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Abstract — Dense crowd counting (DCC) remains 

challenging due to the scale variation and occlusion. Several 

deep learning based DCC methods have achieved the state-of-

arts on public datasets. However, experimental results show that 

the scale variation is still the main factor to hinder the DCC 

performance. In this work, we propose a scale-informed dense 

crowd counting method focusing on handling the negative effect 

caused by scale variation. More specifically, we propose a 

method to obtain the scale information of the patch from its GT 

density maps via estimating the mean value of the Gaussian 

kernel width and then a scale-classifier is deigned and trained 

accordingly. Moreover, with the estimated scale information, 

two sub-nets are dedicatedly deigned to learn the density maps 

for large-scale head patch and small-scale patch separately. 

Experimental results validate the performance of our proposed 

method which achieves the best performance on three dense 

crowd datasets. 
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I. INTRODUCTION  

Crowd counting has drawn a great deal of interest among 
researchers over the last few years. And dense crowd counting 
(DCC) is a meaningful but thorny sub-problem of crowd 
counting. On the one hand, dense crowd counting assisted 
flow monitoring is one of the important applications of public 
security; On the other hand, the performance of DCC still has 
room for improvement. Analyzing shows that the large scale 
variation and severe occlusion are two main factors hindering 
the performance of DCC methods. 

Traditional crowd counting (CC) methods generally fall 
into two classes: counting by detection [1, 2] and counting by 
regression [3]. Experiments show that the performance of 
these methods degrades when there are severe occlusion and 
serious scale variation. Besides, these tradition CC methods 
usually ignore the spatial distribution information in crowds. 
To overcome these problems, an influential CC method has 
been proposed in [4] where the crowd counting task has been 
converted to a density map estimation whose integral is the 
count of objects in the image. As the result, this influential CC 
method is termed as the density estimation-based counting 
method. 

Recently, deep learning based density estimation counting 
methods become mainstream [5-6] where the CNN is adopted 
to learn a mapping from the images to the corresponding 
density maps. It can be seen that the CC methods have 
achieved great success in sparse crowd counting [5-9], 
however, most of them struggle in counting people in the 
dense scene. According to the experimental results, the DCC 
method in [10] has achieved state-of-the-art on the dense 
crowd dataset, like UCF_CC_50 [11] which contains about 
1280 people per image. Taking a close look at the experiments 

in [10], we find that there are still 260.9 in mean absolute error, 
which indirectly indicates that the dense crowd counting is 
still required further investigation.  

As shown in Fig. 1(a), in the dense scene, the scale 
variation caused by camera angle is one of the main factors 
causing the performance degradation. Here, we give some 
discussion on how does scale variation affect the accuracy of 
dense crowd counting. In Fig. 1, one dense crowd scene image 
and its ground-truth (GT) density map are given in (a) and (b) 
respectively. Comparing (a) and (b), we can see that the large-
scale human heads correspond to low density value, and the 
small-scale heads correspond to high density value. This 
phenomenon is caused by the GT density map generation, 
where each head is blurred by a varied Gaussian kernel. This 
density map generation with dotted annotation is great with a 
natural property that it models the spatial distribution of crowd. 
However, it brings difficulties in accurate counting. As shown 
in Fig. 1, the head scale varies heavily. In the model training, 
it is probably that the information provided by the small heads 
may gain more attention while those provided by the big heads 
might be suppressed. From Fig. 1, it is also noted that the scale 
variation of the image-level is much larger than the one of the 
patch-level. For example, the scale variation of a patch (left 
upper patch in Fig. 1) is much smaller than the scale variation 
of the whole image.  

According to discussions above, in this study, we aim at 
improving the performance of dense crowd counting by 
focusing on reducing the adverse effect of scale variation by 
designing a new scale-informed multi-channel CNN network. 
First, a scale label is obtained to represent the average size of 
human heads in one patch (4 patches shown in Fig. 1(a)). Here, 
the width of Gaussian kernel (sigma) is estimated from the GT 
density maps to determine the scale label of the patch. The 
estimated scale labels are used to train a scale-classifier. The 
details are presented in Section II B. Secondly, two sub-nets 
are dedicatedly designed to estimate the density maps for two 
different scale levels (large scale and small scale) where the 
scale-classifier essentially is used as an adaptive switch to 
select the sub-net for the input patch as shown in Fig.2. 

 
Fig. 1. (a) a large scale variation image; (b) the density map of (a). The 

brightest region in (b) asociated with the high density value (small scale head 
region). The dim region reflects the low density value (large scale head 

region). (a) is divided into 4 patches by orange solid line. 

(a) (b)



The main contributions of this paper lie in: 1) To decrease 
the adverse effect of scale variation, a scale-informed dense 
crowd counting network is designed. 2) A scale-classifier is 
proposed to infer the scale labels of patches. 3) two subnets 
are delicately designed for accurate density regression. 4) 
Intensive experiments have been conducted to evaluate the 
effectiveness of our proposed method on three datasets. 

II. PROPOSED METHOD 

A. Principle 

In this study, we follow the baseline of density estimation 
method proposed in [4], where the density map is estimated 
and the count is obtained by the integral of the density map. 
The generation of the GT density map is introduced and some 
discussions are given in the following. 

The generation of the GT density maps is a key for the 
density based counting methods. Following the approach 
proposed in [4], the heads in the training images will be dot 
annotated and then each annotated head is blurred by 
convolving with a normalized 2D Gaussian kernel. In [4],  
single Gaussian kernel is used where the variance of Gaussian 
is preset. To obtain more reasonable estimation of the GT 
density maps for dense scenes, the geometry-adaptive kernels 
(GAK) method was proposed by Zhang et al. [6]. In principle, 
GAK is much more suitable for dense crowd counting and 
now is widely used for dense crowd counting. According to 
[6], the density map of annotated image is generated by (1): 
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In (1), i is the annotation dot index and   is the convolution. 
For each annotated heads pi, using δ (p-pi) to convolve with a 
2D Gaussian kernel

i
G , σi termed as sigma, is the variance of 

Gaussian kernel which is decided by the mean distance id   
between pi and its m nearest neighborhoods. β is a scaling 
factor. In this study, following [6], we set m = 3  and  β = 3. 

Essentially, the annotated dots of the large-scale heads are 
much spatially scattered than those of the small-scale heads. 
Hence, from (1), σi is proportional to the spatial distribution of 
the heads. For the large-scale head, σi is much larger than that 
of the small-scale head. Moreover, from the property of 2D 
Gaussian kernel function, larger σi leads to flatter Gaussian 
kernel and smaller σi leads to a sharper Gaussian function. 
Accordingly, at annotated dot, the large-scale head might have 
a small-density value, and small-scale head may have a high-
density value at annotated dot.  

With the analysis above, for crowd counting task, the GT 
density map generated by GAK in (1) are dependent on the 
scale of the heads in the image. Naturally, the mean value of 
σi provides the scale information of the heads in the images.  

In this study, to reduce the adverse effect of the scale 
variation on the estimation of the density maps, we have two 
intrinsic ideas. First,  each image in the training set is divided 
into 4 patches as shown in Fig.1 (a). Then, all patches are 
classified into two scales accordingly, they are large-scale 
patches and small-scale patches, respectively. Second, two 
subnets (SS-module and LS-module as shown in Fig. 2) are 
designed to learn density maps of large-scale or small-scale 
patches separately. To achieve this, three training sets have 
been formed. The details are given in Section III.  

Our goal is to design a scale-informed end-to-end density 
map learning network for improving counting accuracy for 
dense scenes. Our main work is presented as follows. 

B. Proposed Network 

1) Network configuration 
The architecture of our proposed network is shown in 

Fig.2. The network consists of a front-end network, a scale-
classifier and two subnets. To be specific, the first 10 layers 
from the pre-trained VGG16 [12] are employed as our 
backbone network to extract visual features. Using the scale 
labels of the patches, a scale-classifier is designed and trained 
to classify the patches into two categories, small-scale patch 
or large-scale patch. Two sub-nets, named as SS-module and 
LS-module, are designed. SS-module maps the features of the 
small-scale patches to their density maps while SL-module 
does the same work for large-scale patches. In the prediction 
stage, the integral of the estimated density map generates the 
estimated count.  

2) Scale-Classifier 
Our scale-classifier is a simple network which consists of 

two fully connected layers with 512 and 2 neurons 
respectively. The training pairs are input image patches and 
their associated scale labels.   

The generation of scale labels is proposed as follows. First, 
binary GT density maps are generated using the annotation dot 
maps where the pixel of annotated dot is signed as 1 and the 
rest is 0. As a byproduct of generating GT density map, the σi 
at each annotation dot is computed according to (1), then a 
sigma map is generated using σi accordingly. Therefore, the 
sigma map and annotation dot map have the same size but 
have different values on each annotated dot. 

With the sigma maps of the patches, the mean value of the 
sigma of a patch can be computed which is a good scale 
indicator. If the mean value of the sigma of the i-th patch is 
less than the threshold, the patch scale label li is set as 0 which 
indicates that the i-th patch is with small-scale heads, 
otherwise, li is set to 1 for the patch with large-scale heads. 
Therefore, the scale label for i-th patch is computed as follows. 
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where i is the patch index, th  is the threshold and i is the 
mean value of sigma which is computed in (3), respectively. 
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where n is the number of patches, i

j  is the sigma value of j-
th annotated dot in i-th patch. 

 
Fig. 2. The architecture of our proposed network. The input patch is fed into 

VGG16, the scale-classifier predicts the scale label li (li =0 for small-scale 
and li =1 for large-scale). SS-module or LS-module are selected according 

to li to estimate the density map patch. The count number is the sum over the 

density map patches. For notation simplicity, VGG16, scale classifier with 

SS-module or LS-module is named as SS-Net and LS-Net, respectively. 



For training the scale-classifier, the cross-entropy is taken 
as the loss function which is given in Section II C. 

3) SS-module & LS- module 
As mentioned in Section II A, the density value is related 

to the scale of the head. From experiments, we observe that 
the density values generated using (1) for large-scale heads 
and small scale heads varies a lot. Bearing these observation 
in mind, in this study, corresponding to two sub-datasets 
(small-scale and large-scale patches), two CNN-based sub-
networks are designed. In details, considering the filters with 
different receptive fields bring little effect in counting [8], and 
in order to limit the net parameters, in our design, only 3 3 
convolution kernels are used. As the density map estimation 
is sensitive to the spatial distribution of the heads, inspired by 
Li et al. [8], the dilated convolution is used to enlarge 
receptive fields without losing resolution. In our sub-nets, we 
set dilation rate as 2. After each convolutional layer, ReLU is 
employed as activation function.  

C. Loss Function 

Following the most work, the Euclidean distance is taken 

as loss function for density estimation task given as follows: 
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where ( ; )iF X   denotes the i-th density map generated by our 
network with parameters  . N is the number of training 
patches, 

iX is the i-th patch and 
iGTD  represents the GT 

density map of the i-th patch. 

In addition, the  cross-entropy is taken as cost function for 
training the scale-classifier, which is formulated as: 

log( ) (1 )(1 log( )) /ET ET
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where li is the scale label of i-th patch, which is defined in (3), 

and ET

il is the output of the scale-classifier. 

Our network is jointly trained using LJT given as: 

JT ED CL L L= +                                 (6) 

where  is the predefined weighting factor. 

III. EXPERIMENTS AND RESULTS 

A. Evaluation Metrics 

Two widely used metrics are taken for performance 
evaluation which are given as follows: 
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where MAE is the mean absolute error and MSE is the mean 
square error. ES

i
C  is the estimated count of the i-th image and

GT

iC  is the  ground-truth count of the i-th testing image. N is 
the number of testing samples. ES

i
C  and GT

iC are obtained by 
the integral of estimated and GT density maps respectively. 

B. Experiment Details 

Except VGG16,  normal distribution (std=0.01) is used to 
initialize our network and all layers are trained from scratch. 
For training images, each image is divided into four non-
overlapping patches (Fig. 1 (a)). For  UCF_CC_50 dataset, to 
increase the training data, we randomly flip all the patches.  

For notation clarity, let’s define three training sets: 1) 
Large-scale patch dataset: TL = ( IL,  DL, li = 1);  2) Small-scale 
patch dataset: TS=( IS, DS, li = 0); 3) Whole patch dataset TA : 

the combined set of TL and TS. Here, IL and IS represent the 
image patches while DL and DS represent their density maps.  

 Our network shown in Fig. 2 is trained in three steps: First, 
using (6), the LS-Net is trained on TL. Second, SS-Net is 
trained on TS. Third, the LS-Net and SS-Net are jointly trained 
on TA. Note that in the joint training step, the classifier is 
trained to predict the correct scale label information. 

Besides, in our network, there are three max pooling 
layers , the output spatial resolution is then down sampled to 
1/8 of original image. Accordingly, the ground truth density 
map is down-sampled to 1/8. Our network is implemented 
using Pytorch. In training process, the SGD with momentum 
is used as the optimization method where the learning rate and 
momentum are set as 10-7 and 0.95 respectively. In each 
training step, our network is optimized with 300 epochs .  

C.  Ablation experiment 

To demonstrate the effectiveness of our proposed network, 
we evaluate SS-Net, LS-Net and our proposed network on 
ShanghaiTech PartA dataset respectively. Specifically, SS-
Net and LS-Net is trained on TS and TL separately. The 
evaluation results of three settings are obtained on TA, which 
are shown in Table I.  It is clear that our proposed network 
outperforms SS-Net and SL-Net in MAE and MSE. The LS-
Net performs worst while SS-Net performs much better than 
LS-Net. These results tell that ShanghaiTech PartA has large 
scale variation and its count affected by the small scale heads.  

D. Performance Comparison  

We evaluated our network on three commonly used dense 
crowd counting datasets where GAK method was used to 
generate ground-truth density maps. 

1) ShanghaiTech Dataset  
This dataset proposed in [6] includes 330,165 annotations 

in 1,198 images which are shoot at non-uniform scenes. It is 
divided into two parts. Part A consists of dense crowd and Part 
B mainly contains sparse crowd. There are a total of 482 
images with 501 average counts in Part A. Since we focus on 
dense crowd counting, so only Part A is considered. Several 
methods using Part A are taken for performance comparison. 
Results are shown in Table II. From it, we can see that our 
proposed method achieves the best performance, which is 2% 
lower in MAE and 13% in MSE compared with those of 
CSRNet [8]. For visualization purpose, several density maps 
estimated by our method and CSRNet are shown in Fig.3. 

2) UCF_CC_50 Dataset  
UCF_CC_50 [11] dataset is a collection of 50 images, 

which is almost the most challenging dataset due to the small 
amount of data with large scale variation of heads. It is noted 
that the count in an image varies from 94 to 4,543 and the 
average count is 1,280. We follow the standard settings in [11] 
and use 5-fold cross-validation. Several state-of-the-art 
methods are taken for performance comparison. Results are 
given in Table III, where our proposed method is superior to 
the comparison methods in terms of MAE and ranks second 
in terms of MSE. 

3) UCF_QNRF 
UCF-QNRF is a newly proposed dataset [17]. It contains 

the large amount of high-count crowd images and annotations 
in a wide range of scenes and viewpoints. In detail, there are 
1,535 images with an average 815 count of people and the 
average resolution of 2013  2902. Compared with other 



datasets, UCF-QNRF has the characteristic of high resolution. 
Experimental results are given in Table IV where our method 
demonstrates its superior performance compared with other 
methods. We have 25 counts and 18 counts gain over the latest 
state-of-the-art work [17] in MAE and MSE respectively. 

IV. CONCLUSION 

In this paper, aiming at alleviating the adverse effect of 
scale variation on counting results, we proposed a novel 
method for dense crowd counting where two modules with the 
aid of a scale-sensitive classifier are designed and trained. To 
the precise, a method for obtaining two scale labels of image 
patches is proposed. Then a sophisticatedly training approach 
is developed and the scale-classifier is trained to predict the 
scale label of the input patch and select the module for it. In 
the end, the density maps of input images can be estimated 
more accurately. The superior results on three datasets 
validate the effectiveness and robustness of our method. 
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Fig. 3. Comparison on ShanghaiTech PartA. First row: test images. Second 
row: density maps generated by our proposed network. Third row: density 

maps estimated by CSRNet [8]. Clearly, results in second row are much more 

consistent with those in the first row. The head information in dense regions 
and sparse regions are all captured properly.  

GT:1068
Our method _pred:1036.67
CSRNet_pred:1104.63

GT:1175
Our method _pred:1229.95
CSRNet_pred:1268.89

GT:584
Our method _pred:593.40
CSRNet_pred:661.43

GT:391
Our method _pred:385.94
CSRNet_pred:365.47

TABLE I.             RESULTS ON SHANGHAITECH PARTA 

Method MAE MSE 

LS-Net  83.1 144.0 

SS-Net 69.3 103.4 

Proposed method 66.8 99.8 

TABLE II.  RESULTS ON SHANGHAITECH PART A 

Method MAE MSE 

MCNN [6] 110.2 173.2 

ACSCP [13] 75.7 102.7 

CSRNet [8] 68.2 115.0 

SANet [14] 67.0 104.5 

Proposed method 66.8 99.8 

TABLE III.  RESULTS ON UCF_CC_50 

Method MAE MSE 

MCNN [6] 377.6 509.1 

CP-CNN [15] 295.8 320.9 

CSRNet [8] 266.1 397.5 

ic-CNN [10] 260.9 360.5 

Proposed method 239.9 367.7 

TABLE IV.  RESULTS ON UCF_QNRF 

Method MAE MSE 

MCNN [6] 277 426 

CMTL [9] 252 514 

SwitchCNN [16] 228 445 

 Idrees et al. [17] 132 191 

Proposed method 107 173 

 


