Recent Developments in Alkynylation

--New approaches to introduce an alkynyl group

Reporter: Zhao-feng Wang
Supervisor: Yong Huang
2013-03-27
Recent Developments in Alkynylation

Contents

1. Introduction of Acetylene Chemistry
2. Nucleophilic alkynylation: Classic text book approach
3. Electrophilic alkynylation: The dark side of acetylene chemistry
4. Radical C-alkynylation
5. Summary and outlook
Recent Developments in Alkynylation

Introduction -- Structure and Bonding

Linear Acetylenic Scaffolds

\[pK_a \approx 25 \]

Total bond strength: 839 kJ/mol
- C-C_σ bond: 369 kJ/mol
- 1st C-C_π bond: 268 kJ/mol
- 2nd C-C_π bond: 202 kJ/mol

Picture downloaded from http://en.wikipedia.org
Recent Developments in Alkynylation

Introduction -- Why we need to introduce an alkynyl group?

Heterocycles

\[R_1 \quad \text{X} \quad R_2 \]

Meta catalyzed cyclization

etc...

\[R_1 \quad \text{C} \quad R_2 \]

Enyne Metathesis

Diels-Alder reaction

versatile building blocks in organic synthesis

Arylene-Acetylene nanostructure

\[\text{Cu(II)} \quad \text{Ligand} \]

\[N_3^- + \quad \text{Cu(II)} \quad \text{Ligand} \]

= Biomolecule

= Fluorophore

click chemistry for biomolecular labeling

Recent Developments in Alkynylation

Contents

1. Introduction of Acetylene Chemistry

2. Nucleophilic alkynylation: Classic text book approach

3. Electrophilic alkynylation: The dark side of acetylene chemistry

4. Radical C-alkynylation

5. Summary and outlook
Recent Developments in Alkynylation

Nucleophilic alkynylation: Classic text book approach

Addition of Alkyne Nucleophiles to Carbonyl Groups

\[\text{X=O, NPG} \]

Sonogashira coupling of aryl halides and acetylides

\[\text{Cu cat., Pd cat. base} \]

Recent Developments in Alkynylation

Nucleophilic alkynylation

Asymmetric alkynylation of α-imino esters via synergistic catalysis strategy

Combined enantioselective Brønsted acid and metal-catalyzed alkynylation of α-imino esters

M. Rueping et al. Angew. Chem., Int. Ed. 2007, 46, 6903-6906
Recent Developments in Alkynylation

Nucleophilic alkynylation

The first applications of carbene ligands in sonogashira reactions of unactivated alkyl halides

M. Eckhardt, G.-C. Fu et al. J. Am. Chem. Soc. 2003, 125, 13642-13643
Recent Developments in Alkynylation

Contents

1. Introduction of Acetylene Chemistry

2. Nucleophilic alkynylation: Classic text book approach

3. Electrophilic alkynylation: The dark side of acetylene chemistry

4. Radical C-alkynylation

5. Summary and outlook
Recent Developments in Alkynylation

Electrophilic alkynylation: The dark side of acetylene chemistry

Addition of alkynes on a nucleophilic position

Electrophilic alkynylation reagents

Halogens

\[R_2 \equiv X \]

X = F, Cl, Br, I

Hypervalent Iodine

\[R_2 \equiv I \equiv X \]

X = OTs, OTf, BF$_4$...

Sulfur Reagents

\[R_2 \equiv SO_2 R_1 \]

Recent Developments in Alkynylation

Electrophilic alkynylation: Heteroatom alkynylation

C-N bond formation: first ynamine synthesis

Extended methodology to ynamide

Recent Developments in Alkynylation

Electrophilic alkynylation: Heteroatom alkynylation

C-S bond formation: regiospecific thiazole synthesis using alkynyliodonium salts

Recent Developments in Alkynylation

Electrophilic alkynylation: Enolate alkynylation

First alkynyliodonium salt reacted with the enolate

![Chemical structure](image)

yield 73%

Improvement of the methodology involving novel hypervalent iodine reagents

![Chemical structure](image)

EWG= COX, CN, NO₂

R₁ = alkyl, aryl

TMS-EBX

terminal acetylenes obtained

Recent Developments in Alkynylation

Electrophilic alkynylation: Enolate alkynylation

Alkynylation of non-stabilized enolates using chloroacetylenes

Recent Developments in Alkynylation

Electrophilic alkynylation: Enolate alkynylation

Highly enantioselective electrophilic alkynylation

Electrophiles approach from Si-face (above)

Recent Developments in Alkynylation

Electrophilic alkynylation: Alkynylation of organometallic nucleophiles

Pioneering work using alkynyl sulfones

\[
\begin{align*}
R_1&=\equiv\text{SO}_2\text{Ar} + M\text{R}_2 & \text{THF} & \text{78°C to rt} & R_1&=\equiv\text{R}_2 \\
M&=\text{Li, MgX} \\
R_1, R_2&=\text{aryl, tertiary alkyl}
\end{align*}
\]

Efficient synthesis of aliphatic acetylenes based on a mixed Zn–Cu reagent

\[
\begin{align*}
\text{ZnI}\&\text{R}_1 & \text{CuCN} & 2\text{LiCl} & \text{THF, -65°C} & X=\text{Br, I} & R_1&=\equiv\text{R}_2 \\
& & & & & \\
R_2&=\equiv\ X & \text{ZnI(CN)Cu}\&\text{R}_1 & X=\text{Br, I} & R_1&=\equiv\text{R}_2
\end{align*}
\]

Organocopper reagent as nucleophile in total synthesis

Recent Developments in Alkynylation

Electrophilic alkynylation: Alkynylation of C(sp)–H

Cadiot–Chodkiewicz alkynylation of terminal alkynes

\[
R_1\equiv\equiv\text{Br} + H\equiv\equivR_2 \xrightarrow{\text{Cul, EtNH}_2} R_1\equiv\equiv\equivR_2
\]

non-symmetric diynes

Palladium could be a superior catalyst

\[
R_1\equiv\equiv\text{Br} + H\equiv\equivR_2 \xrightarrow{\text{Pd(dba)}_2/L\text{NEt}_3, \text{Cul, DMF, rt, 2-9h}} R_1\equiv\equiv\equivR_2
\]

Recent Developments in Alkynylation

Electrophilic alkynylation: Alkynylation of C(sp²)–H

Gold-catalyzed alkynylation of indoles and pyrroles using alkynyl benziodoxolone

Recent Developments in Alkynylation

Electrophilic alkynylation: Alkynylation of C(sp³)–H

First Palladium(II)-catalyzed β-C(sp³)–H bond alkynylation

Palladium(0)-catalyzed primary β-C(sp³)–H bond alkynylation

Recent Developments in Alkynylation

Contents

1. Introduction of Acetylene Chemistry

2. Nucleophilic alkynylation: Classic text book approach

3. Electrophilic alkynylation: The dark side of acetylene chemistry

4. Radical C-alkynylation

5. Summary and outlook
Recent Developments in Alkynylation

Radical C-alkynylation

Overview of radical C-alkynylation reactions

P. Renaud et al. Angew. Chem., Int. Ed. 2006, 45, 5847-5849
Recent Developments in Alkynylation

Radical C-alkynylation
Radical-mediated C(sp³) - C(sp) coupling

R−COOH + G= Ar, TIPS
R= 1°, 2°, 3°, alkyl

\[
\text{Cl} \quad \text{CO}_2\text{H} + \text{TIPS-EBX} \quad \text{CH}_3\text{CN/H}_2\text{O} \\
50 \degree \text{C}, 10\text{h} \quad \text{74\% yield}
\]

AgNO₃ (cat.) K₂S₂O₈
\[
\text{R} \quad \equiv \quad \text{G} \quad \text{Yield: 60-94\%}
\]

Recent Developments in Alkynylation

Summary
Recent Developments in Alkynylation

Acknowledgement

Prof. Yong Huang

All my labmates in E201

All the members in SCBB
Thank you!
Scheme 2. Possible reaction mechanisms.
Scheme 2. Proposed Pathways of Palladium-Catalyzed C(sp)–C(sp) Coupling

- **Path A**: $X \equiv R^1 \overset{Pd}{\rightarrow} X \equiv R^1 \rightarrow M \equiv R^2 \rightarrow R^2 \equiv R^1$
- **Path B**: $R^1 \equiv Pd \equiv R^1 \downarrow \rightarrow R^1 \equiv \rightarrow \rightarrow M \equiv R^1 \downarrow \rightarrow M \equiv R^2 \rightarrow R^2 \equiv R^2$
- **Path C**: $R^1 \equiv \rightarrow \rightarrow \rightarrow R^1 \downarrow \rightarrow R^1 \equiv \rightarrow \rightarrow M \equiv R^1 \downarrow \rightarrow M \equiv R^2 \rightarrow R^2 \equiv R^2$

- $X = \text{Cl, Br, I}$
- $M = \text{Cu}$
General Procedures for the Coupling Reactions.
To an ovendried Schlenk tube with a magnetic stir bar were added Pd(dba)$_2$ (11.5 mg, 0.02 mmol), L1 ligand (7.9 mg, 0.02 mmol), and CuI (1.9 mg, 0.01 mmol). DMF (1 mL) was added via a syringe. The system was vacuumed with an oil pump at 0 °C and filled with nitrogen, and this was repeated five times. After the mixture was stirred under nitrogen for about 10 min, alkyne (0.6 mmol) was added via a microliter and stirred for another 5 min. 1-Bromoalkyne was added last via a microliter syringe. The system was stirred at room temperature for 10 h. Upon completion, 4 mL of brine was added, and the mixture was extracted by ethyl acetate (3 mL × 3). The product was obtained by flash column chromatography.
Scheme 3. Possible mechanisms for the ethynylation reaction and labeling experiment (Ar = phenyl-2-carboxylate).
Scheme 65 Radical alkynylation of sp³ C–H bonds using alkynyl triflones.

Scheme 66 Mechanism of the radical alkynylation.