead to poor image quality. Fig. 1 shows 

several WCE images with low quality, where Figs. 1 (1) and (2) 

are with weak lighting, Figs. 1 (3) and (4) are hazy, which provide 

less diagnostic information for physicians. As a result, the image 

quality improvement is highly demanded in WCE medical 

applications. There are several image enhancement approaches, 

such as histogram equalization-related methods [4], Filter based 

methods [5], transform domain based methods [6], and anisotropic 

diffusion based approaches [3, 7]. Experimental results show that 

these methods have some good effects on enhancing low-

luminosity or low-contrast images, but don’t have desired effect in 

handling hazy images. Moreover, it is noted that the hazy images 

do not lack luminosity while they have distorted color and low-

contrast properties. Viewed from another perspective, the hazy 

effect is similar to the blurred effect which usually is caused by 

motion or poor focusing. The blurred image could be restored 

under the convolution model by using the inverse filtering in its 

frequency domain. Wiener filtering is widely used and quite 

effective in solving deblurring problem [8, 9], but it needs pre-set 

parameters chosen by trial and error, which is impractical without 

the knowledge of point spread function (PSF). Besides, whether 

the hazy effect of WCE images equals to blurred effect is unknown. 

Some discussions are presented in Section 2. In this circumstance, 

a more general model is expected to handle the quality 

improvement of the hazy images. 

By investigating the mechanism of the WCE image generation 

process, we believe that inhomogeneous distributed illumination 

and lost focusing are main factors contributing to the low quality of 

WCE images. Motivated by the methods developed for removing 

the fog from the natural images, in this paper, we make an effort to 

establish the parametric image generation model (called hazy 

model here) between the captured image and the ideal image by 

considering adverse effects due to the inhomogeneous lighting, 

unfocused and light reflection. To make the problem tractable, the 

following assumptions are made: 1) the captured WCE image has a 

counterpart ideal image. 2) the transformation of the ideal image to 

the capture image is nonlinear but can be modeled in a parametric 

way. 3) the parameters can be estimated. 

In the rest of this paper, Sec. 2 introduces a parametric WCE 

image generation model and the validation of the model by 

experiments. Sec. 3 shows the derivation of the adaptive WCE 

image restoration algorithm. Sec. 4 presents the experimental 

results and performance analysis. Finally, Sec. 5 gives the 

conclusion. 

 

2. PROBLEM FORMULATION 

 
In natural image dehazing research, the most commonly used 

imaging model for images is the additive model given as [10, 11]: 

 
Fig. 1. Low quality WCE images (Dark and hazy) 

 

 

(1) (2) (3) (4)
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 ( , ) ( , ) ( , ) [1 ( , )]I x y T x y R x y T x y a     (1) 

where (x,y) is the pixel index. I and R are the generated or 

observed image and ideal image (scene radiance), respectively. T is 

the transmission matrix and T(x, y)∈(0,1). Transmission is the 

property of a substance to permit the passage of light. Here the 

element of T is a ratio of scene radiance reaching the camera. a is 

the global atmospheric light. It is constant due to its 

homogeneousness.  

In this study, we follow the same spirit in (1) to model WCE 

images. Obviously, for generating WCE images, the ambient 

illumination was created by multi light sources, so it is no longer 

homogeneous and shows the inhomogeneous property. Thus it is 

reasonable to establish a generation model for WCE images as 

follows: 

 ( , ) ( , ) ( , ) [1 ( , )] ( , )I x y T x y R x y T x y L x y     (2) 

where L is the inhomogeneous ambient illumination presented in 

imaging procedure. From (2), I can be seen as the composition of 

weighted scene radiance R and weighted ambient illumination L. It 

is clear that the weights are controlled by the transmission T. 

Carefully examining (2), we have the following observations: 

1） When T(x, y) = 0, (2) gives I(x, y) = L(x, y). This indicates that 

no information of scene radiance left in I, so it’s impossible to 

recover R from I. 

2） When T(x, y)∈ (0,1) but L(x, y) = 0, (2) turns to be the 

multiplicative model denoted as [12] 

 ( , ) ( , ) ( , )I x y T x y R x y   (3) 

where I is a portion of R and can be roughly estimated by 

image enhancement algorithms such as histogram equalization. 

3） When T(x, y)∈(0,1) while L(x, y) > 0, (2) presents its general 

form and I is influenced by R, L and their responding weight. 

4） When T(x, y) = 1, (2) shows the ideal imaging status and we 

have I(x, y) = R(x, y). Unluckily, this case rarely occurs in real 

applications. 

In order to put model (2) in use, we propose the following in 

modelling approaches for transmission T and illumination L. 

Following the research in [13], transmission T for WCE imaging 

can be modeled as 
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where n is the weight, 
1

1
N

nn



  and in our study n = 1 / N, 

N = 3. Fn(x, y) is a multi-scale Gaussian function with the standard 

deviation σn, where σn is set to different values at each n. * is the 

convolution operator. It can be seen that model (4) simulates the 

transmission property by applying the multi-scale Gaussian 

blurring effects on R. In addition, (5) gives the normalized 

transmission model where we assume the transmission T(x, y) is 

proportional to Ig
temp (x, y). Ig

temp is the grayscale version converted 

from Itemp from RGB channels.  

Now, let’s consider illumination L for WCE imaging. Motivated 

by the research in [14], it will be a good option to model L as: 

 ( , ) ( , ) ( , )L x y F x y R x y    (6) 

where F(x, y) is a single Gaussian function, which is able to model 

inhomogeneous global illumination properly. 

So far, we have established the general WCE image generation 

model by (2), (5) and (6). Let’s have a demonstration. We select 

one good quality WCE image as R shown in Fig. 2 (1). If 

illumination L is zero or close to zero, but the transmission is 

modeled in (5), the resulting image by model (2) is shown in Fig. 2 

(2). We can see that the quality of the image R has been degraded 

greatly due to the transmission matrix T. Moreover, comparing the 

image in Fig. 2 (2) with the images in Figs. 1 (1) and (2), it is easy 

to observe their similarities with dark and low contrast properties. 

This may explain the dark WCE images are generated due to low 

transmission. Fig. 2 (3) is generated by (6). It is a typical blurred 

image where global illumination is improved and some informative 

details are smoothed. Just like bubble locates in top left corner 

which can be observed in Figs 2 (1) and (4), it vanishes in Fig. 2 (3) 

where it is expected to be shown.  

Moreover, If transmission and illumination are all non-ideal, 

which are modeled in (5) and (6), the WCE image I generated by 

model (2) is shown in Fig. 2 (4). It is easy to identify that image in 

Fig. 2 (4) presents some common features of the hazy images 

shown in Figs. 1 (3) and (4). They all look low contrast and global 

bright, and still contain some informative details.  

By the comparisons between Fig. 2(3) and Fig. 2(4), and 

between Fig. 2 (4) and Figs 1 (3) (4), it is easy to identify the 

differences between the blurred image and the hazy image. The 

latter contains more useful information about R than the former. 

With the discussion shown above, it is not appropriate to use 

traditional convolution model designed for blurred images to deal 

with WCE hazy problem. 

More synthesized hazy WCE images by the proposed model in 

(2) are shown in Fig. 3. Comparing the synthesized hazy images in 

Fig. 2 and Fig. 3 with those in Fig. 1, we may conclude that the 

proposed generation model (2) is suitable for modeling the real 

WCE hazy images. As a result, if illumination L and transmission 

matrix T can be estimated properly, it is straightforward to recover 

R from I by solving the inverse problem of model (2) and the 

recovered R will have improved quality compared with I. 

 
Fig. 2. WCE hazy image generation 

 

 
Fig. 3. Synthetic hazy effect. First row shows clear images 

and second rows shows generated hazy images. 

Original clear WCE image: R T(x, y)R(x, y) The generated image I
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3. THE PROPOSED WCE HAZY IMAGE 

RESTORATION METHOD 
 

In this section, we will first present the estimation methods for T 

and L, respectively. Then the proposed parametric modeling based 

WCE hazy image restoration (WCE-PM-HIR) method will be 

introduced in details.  

3.1. The estimation of ambient illumination 

As assumed in Section 2, illumination L is normal distributed 

modeled in (6). Here, we need to estimate L from the captured 

WCE image I. In our study, Frankle-McCann Retinex (FMR) 

approach is adopted to solve this problem. In FMR theory, it 

assumes that the illumination in pixel (x, y) is not only affected by 

its neighboring pixels, but also by the pixels at far distance, which 

makes image illumination looks more natural. According to [15, 

16], the estimation of illumination L using FMR method can be 

implemented as follows: the illumination L0-hat is initialized to be 

the maximum value of observed image I, then FMR executes the 

iterative procedure: 

 1

ˆ ˆ ˆ( )ˆ max{ , }
2 2

n n n n
n

D


 


L I L L
L   (7) 

where Ln-hat is the estimated illumination by iterative approach, 

which will be assigned to L when iteration is stopped. Dn(.) is a 

spatially shifting operator which will shift the image by the nth 

element of a sequence of spirally decaying translation vectors {dn}, 

where dn can be denoted as vn,n+1, just as shown in Fig. 4. The 

relation between two adjacent translation vectors satisfy: |dn| = 

2|dn+1|. The iteration of FMR will be terminated when |dn| <=1. 

Specific details can be referred to [16]. 

3.2. Estimation of Transmission  

After we get the estimation of L, we need to estimate the 

transmission T from I based on model (2). Motivated by the 

research in [11], we solve this problem based on the dark-channel 

prior (DCP). 

To make the presentation completeness, the dark-channel prior 

is briefly introduced first. It is noted that DCP is concluded from 

analyzing the statistics of outdoor haze-free images [11]. It finds 

that in most non-sky regions, at least one color channel has some 

pixels whose intensity is very low (close to zero, called dark 

channel), which can be formulated as:  

  
     

  
, Ω , r,g,b

, min min , 0dark c

x y x y c
R x y R x y

 

 
  

 
  (8) 

where
c

R indicates the c channel image of R, Ω(x, y) is an image 

patch which centers at (x, y), and ( , )x y is a pixel index in patch Ω. 

For , from (2), by normalizing related illumination, it yields: 

 
   

   
, ,

, 1 ,
,( ) ( ),

c c

c c

I x y R x y
T x y T x y

L x y L x y
     (9) 

As noted in Section 2, the transmission Tc is modeled by (4) and 

(5), so it is reasonable to assume Tc as a constant over the patch 

Ω(x, y), which is denoted as Tp(x,y), and then putting the minimum 

operator on both sides of (9) gives: 
 

     
     

, Ω , r,g,b
{ (min min , , } 1 ,)c c

p
x y x y c

I x y L x y m T x y
 

    (10) 

where 
     

     
, Ω , r,g,b

{ (min min , )}, ,c c
p

x y x y c
R x y L x ym T x y

 
 .  

If the condition in (8) satisfied, then m is zero or close to zero. 

Then with simple manipulations, from (10), we can derive: 

  
     

   
, Ω , r,g,b

, 1 min mi{ )},(n ,c c
p

x y x y c
T x y I x y L x y

 
    (11) 

In practice, if all the hazy effect is removed, we may lose the 

feeling of depth and feel unnatural. So a constant parameter  is 

introduced into equation (11) to preserve a small amount of haze. 

Then we get: 

  
     

   
, Ω , r,g,b

, 1 min min{ ( , , )}c c
p

x y x y c
T x y I x y L x y

 
    (12) 

Based on experiments, we find =0.75 is the best for WCE 

visualization. 

3.3 The Recovery of Scene Radiance 

With the estimated values of ambient illumination and transmission 

matrix described in Sec. 3.1 and 3.2, the scene radiance R(x, y) can 

be estimated directly using model (2). Moreover, it is practical to 

restrict the transmission by a lower bound t0 to avoid it close to 

zero in case R(x, y) is irrecoverable. Therefore, we reach the 

following: 

  
   

  
 

0

, ,
, ,

, ,p

I x y L x y
R x y L x y

max T x y t


   (13) 

where t0 is set to be 0.05 in our study.  

In our research, we noted that the scene radiance computed by 

the WCE-PM-HIR method may look darker in some case, because 

of the removal of ambient illumination. To deal with this situation, 

the illumination compensation approach is developed as follows. 

Through several comparisons between the global illumination of 

the estimated scene radiance and that of corresponding original 

image, we propose to compensate scene radiance as follows: 

 
, if ( )

( ),else

g l

comp

  
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R R I
R

R
  (14) 
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Fig. 5. The diagram of the WCE hazy image restoration 

algorithm (WCE-HIR) 
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where g(.) is a function to measure the difference between the 

estimated scene radiance and the captured image I, l is a 

threshold value, comp(.) is a method or procedure to improve 

illumination of the image. In this study, we select the adaptive 

anisotropic diffusion method as the compensation approach since it 

is good at improving illumination and preserving details. The 

proposed WCE-PM-HIR algorithm described in this section is 

summarized in Fig. 5. 

 

4. EXPERIMENTS AND RESULTS 
 

In this section, several experiments have been carried out based on 

WCE images supplied from Shenzhen JiFu Technology Ltd., 

which were captured data from trial patients. The size of WCE 

images is 480×480 with RGB three channels. We compared the 

results of our proposed method with that of three existing methods 

including the FMR [16], adaptive anisotropic diffusion (AAD) [3, 

7] and haze removal based on dark-channel prior (HR-DCP) [11]. 

First of all, to obtain objective performance of our proposed WCE-

PM-HIR, 15 clear WCE images are picked as known ideal images, 

then the proposed WCE parametric image generation model in (2) 

is used to generate low quality images, which then will be restored 

by different algorithms mentioned above. The peak signal-to-noise 

ratio (PSNR) and the averaged structural similarity (SSIM) [17] 

are used to measure the performance of the algorithms. The results 

are shown in Table 1. One visual example is shown in Fig. 6. 

    In Table 1, it is clear to see that proposed WCE-PM-HIR 

outperforms other algorithms from objective evaluation. It gets the 

highest value in PSNR and SSIM in most cases out of 15 or on 

average. Specifically, the PSNR value of WCE-PM-HIR is higher 

about 2.84dB than that of HR-DCP and higher about 7.93dB than 

that of AAD on average. The SSIM index of WCE-PM-HIR is 

higher about 1.50% that that of HR-DCP and higher about 1.14% 

than that of AAD on average. It is conclude that WCE-PM-HIR 

does recover much more useful information (color and local details) 

of R from I than other algorithms. 

    In synthetic case Fig. 6, it is clear to see that FMR performs 

worst. Although the resulting global illumination is brightest, it 

fails to recover the true color of the original image. The 

illumination of the image produced by AAD is a little darker, but it 

performs well in recovering local details. HR-DCP and our 

proposed WCE-PM-HIR all performed well to recover color and 

some local details. They look quite similar in visualization, but the 

WCE-PM-HIR performs better in color restoration. 

Moreover, the experimental results for improving the low 

quality WCE images are shown in Fig. 7 and Fig. 8. From Fig. 7, 

where the original image is a low illumination one, it can see that 

WCE-PM-HIR is inferior to AAD but superior to FMR and HR-

DCP. However, from Fig. 8, where the original image is a hazy 

image, we can see WCE-PM-HIR outperforms other algorithms for 

visualization purpose. Especially, HR-DCP and WCE-PM-HIR 

work well in recovering color information and improving the 

contrast for hazy images. However, from the results in Table 1, we 

can see that HR-DCP recovers more unwanted information (noise) 

than WCE-PM-HIR. From all results shown above, it is quite 

confident that our proposed WCE-PM-HIR algorithm is quite 

effective both in visual perception and quality improvement for 

hazy WCE images. 
 

5. CONCLUSION 

 
This paper works on WCE hazy image restoration problem. 

Motivated by the general image generation model, a hazy WCE 

image generation model is proposed based on certain assumptions. 

The retinex and dark-channel prior theory have been employed to 

estimate the model parameters. Intensive experimental results 

verify the effectiveness of the proposed WCE hazy image 

restoration method. Results show that the proposed WCE-PM-HIR 

method is able to improve the contrast, color and local details of 

the degraded WCE images, which makes the recovered images 

look more visual attractive. 
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(1) Original (2) FMR (3) AAD (4) HR-DCP (5) WCE-PM-HIR  
Fig. 6. Clear image and its restored images  

 

(1) Original (2) FMR (3) AAD (4) HR-DCP (5) WCE-PM-HIR  
Fig. 7. Dark image and its restored images 

(1) Original (2) FMR (3) AAD (4) HR-DCP (5) WCE-PM-HIR  
Fig. 8. Hazy image and its restored images  

Table 1 PSNR and SSIM results 

No. 

PSNR(dB) SSIM(%) 

FMR AAD 
HR-

DCP 

WCE

-PM-

HIR 

FMR AAD 
HR-

DCP 

WCE

-PM-

HIR 

1 15.19 19.91 25.82 26.90 89.45 94.16 93.37 94.95 

2 15.57 20.52 27.19 30.51 88.38 93.60 94.42 95.10 

3 16.40 22.15 26.53 28.81 89.81 94.58 94.61 95.32 

4 14.13 25.22 23.99 29.39 84.80 95.54 93.11 95.33 

5 11.29 21.41 24.64 30.87 77.22 93.82 92.66 94.68 

6 12.99 16.60 22.57 24.56 83.36 90.21 94.68 94.39 

7 11.21 20.84 21.78 29.23 78.96 94.43 91.46 95.57 

8 12.91 22.77 20.93 24.58 83.66 95.15 91.2 93.78 

9 12.37 19.72 21.43 29.47 82.52 93.21 90.29 94.65 

10 11.65 23.92 20.44 25.07 79.08 95.32 88.01 93.11 

11 15.47 20.61 34.17 33.70 85.03 94.53 97.24 97.12 

12 15.05 22.01 34.70 35.20 87.91 95.87 97.42 97.49 

13 14.73 19.64 31.66 33.75 88.20 94.38 96.66 97.33 

14 17.58 23.02 30.71 32.06 90.80 95.24 96.24 96.27 

15 14.26 16.76 24.83 19.93 90.03 93.38 96.59 95.28 

avg 14.05 21.01 26.09 28.94 85.28 94.22 93.86 95.36 
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