
.Synergistic catalysis …
… enables previously unattainable bond formation by activating both reaction partners
orthogonally through the use of two catalysts in one pot. In their Communication on
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and a secondary amine.
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Abstract: Carbonyl-substituted allenes are highly important
synthetic intermediates for a number of heterocycles and
strained-ring systems. However, chemistry of allenyl aldehydes
has not been explored as extensively as their ketone, ester, or
amide analogues because of a lack of general synthetic
methods. Described herein is the first direct a-vinylidenation
of aldehydes and an a-vinylidenation/g-functionalization
cascade to access tri- and tetrasubstituted allenyl aldehydes
using a combination of a gold catalyst and an secondary amine.
The reactive enamine intermediate of an aldehyde reacts with
the gold-activated hypervalent silylethynyl benziodoxolone to
selectively generate the corresponding trisubstituted allenyl
aldehyde. The allenyl aldehyde can further react with another
equivalent of the alkynylation reagent or other electrophiles to
afford tetrasubstituted allenes bearing an aldehyde group, an
acetylene, and a halogen functionality. This method enables
rapid access to polysubstituted furans from aldehydes.

Functionalized allenes are an important class of structural
motifs which possess unique chemical properties.[1,2] For the
synthesis of natural products and drug molecules, allenes are
of great interest because of their chemical versatility, which
enables them to participate in many characteristic organic
transformations.[3] Carbonyl-substituted allenes are particu-
larly attractive as they are important synthons for a number of
heterocycles and strained-ring systems.[4] However, despite
being the most synthetically versatile, allenyl aldehydes have
not been explored as extensively as their ketone, ester, or
amide analogues because of the lack of general synthetic
methods. Certain allenyl aldehydes can be made by rear-
rangement of a propargyl alcohol/halide or formylation of
a reactive allenyl C�H, in which the starting materials require
several steps to prepare.[5] Recent advances in enamine-
mediated organocatalysis have delivered a number of pre-
viously unattainable direct a-functionalization reactions of
aldehydes and ketones (Scheme 1).[6] This powerful amine

catalysis strategy works through several orthogonal mecha-
nistic pathways: HOMO elevation,[7] SOMO activation,[8] and
visible-light photoredox.[9] Within this paradigm, synergistic
(cooperative, relay) catalysis, a process utilizing two catalysts
to activate both reaction partners, has recently emerged as an
very attractive approach for generating chemical bonds which
have high-energy barriers to form.[10, 11] Among these a-
functionalization reactions of carbonyls, a carbon–carbon or
a carbon–heteroatom single bond is typically formed. To the
best of our knowledge, there is no such reaction allowing
direct conversion of the carbonyl a-carbon atom into an
allene functionality, a reaction that would enable direct access
to a wide variety of allenyl aldehydes, and possibly unusual
a,b,g,d,e-unsaturated aldehydes by a cascade reaction.

Inspired by the recent development of electrophilic
alkynylation reactions using ethynyl-1,2-benziodoxol-3(1H)-
one (EBX) reagents,[12] we envisioned that polysubstituted
allenyl aldehydes might be accessed by a vinylidenation
reaction between a HOMO-elevated enamine species and
a gold-activated EBX.[12e–l] We proposed that in the presence
of both a secondary amine and an gold(III) or gold(I) catalyst,
the energy gap between the HOMO of the enamine
intermediate and the LUMO of the EBX/Au complex
would be sufficiently reduced to enable a smooth electrophilic
alkynylation reaction to give the intermediate C (Scheme 2).
We expect C could quickly isomerize to the fully conjugated
ynenamine D. Hydrolysis of D would lead to two possible
products: the allenyl aldehyde 2 (by g-protonation) and the
alkynylated product 3 (by a-protonation). We expected that
the g-protonation would be favored because of both steric and
electronic reasons.

In our initial survey, benzenepropanal and 1-[(triisopro-
pylsilyl)-ethynyl]-1,2-benziodoxol-3(1H)-one (TIPS-EBX)
were used as substrates. A TIPS group was introduced at
the terminal acetylene in an attempt to further facilitate the

Scheme 1. a-Functionalization of aldehydes by enamine/metal syner-
gistic catalysis.
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a-alkynylation step (by stabilizing the possible carbene
intermediate through hyperconjugation and accelerating the
1,2-shift).[13] No allenyl or alkynylated aldehyde was observed
in the absence of either the gold or amine catalysts. Gratify-
ingly, the combination of AuCl and pyrrolidine led to
a detectable conversion into a mixture of the a-allenyl
aldehyde 2a and the a-alkynylated aldehyde 3a in about a 6:1
ratio (Table 1, entry 1). Other metals failed to promote this
transformation. Both the amines and gold species were
systematically investigated. Surprisingly, the popularly used
imidazolidinones and substituted prolinols were ineffective,
and only the aldol dimerization product was observed, despite
the fact that both types of amines are excellent HOMO-
raising catalysts for various electrophiles. Acid co-catalysts
did not improve the conversions. Both gold(III) and gold(I)
worked well for this reaction.

The gold catalyst did not tolerate phosphine or N-
heterocyclic carbene ligands (see the Supporting Information
for the comprehensive reaction parameter investigation). In

sharp contrast, the conversion into the allenyl aldehyde was
significantly improved by chelating nitrogen ligands. In
particular, 4,5-diazafluorenone resulted in a greater than
70% yield using either AuCl or AuCl3 (Table 1, entries 6 and
8).[14] The competing aldol reaction was the major side
reaction when the secondary amine was employed catalyti-
cally. Gratifyingly, increasing the loading of pyrrolidine to
100 mol% improved yields to greater than 90% (Table 1,
entries 9 and 10). It is worth noting that the successful
isolation of the allenyl aldehyde product suggests that the
bulky TIPS and the amine catalyst likely inhibit the cyclo-
isomerization of the product to the corresponding furan
in situ.

The scope of the aldehydes was examined next. b-Aryl
aldehydes, including various substituted phenyls and furyls,
reacted in good yields with moderate to good allene/alkyne
selectivities (Table 2, 2a–e and 2k). Straight-chain alkyl

substrates, including those containing O or N heteroatoms
were very effective, with allene/alkyne ratios generally higher
than those obtained from their b-aryl counterparts (2 f–i). The
reactions of the b-branched aldehydes were sluggish, and the
yields were somewhat low (2j–n). Aldehydes bearing a ter-
tiary b-carbon atom were poor substrates. For example, 3,3-
dimethylbutanal resulted in a 40 % combined yield of 2o and
3o in a 1:2 ratio.

We envisioned that both the allene (2) and alkyne (3)
products could react with the amine to generate the previous

Scheme 2. Proposed synergistic strategy for the a-vinylidenation of
aldehydes.

Table 1: Survey of reaction conditions for the a-vinylidenation of
aldehydes.[a]

Entry Gold Ligand Yield [%][b]

1 4a none 36
2 4b none 31
3 4a 6a 42
4 4a 6b 38
5 4a 6c 49
6 4a 6d 77
7 4b 6c 37
8 4b 6d 74
9c 4a 6d 93
10c 4b 6d 91

[a] Reactions were conducted with 0.1 mmol TIPS-EBX and 0.2 mmol 1a
in 1 mL solvent. [b] Combined yields for 2 and 3 were determined by GC
using biphenyl as the internal standard. [c] 0.1 mmol pyrrolidine was
used. TIPS= triisopropylsilyl.

Table 2: Substrate scope of aldehydes for a-vinylidenation.[a]

[a] Yield (combined) of 2 and 3 upon isolation. Average of two runs. Ratio
of 2/3 and d.r. determined by integration of the peaks in the NMR spectra
the crude reaction mixture. Boc= tert-butoxycarbonyl, Cbz= benzylox-
ycarbonyl.
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ynenamine intermediate D (Scheme 2), which would engage
in a second electrophilic alkynylation with EBX, preferably at
the g-carbon atom (Scheme 3).[15] A mixture of 2a and 3a was

subjected to 1.2 equivalents of TIPS-EBX under otherwise
standard conditions (Table 2). To our delight, the allene-
tethered alkynyl aldehyde 7 a was obtained in 85% yield upon
isolation (Scheme 3).

The successful alkynylation of the allenyl aldehyde 2a
prompted us to explore the one-pot cascade using a simple
aldehyde and excess TIPS-EBX. AuCl and AuCl3, in combi-
nation with the ligands 6a and 6c, respectively, were found to
be crucial for the direct conversion of an aldehyde into the
corresponding g-alkynyl allenyl aldehyde (Conditions A and
B, Table 3). As a result of the strong Lewis acidity of AuCl3,

sensitive substrates resulted in complex reaction mixtures.
The corresponding AuCl conditions (Conditions B) provided
a milder alternative. This cascade was general for a broad
scope of aldehydes (Table 3). Only silyl-EBX worked for the
vinylidenation and the vinylidenation/alkynylation cascade.
The corresponding Ph-EBX failed to generate any allene or
alkyne products. When the TIPS-EBX-derived allenyl alde-
hyde 2a was subjected to Conditions B with TBS-EBX
(Scheme 4), the hybrid silylated g-alkynyl allenyl aldehyde 7o

was obtained in 89 % yield. A catalytic amount of pyrrolidine
performed significantly better for the cascade reaction, while
stoichiometric loading of the amine led to a complicated
mixture. Notably, the reaction became less sensitive to the
amount of the amine catalyst, possibly because of rapid g-
alkynylation. A number of secondary and primary amines
catalyzed this cascade reaction efficiently. Several chiral
amine catalysts were examined in an effort to synthesize the
tetrasubstituted allenyl aldehyde 7 enantioselectively
(Scheme 4). The initial results were encouraging. A chiral
primary amine derived from quinine showed excellent
catalytic activity with 17% ee.[16]

Other electrophiles were examined for the g-functional-
ization of D. Electrophilic halogen reagents were excellent
substrates using the amine catalyst alone (Scheme 5). Inter-

estingly, the regioselectivity was strongly affected by the
halogen element used. For NCS, the propargyl chloride 9a
was obtained preferentially over the corresponding allenyl
chloride 8 a. The regioselectivity decreased to 1:1.8 for NBS.
Complete iodination of the allene was observed when NIS
was used, likely because of both steric minimization and
better chemical compatibility between the soft sp-hybridized
carbon nucleophile and soft electrophiles.

Scheme 3. Second eletrophilic alkynylation.

Table 3: a-Vinylidenation/g-alkynylation cascade by synergistic cataly-
sis.[a]

[a] Conditions A: 20 mol% pyrrolidine, 10 mol% AuCl3, 20 mol% 6c,
toluene, RT, 24 h. Conditions B: 20 mol% pyrrolidine, 10 mol% AuCl,
20 mol% 6a, toluene, RT, 24 h. Yields are those of the isolated products.
TBS = tert-butyldimethylsilyl.

Scheme 4. Reaction of allenyl aldehyde 2a with TBS-EBX and an
enantioselective reaction using a chiral amine.

Scheme 5. Halogenation of allenyl aldehyde 2a.
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The seemingly unstable cascade product, g-alkynyl allenyl
aldehydes, were smoothly converted into 2-alkynyl-3-silylfur-
ans using AuCl3, thus rendering a highly efficient two-step
synthesis of trisubstituted furans from aldehydes.[14b, 17] In the
absence of gold, the furan products started to appear when
the g-alkynyl allenyl aldehydes were stood at room temper-
ature as neat for several days or stirred with excess TFA
(5 equiv, 48% yield, 24 h). Various 4-alkyl-3-silyl-2-alkynyl
furans were synthesized in high yields (Table 4), thus dem-
onstrating the synthetic utility of the aforementioned cascade
transformation. Attempts to access the heterocycles directly
from the corresponding aldehydes led to low yields. The
alkynyl TIPS could be selectively removed under the TBAF/
THF conditions to yield the furan-substituted terminal alkyne
quantitatively.

The mechanistic aspect of the gold-activated electrophilic
alkynylation is intriguing. Both p activation and oxidative
addition pathways are plausible. Since the oxidative addition
pathway requires a gold(I) species, this activation mode seems
less likely as both gold(I) and gold(III) catalysts exhibited
nearly identical activity. Presumably, the addition of the
enamine to the gold-activated triple bond is followed by
either b elimination or a elimination/1,2-shift to lead to the
key ynenamine intermediate D (in Scheme 2) which is
hydrolyzed by g-protonation.[18]

In summary, we have developed the first direct a-vinyl-
idenation and the a-vinylidenation/g-alkynylation cascade of
aldehydes using silyl-EBX with a synergistic gold/amine
catalyst system. Functionality-rich, tri- and tetrasubstituted
allenes bearing a versatile aldehyde and an acetylene
functionality were prepared in a straightforward protocol.
This method enables rapid access to polysubstituted furans
from aldehydes. The enantioselective aspects and detailed
mechanism of these reactions are currently under investiga-
tion.
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