Nickel NHC-Catalyzed C-N Bond Formation

Reporter: Song Feifei Supervisor: Prof. Yong Huang 2017. 02. 13

Ritleng, V. et al. Acs. Catal. 2016, 6, 890-906.

Amination of aryl halides

- Dehydrogenative cross-coupling of aldehydes and amines
- Hydroamination of olefins
- Hydroimination of alkynes
- One-step indoline synthesis from iodoacetanilides and alkenes

First Ni(NHC)-catalyzed amination of aryl chlorides

Proposed mechanism for the amination of aryl chlorides

PMHS as a reducing agent

PHMS: Polymethylhydroxysilane

Ph-Bpin as a reducing agent

Knochel, P. *et al. J. Org. Chem.* **2008**, *73*, 1429-1434. Garg, N. K. *et al. Org. Lett.* **2012**, *14*, 4182-4185.

Possible pathway for activating aryl Nickel(II) halide complexes

Without the aid of a reducing agent: by attack of a nucleophile and then reductive elimination to generate in situ an active Ni(0) species.

Yang, L. -M. et al. J. Org. Chem. 2007, 72, 6324-6327.

Amination of aryl chlorides, tosylates, and phosphates

$\begin{array}{c} \begin{array}{c} 2-4 (3 - 5 \text{ mol}\%) \\ \text{IPr} \cdot \text{HCI} (3 - 10 \text{ mol}\%) \\ \text{R}^2 \end{array} \begin{array}{c} R^1 \\ \text{Base, solvent, temperature} \end{array}$	$Ar = N_{R^2}^{R^1}$	PPh ₃ │ Ar− <mark>Ni</mark> −X │ PPh₃
(1 - 3 equiv.)		2 : $\Delta \mathbf{r} = \mathbf{P}\mathbf{h}$ $\mathbf{X} = \mathbf{B}\mathbf{r}$
 X = Cl and cyclic secondary amines: 2 (3 mol%), IPr·HCl (3 mol%), NaOt-Bu (1.3 equiv.), THF (65 °C) or dioxane (80 °C), 1 - 3 h 4 (5 mol%), IPr·HCl (5 mol%), KOt-Bu (4.0 equiv.), toluene (RT), 24 h 	9 examples 72 - 99% [ref. 34] 19 examples 50 - 99% [ref. 36]	2: Ar = Pn, X = Br 3: Ar = 1-(<i>p</i> -acetylnaphtyl), X = Cl 4: Ar = 1-naphtyl, X = Cl
3 (5 mol%), IPr·HCl (10 mol%), NaO <i>t</i> -Bu (1.3 equiv.) dioxane (100-120 °C), 3 - 6 h	10 examples 66 - 99% <i>[ref. 34]</i>	
 X = OTs and cyclic secondary amines: 4 (5 mol%), IPr·HCl (5 mol%), NaOt-Bu (1.6 equiv.) dioxane (110 °C), 15 min 	14 examples 24 - 96% [<i>ref. 37</i>]	
X = OTs and anilines: 4 (5 mol%), IPr·HCl (10 mol%), NaO <i>t</i> -Bu (1.6 equiv.) dioxane (110 °C), 30 min	19 examples 37 - 95% <i>[ref. 37]</i>	
 X = OP(O)(OAr)₂ and cyclic secondary amines, aliphat 4 (5 mol%), IPr·HCI (10 mol%), NaH (2.0 equiv.) dioxane (110 °C), 30 min - 1 h Yang, LM. et al. J. Org. Chem. 2007, 72, 6324-6327. Yang, LM. et al. J. Organomet. Chem. 2011, 696, 2482-2484 Yang, LM. et al. J. Org. Chem. 2008, 73, 1624-1627. Yang, LM. et al. Org. Lett. 2011, 13, 3750-3753. 	ic primary amines a 28 examples 21 - 95% [ref. 38]	nd anilines

7

Proposed mechanism

Yang, L.-M. et al. J. Org. Chem. 2008, 73, 1624-1627.

Synthesis of Ni(IPr)(acac)₂ (5) and Ni(IPr)₂ (6) from Ni(acac)₂

Catalytic amination of chlorobenzene under Matsubara's (A) and Fort's (B) conditions

A: 6 (10 mol%), NaOt-Bu (1.8 equiv.)

B: Ni(acac)₂ (10 mol%), SIPr.HCl (20 mol%), NaH (1.6 equiv.), t-BuOH (1.5 equiv.)

Matsumoto, T. *et al. Organometallics* **2008**, 27, 6020-6024. Fort, Y. *et al. J. Org. Chem.* **2002**, 67, 3029-3036.

Amination of aryl halides catalyzed by the mixed PPh3/IPr Nickel(II) complex 7

Diphenylamination of aryl halides catalyzed by the Y-shaped monovalent complex 9

Proposed Ni(I)/Ni(III) Mechanism by the Nickel(I) Complex 9

Amination of aryl chlorides catalyzed by complex 10h bearing the bulky yet flexible IPr^{*OMe} ligand

Nolan, S. P. et al. Organometallics 2013, 32, 6265-6270.

Amination of aryl and heteroaryl chlorides catalyzed by 11

Coupling of secondary cyclic amines and anilines with aryl tosylates and of indoles and carbazoles with (hetero)aryl chlorides catalyzed by 12

Nicasio, M. C. *et al. Adv. Synth. Catal.* **2010**, *352*, 1949-1954. Nicasio, M. C. *et al. Organometallics.* **2012**, *31*, 6312-6316.; Nicasio, M. C. *et al. Adv. Synth. Catal.* **2015**, *357*, 907-911.

- Amination of aryl halides
- Dehydrogenative cross-coupling of aldehydes and amines
- Hydroamination of olefins
- Hydroimination of alkynes
- One-step indoline synthesis from iodoacetanilides and alkenes

Dehydrogenative cross-coupling of aldehydes and amines

Mechanistic data support a catalytic cycle involving oxidative addition of the aldehyde C-H bond onto an electron-deficient nickel(0) center.

Dong, V. M. et al. Angew. Chem. Int. Ed. 2015, 54, 1312-1315.

- Amination of aryl halides
- Dehydrogenative cross-coupling of aldehydes and amines
- Hydroamination of olefins
- Hydroimination of alkynes
- One-step indoline synthesis from iodoacetanilides and alkenes

Hydroamination of olefins

Hydroamination of activated olefins catalyzed by complexes 13a,b

- Amination of aryl halides
- Dehydrogenative cross-coupling of aldehydes and amines
- Hydroamination of olefins
- Hydroimination of alkynes
- One-step indoline synthesis from iodoacetanilides and alkenes

Hydroimination of alkynes

Hydroimination of Alkynes Catalyzed by a Ni(COD)₂/IPr (1/2.2) Combination

The catalytic system was reported to catalyze the formal anti addition of aromatic N-H bond.

Zhao, P. et al. J. Am. Chem. Soc. 2015, 137, 6136-6139.

Hydroamination of alkynes

Proposed mechanism for the hydroimination of alkynes

Zhao, P. et al. J. Am. Chem. Soc. 2015, 137, 6136-6139.

- Amination of aryl halides
- Dehydrogenative cross-coupling of aldehydes and amines
- Hydroamination of olefins
- Hydroimination of alkynes
- One-step indoline synthesis from iodoacetanilides and alkenes

One-step indoline synthesis from iodoacetanilides and alkenes

Thanks for your attention!

Dehydrogenative cross-coupling of aldehydes and amines

Dong, V. M. et al. Angew. Chem. Int. Ed. 2015, 54, 1312-1315.