Complete Field Guide to Asymmetric BINOL-Phosphate Derived Brønsted Acid and Metal Catalysis

Reporter: Fangfang Guo Supervisor : Prof.Huang Date: 9/18/2017 1.Introduction

2. Modes of Activation

2.1 Mono Activation

2.2 Dual Activation

2.3 Bifunctinal Activation

2.4 Counterion Catalysis

3. Reaction in the Presence of Metals

3.1 Lewis Acid Behavior

3.2 Non-Lewis Acid Behavior

4. Conclusion and Outlook

5. Acknowledgement

1. Introduction

pKa = (MeCN)

Figure 1. Acidity scale for selected BINOL-derived Brønsted acids.

Table 1. pKa's of Common Acids in MeCN

		acid	pKa in MeCN
sacharin		sacharin	14.6
picric acid			11
HCl			10.3
TsOH			8.5
$4-NO_2C_6H_4-SO_3H$		$4-NO_2C_6H_4-SO_3H$	6.7
		HBr	5.5
-log(k1)	8 6 4 2 0	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array} } \\ } \\ \end{array} \\ } \\	$ \begin{array}{c} $

Figure 2. A plot of the rate of a reaction versus acidity of catalyst

Figure 3. Phosphoric acid catalysts developed by Cornforth (1978)

Figure 4. Potential reactivity of phosphoric acids with olefins.

Cornforth, J.; Cornforth, R. H.; Gray, R. T. J. Chem. Soc., Perkin Trans. 1982, 2289.

PA 1, R=H PA 2, R=SiPh₃ PA 3, R=Si(4-*t*BuC₆H₄)₃ PA 4, R=adamanthyl PA 5, R=1-naphthyl PA 6, R=2-naphthyl PA 7, R=9-anthracenyl PA 8, R=9-phenanthryl PA 9, R=1-pyrenyl

PA 10, R=H PA 11, R=tBu PA 12, R=F PA 13, R=CI PA 14, R=OMe PA 15, R=NO₂ PA 16, R=Ph PA 17, R=3,5-(CF₃)₂C₆H₃ PA 18, R=2,3,4,5-F₅C₆ PA 19, R=2-naphthyl

PA 20, R=CF₃ R **PA 21**, R=SF₅ **PA 22**, R=Ph **PA 23**, R=2,4,6-(Me)₃C₆H₂

 R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{2} R^{2} R^{2}

PA 24, R=Me **PA 25**, R=*i*Pr

PA 26, R¹=Me, R²=OMe **PA 27**, R¹=*i*Pr, R²=*t*Bu **PA 28**, R¹=*i*Pr, R²=4-*t*BuC₆H₄ **PA 29**, R¹=*i*Pr, R²=9-anthracenyl

PA 30, R=*i*Pr, X=I **PA 31**, R=*i*Pr, X=NO₂ **PA 32**, R=*i*Pr, X=Si(iPr)₃ **PA 33**, R=*i*Pr, X=C₈H₁₇

Figure 5. BINOL-phosphoric acid (PA) catalysts used in the majority of reactions

PA 36, R=H **PA 37**, R=Ph

PA 38

PA 40, R=9-anthracenyl

PA 41, Ar=2,4,6-C₆H₂(*i*Pr)₃

Figure 6. Miscellaneous chiral phosphoric acid catalysts.

Figure 7. Multiple chiral axis containing phosphoric acid catalysts.

NPA 1, $R^1 = SiPh_3$, $R^2 = Tf$ **NPA 2**, $R^1 = 1$ -pyrenyl, $R^2 = Tf$ **NPA 3**, $R^1 = 9$ -anthracenyl, $R^2 = Tf$ **NPA 4**, $R^1 = 9$ -phenanthryl, $R^2 = Tf$ **NPA 5**, $R^1 = 9$ -anthracenyl, $R^2 = Ts$

NPA 6, R = H NPA 7, R = OMe NPA 8, R = NO₂

NPA 9, $R^1 = iPr$, $R^2 = iPr$ **NPA 10**, $R^1 = iPr$, $R^2 = Ad$

NPA 11 Ar = 2,4,6-*i*PrC₆H₂

Figure 8. N-Phosphoramide catalysts

Figure 9. N-Thiophosphoramide catalysts

Figure 10. Alternative variants of catalysts

1.Introduction

2. Modes of Activation

- 2.1 Mono Activation
- 2.2 Dual Activation
- 2.3 Bifunctinal Activation
- 2.4 Counterion Catalysis
- 3. Reaction in the Presence of Metals
 - 3.1 Lewis Acid Behavior
 - 3.2 Non-Lewis Acid Behavior
- 4. Conclusion and Outlook
- 5. Acknowledgement

2.1 Mono Activation

Brønsted acidity, solvent, imine structure

Figure 11. Different modes of monoactivation.

Appel, R.; Chelli, S.; Tokuyasu, T.; Troshin, K.; Mayr, H. J. Am.Chem. Soc. 2013, 135, 6579

Figure 12. Alkylation of diazoesters with imines by Terada (2005)

(a) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005, 127, 9360.
(b) (b) So, S. S.; Mattson, A. E. Chem. -Asian. J. 2014, 3,425.

Figure 13. Aziridination of diazoesters using imines by Akiyama(2009).

Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445.

Rueping, M.; Nachtsheim, B. J.; Moreth, S. A.; Bolte, M. Angew. Chem., Int. Ed. 2008, 47, 593

Figure 16. Possible imine orientations for hydrogen-bonding activation (Terada).

Figure 17. Synthesis of β -amino- α , α -difluoro carbonyl compounds by Akiyama (2011).

Kashikura, W.; Mori, K.; Akiyama, T. Org. Lett. **2011**, 13, 1860

2.2 Dual Activation

Main activations modes featured under dual-activation

-two contacts to the acidic proton

-two contacts to the catalyst

Figure 18. Examples of different modes covered by dual activation.

Figure 19. Nazarov cyclization by Rueping (2007).

Rueping, M.; Ieawsuwan, W.; Antonchick, A. P.; Nachtsheim, B. J. *Angew. Chem.*, Int. Ed. **2007**, *46*, 2097.

Figure 20. Fischer indole reaction by List (2011).

Kötzner, L.; Webber, M. J.;Martínez, A.; De Fusco, C.; List, B. *Angew. Chem., Int. Ed.* **2014**, *53*, **5202**

2.3 Bifunctinal Activation

Figure 21. Models for bifunctional activation (Goodman).

Figure 22. Aza-ene reaction by Terada (2006).

Terada, M.; Machioka, K.; Sorimachi, K. Angew. Chem., Int. Ed. 2006, 45, 2254

Vellalath, S.; Coric, I.; List, B. Angew. Chem., Int. Ed. 2010, 49,9749

Figure 25. Bromocyclization using alkenes by Shi (2011).

Huang, D.; Wang, H.; Xue, F.; Guan, H.; Li, L.; Peng, X.; Shi,Y. Org. Lett. 2011, 13, 6350

2.4 Counterion Catalysis

Figure 26. A generic schematic for chiral phosphate catalysis.

Figure 27. Phosphoric acid salt used by

41a 76%, >99:1 dr 96% ee

41b 83%, 94% ee

Figure 28. ACDC epoxidation by List (2008).

Wang, X.; Reisinger, C. M.; List, B. J. Am. Chem. Soc. 2008, 130

Figure 29. Mechanism for epoxidation (List)

Figure 30. Activation of enantiotopic C(sp³)-hydrogen atoms by Akiyama (2011).

Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166.

1.Introduction

- 2. Modes of Activation
 - 2.1 Mono Activation
 - 2.2 Dual Activation
 - 2.3 Bifunctinal Activation
 - 2.4 Counterion Catalysis
- 3. Reaction in the Presence of Metals
 - 3.1 Lewis Acid Behavior
 - 3.2 Non-Lewis Acid Behavior
- 4. Conclusion and Outlook
- 5. Acknowledgement

3. Reaction in the Presence of Metals

Figure 31. Potential of chiral phosphoric acid-metal complexes.

3.1 Lewis Acid Behavior

Figure 32. A generic model for Lewis acid activations using metal phosphates.

Yu, Z.; Jin, W.; Jiang, Q. Angew. Chem., Int.Ed. 2012, 51, 6060.

Figure 33. Mannich reaction using a calcium salt by Ishihara (2010).

Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Angew.Chem., Int. Ed. 2010, 49, 3823

Figure34. Hetero-Diels-Alder reaction by indium salts by Luo(2012).

Figure 35. Proposed transition state.

Yu, Z.; Jin, W.; Jiang, Q. Angew. Chem., Int.Ed. 2012, 51, 6060.

3.2 Non-Lewis Acid Behavior

Figure 36. Examples of reactive non-Lewis acid intermediates

Figure 37. Carbocyclization of 1,6-enynes using an iridium phosphate by Gandon (2011).

Fuchs, M.; Schober, M.; Orthaber, A.; Faber, K. Adv. Synth.Catal. 2013, 355, 2499.

1.Introduction

- 2. Modes of Activation
 - 2.1 Mono Activation
 - 2.2 Dual Activation
 - **2.3 Bifunctinal Activation**
 - 2.4 Counterion Catalysis
- 3. Reaction in the Presence of Metals
 - 3.1 Lewis Acid Behavior
 - 3.2 Non-Lewis Acid Behavior
- 4. Conclusion and Outlook
- 5. Acknowledgement

4. Conclusion and Outlook

Conclusion:

Outlook:

- 1. Detailed experimental and computational studies are still required for further progress in the field.
- 2. Find way to lower catalyst loading.

5. Acknowledgement

Thank you for your attention!