Conference Summary & Paper Report

Xudong Zou 17th Oct. 2014

Outline

National Conference on Bioinformatics and Systems biology

Nonnatural protein-protein interaction-pair design

Nonnatural protein-protein interaction-pair design by key residues grafting S. Liu, *et al. Proc. Natl. Acad. Sci. U.S.A.* 104, 5330(2007).

Time: 6th ~ 9th October, 2014

Address: NanJing

主题报告(30)&专题报告(30)

金属离子调控的蛋白质折叠和功能运动 王炜-南京大学-物理学院 wangwei@nju.edu.cn

- 1. Zn²⁺调控的锌指蛋白的折叠
- 2. Ca²⁺结合调控的钙调蛋白局域构象运动(all-atom simulation); Ca²⁺结合调控的钙调蛋白的别构运动
- 3. 钙离子调控Gelsolin蛋白折叠与功能运动

Inferring gene interactions beyond standard models using expression data 黄海艳-UC Berkeley

- 1. Gene coexpression measures in large heterogenous samples using count statistics Wang R. et al. PNAS, 2014
- 2. Inferring gene interactions and functional modules using sparse canonical correlation analysis(SCCA) Wang R. et al. AOAS

When pooling samples from different cell types, time points or other experimental conditions, a desirable coexpression measure should

- be versatile to measure a variety of functional / nonfunctional bivariate associations (e.g., Renyi, Hoeffding's D, dCov, MI, MIC)
- account for the fact that the associations may change or only exist across a subset of samples (e.g., MIC (maybe), biclustering)
- handle outliers (e.g., rank-based methods; MI empirically observed to be sensitive)
- fast and easy to compute (MIC slowest; Renyi, dCov, MI and MIC need permutation tests for p-values)
- lead to functionally related pairs being ranked before spuriously related ones (issue of high false positive rates)
- match local patterns of gene expression ranks

Detecting bivariate associations

- Data: p genes with expression levels across n samples
- n samples from different experimental conditions, time points, cell types, etc.
- Linear relationships: Pearson's correlation
 - most widely used, fast and straightforward to compute; sensitive to outliers, high false positive rates
- Monotonic relationships: Spearman, Kendall's correlation
- General statistical dependence: Renyi correlation, Hoeffding's D, distance covariance (dCov), mutual information (MI), maximal information coefficient (MIC)

Local interaction measure

- For a heterogeneous set of samples with potentially changing gene interactions, we can define a general coexpression measure by aggregating the interactions across all subsamples of size k < n.
- Consider expression vectors (x1,..., xn) and (y1,..., yn), define

$$W = \sum_{1 \leq i_1 < \cdots < i_k \leq n} F(x_{i_1}, \ldots, x_{i_k}; y_{i_1}, \ldots, y_{i_k})$$

where $F(\cdot, \cdot)$ is an interaction measure on local expression profiles $(x_{i_1}, \ldots, x_{i_k})$ and $(y_{i_1}, \ldots, y_{i_k})$ from a set of k samples.

 Choose F(·; ·) to be an indicator function comparing the rank patterns of the subsequences

Matching contiguous subsequences of length $k(W_1)$

- · For time-course data, we preserve the order of the samples and consider only interactions within contiguous subsequences.
- Let
 be the rank function that returns the indices of elements in a vector after they have been sorted in an increasing order.
- · I,+, I,- indicators

 $l^{+}_{-} =$

1 if
$$\psi(x_i, \ldots, x_{i+k-1}) = \psi(y_i, \ldots, y_{i+k-1})$$
,
o otherwise:

1 if
$$\psi(x_i, ..., x_{i+k-1}) = \psi(-y_i, ..., -y_{i+k-1}),$$

0 otherwise;

• Define
$$W_1 = \sum_{i=1}^{n-k+1} (I_i^+ + I_i^-)$$
.

 $W_1 =$

Designing Functional Proteins 来鲁华-北京大学-化学与分子工程学院

Ihlai@pku.edu.cn

Three different strategies:

- 1. Key functional site grafting
- 2. De novo binding protein design
- 3. Binding protein virtual screening based on protein-protien docking

Main idea

Designed a unrelated protein that can bind with EPOR.

EPO(红细胞生成素) is the crucial regulator of red blood-cell production and delivers essential growth, differentiation and survival signals to erythroid progenitors.

ERPH1 is one of the designed proteins that mutated from a rat protein PLC δ 1-PH.

Methods

Key residues grafting Transfering functional epitopes from one protein to another.

Pipeline

Three key residues in EPO, Phe-48, Asn-147, and Arg-150 were selected and used in next step.

Liang S, et al. J Biomol Struct Dyn, 2000, 17:821-828.

Searching for scaffold proteins

- 1. Choosing proteins with 100-200 residues in PDB as candidate scaffold proteins.
- 2. Defining three key residues on scaffold proteins Three residues should satisfy the geometric relationships of C_{α} - C_{β} vectors of the three key residues in EPO.
- 3. Defining the interface

A set of atoms on a protomer that loses at least 0.1 Å² of ASA upon binding to a partner and has a ASA of < 15Å².

4. Calculating buried surface area and filtering according to buried surface area

Buried surface area of the computed protein-protein complex >= 1200Å².

Other rules:

- a) Expression in *E. coli*.
- b) Without metal ions
- c) Have less than four cysteine residues or two pairs disulfide bonds
- d) Human origin or highly homologous

Design the protein

Mutate the three key residues in PLC δ 1-PH

- ERPH1 E63F, D47N, K49R
- ERPH2 E63F, D47N, K49R, E46A
- ERPH3 E63F
- ERPH4 E63F, D47N
- ERPH5 E63F, K49R
- ERPH6 D47N, K49R
- ERPH7 D47N
- ERPH8 K49R

Validation the interactions

The rank of binding free energies is consistent with that of binding constants.

Table 1. Equilibrium constants (K_D) of hEPO and ERPHs binding to hEPOsR as determined by SPR

Name	Mutation(s)	KD, nM	ΔG ,* kcal/mol
hEPO	<u> </u>	0.13 ± 0.05	-21.08
PLCo1-PH		ND	-11.63
ERPH1ª	E63F, D47N, K49R	24 ± 3	-13.42
ERPH2	E63F, D47N, K49R, E46A	26 ± 3	-13.26
ERPH3	E63F	240 ± 60	-12.96
ERPH4	E63F, D47N	29 ± 2	-13.54
ERPH5	E63F, K49R	69 ± 1	-12.91
ERPH6	D47N, K49R	500 ± 270	-12.10
ERPH7	D47N	ND	-12.21
ERPH8	K49R	ND	-11.59

ND, could not be determined under the experimental conditions because of very weak or undetectable binding.

*The binding free energies calculated by using PMFScore (24).

Validation the interactions

Buried surface area

1946.8Å ²	1825.5 Ų		
Buried hydrophobic surface area			

Strong positive electrostatic potential

Validation the interactions

Phe-63 in ERPH1 forms a hydrophobic cluster with Phe-93 and Phe-205 in EPOR

The side chain amide of Asn-47 in ERPH1 forms H-bonds with the side chain of His-114 in EPOR

The side chain of Arg-49 in ERPH1 forms H-bonds with the side chain of Glu-117 and the backbone carbonyl oxygen of Pro-203 in EPOR

Validation the interactions

A. Testing the activity of ERPH1 in EPO-EPOR signal cascade, and the JAK2/STAT5 reporter system was used.

B. Expression level of ERPH1 detected by western blot

In Vivo ERPH1 activity measurement:

The activity of hEPO decreased while the expression of ERPH1 increasing

Validation the interactions

- Luciferase activity decreased sharply as the concentration of ERPH1 increased from 0.05 to 48.3 µM
- The IC₅₀ of ERPH1 on EPO activity was 5.7 μM

Summary

- This work is based on that similar functions can be performed by different proteins.
- PLC δ 1-PH is ideal for grafting the three key residues from EPO, which tolerated the mutations and maintained its overall structure.
- Why only a few mutations on PLC δ 1-PH made it bind to its nonnatural partner need further studies.
- It is very important to choose a better scaffold protein for designing.

Thanks for your attention!

