

Kainic Acid

Yijun Wu

Xiaoyun Liao

Mingze Yang

Supervisors: Prof. Tao Ye, Dr. Yian Guo

Classical Synthesis of Kainic Acid

- Reporter: Yijun Wu
- Supervisors: Prof. Tao Ye, Dr. Yian Guo
- October 5th, 2020

Contents

01 Introduction

Background information

02 Total Synthesis of Kainic Acid

- I. Wolfgang Oppolzer, Chemischer Informationsdienst 1982.
- II. Stephen Hanessian, The Journal of Organic Chemistry 1996.
- III. John Montgomery, Journal of the American Chemical Society 1999.
- IV. Kunio Ogasawara, Org Lett 2000.

03 Summary

- Ring Building
- Chiral Bond Building

Background Information about Kainic Acid

Introduction

Introduction

Kainic Acid (KA), or kainate, is an acid that naturally occurs in some seaweed. Kainic acid is a potent neuroexcitatory amino acid agonist that acts by activating receptors for glutamate, the principal excitatory neurotransmitter in the central nervous system.

Introduction

Kainic acid is a direct agonist of the glutamic kainate receptors and large doses of concentrated solutions produce immediate neuronal death by overstimulating neurons to death. Such damage and death of neurons is referred to as an excitotoxic lesion. Thus, in large, concentrated doses kainic acid can be considered a neurotoxin, and in small doses of dilute solution kainic acid will chemically stimulate neurons.

Approach for Stereocenters

- Chain Synthesis
 - Oppolzer, W.; Thirring, K., Enantioselective synthesis and absolute configuration of (-)-.alpha.-kainic acid. Journal of the American Chemical Society **1982**, 104 (18), 4978-4979.
 - hevliakov, M. V.; Montgomery, J., A Stereodivergent Approach to (–)-α-Kainic Acid and (+)-α-Allokainic Acid Utilizing the Complementarity of Alkyne and Allene Cyclizations. Journal of the American Chemical Society **1999**, 121 (48), 11139-11143.
- Ring Cut Down
 - Hanessian, S.; Ninkovic, S., Stereoselective Synthesis of (–)-α-Kainic Acid and (+)-α-Allokainic Acid via Trimethylstannyl-Mediated Radical Carbocyclization and Oxidative Destannylation. The Journal of Organic Chemistry **1996**, 61 (16), 5418-5424.
 - Nakagawa, H.; Sugahara, T.; Ogasawara, K., A concise route to (-)kainic acid. Org Lett **2000**, 2 (20), 3181-3.
- Direct entry

Approach for Stereocenters

• Chain Synthesis

Approach for Stereocenters

Ring Cut Down

Approach for Stereocenters

• Direct entry

Wolfgang Oppolzer, Chemischer Informationsdienst 1982

Total Synthesis of Kainic Acid

Synthesis Route

Retrosynthesis

Synthesis Route

Reduction & Protection

Alkenylation

Sharpless, K. B.; Lauer, R. F.; Teranishi, A. Y., Journal of the American Chemical Society **1973**, 95 (18), 6137-6139.

Alkenylation

Synthesis Route

Cyclization

Cyclization

Cyclization

Oppolzer, W.; Robbiani, C., Helvetica Chimica Acta 1980, 63 (7), 2010-2014.

Deprotection & Oxidation

Q: What is the mechanism of Jones' Oxidation?

Hydrolysis & Deprotection

Stephen Hanessian, The Journal of Organic Chemistry 1996.

Total Synthesis of Kainic Acid

Retrosynthesis

Synthesis route

Protection & Reduction

Alkylation

Deprotection, Oxidation & Olefination

Deprotection, Oxidation & Olefination

Cyclization

Synthesis route

Oxidation

Demethylation

Demethylation

Mechanism + Me ∕ ⊕ Br [⊖] + Me₂BOMe H₂O /IeOH ROH iii

Nucleophilic Addition

Oxidation

Synthesis route

Nozaki Condition

Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H., Tetrahedron Letters **1978**, 19 (27), 2417-2420.

Deprotection, Hydrolysis & Protection

Oxidation

John Montgomery, Journal of the American Chemical Society 1999.

Total Synthesis of Kainic Acid

Retrosynthesis

Synthesis Route

Alkylation

 $RC \stackrel{\leftarrow}{=} CH_2 - N - CHMe_2 - RCH = C = CH_2 + Me_2CH - N = CMe_2$

Takano, S.; Iwabuchi, Y.; Ogasawara, K., J. Chem. Soc., Chem. Commun. 1988, (17), 1204-1206.

Swern Oxidation

Wittig Reaction

Reduction & Elimination

Oxidation

Kunio Ogasawara, Org Lett 2000.

Total Synthesis of Kainic Acid

Kunio Ogasawara, Org Lett 2000.

• Retrosynthesis

Synthesis Route

Diels-Alder Reaction

Q: What is the mechanism of this reaction?

Diels-Alder Reaction

Substitution

Hydrolysis & Protection

Synthesis Route

Alkylation & Desilylation

Elimination

Synthesis Route

Oxidation

Conformational Transition

Takano, S.; Iwabuchi, Y.; Ogasawara, K., J. Chem. Soc., Chem. Commun. 1988, (17), 1204-1206.

Summary

Total Synthesis of Kainic Acid Ene Reaction

Approach for Stereocenters

Approach for Stereocenters

Total Synthesis of (–)-α-Kainic Acid (2000-2010)

(-)-kainic acid (1)

Reporter: Xiaoyun Liao

Supervisors: Prof. Tao Ye

Dr. Yian Guo

October 12th, 2020

Review

C³–C⁴ Bond Formation Pathways Ene reaction

Contents

1. C²–C³ Bond Formation Pathways

J. Clayden: Chem. Commun. 2000, 317–318. Tetrahedron, 2002, 58, 4727–4733. T. Fukuyama: Org. Lett. 2007, 9, 1635–1639. Org. Lett. 2008, 10, 1711–1714.

2. C³-C⁴ Bond Formation Pathways J. M. Chalker: Org. Lett. 2007, 9, 3825–3828. J. Org. Chem. 2011, 76, 7912–7917.

3. Cycloaddition Pathways

M. Lautens: Org. Lett. 2005, 7, 3045–3047.

4. C–N Bond Formation Pathways

T. Fukuyama: Org. Lett. 2011, 13, 2068–2070.

5. Starting from an Existing Pyrrolidine Ring J.-F. Poisson: J. Org. Chem. 2005, 70, 10860–10863. Org. Lett. 2006, 8, 5665–5668.

(-)-kainic acid (1)

1. C²–C³ Bond Formation Pathways

J. Clayden: Chem. Commun. 2000, 317–318.

Retrosynthetic Analysis

1. C²–C³ Bond Formation Pathways

J. Clayden: Chem. Commun. 2000, 317–318.

1. C²–C³ Bond Formation Pathways

J. Clayden: Chem. Commun. 2000, 317–318.

J. Clayden: Chem. Commun. 2000, 317–318.

Baeyer-Villiger oxidation:

J. Clayden: Chem. Commun. 2000, 317–318.

Mechanism:

J. Clayden: *Chem. Commun.* **2002**, 38–39. *Tetrahedron.* **2002**, 58, 4727–4733.

T. Fukuyama: Org. Lett. **2007**, 9, 1635–1639.

Synthetic Strategy for (-)-Kainic Acid (1)

T. Fukuyama: Org. Lett. **2007**, 9, 1635–1639.

T. Fukuyama: Org. Lett. **2007**, 9, 1635–1639.

13% overall yield in 13 steps from the Evans-type chiral auxiliary

T. Fukuyama: Org. Lett. **2007**, 9, 1635–1639.

Ring-closing metathesis

T. Fukuyama: Org. Lett. **2007**, 9, 1635–1639.

Ley–Griffith oxidation

T. Fukuyama: Org. Lett. **2007**, 9, 1635–1639.

Takai, K, et al, J.Org. Chem. 1994, 59, 2668.

T. Fukuyama: Org. Lett. **2008**, 10, 1711–1714.

Strategy for Second-Generation Synthesis

T. Fukuyama: Org. Lett. **2008**, 10, 1711–1714.

12 steps in 14% overall yield.

T. Fukuyama: Org. Lett. **2008**, 10, 1711–1714.

Mitsunobu reaction

J. M. Chalker: Org. Lett. 2007, 9, 3825–3828.

Retrosynthesis of (-)-Kainic Acid

J. M. Chalker: Org. Lett. 2007, 9, 3825–3828.

J. M. Chalker: Org. Lett. 2007, 9, 3825–3828.

J. M. Chalker: Org. Lett. 2007, 9, 3825–3828.

Pd-Catalyzed Zn-ene Cyclization

J. M. Chalker: J. Org. Chem. 2011, 76, 7912–7917.

Retrosynthesis of (-)-Kainic Acid

J. M. Chalker: J. Org. Chem. 2011, 76, 7912–7917.

J. M. Chalker: J. Org. Chem. 2011, 76, 7912–7917.

13 steps 37% overall yield

M. Lautens: Org. Lett. 2005, 7, 3045–3047.

Retrosynthetic Analysis

M. Lautens: Org. Lett. 2004, 6, 3309.

Mechanism

M. Lautens: Org. Lett. 2005, 7, 3045–3047.

M. Lautens: Org. Lett. 2005, 7, 3045–3047.

13 steps 15% overall yield

M. Lautens: Org. Lett. 2005, 7, 3045–3047.

Brown hydroboration reaction

M. Lautens: Org. Lett. 2005, 7, 3045–3047.

TEMPO/NaOCl Catalyzed Oxidation

M. Lautens: Org. Lett. 2005, 7, 3045–3047.

Dess-Martin oxidations

T. Fukuyama: Org. Lett. **2011**, 13, 2068–2070.

T. Fukuyama: Org. Lett. 2011, 13, 2068–2070.

T. Fukuyama: Org. Lett. **2011**, 13, 2068–2070.

13 steps 10.3% overall yield

T. Fukuyama: Org. Lett. **2011**, 13, 2068–2070.

Pinnick oxidation

T. Fukuyama: Org. Lett. **2011**, 13, 2068–2070.

Curtius rearrangement

J.-F. Poisson: (a) *J. Org. Chem.* **2005**, 70, 10860–10863. (b) *Org. Lett.* **2006**, 8, 5665–5668.

J.-F. Poisson: Org. Lett. 2006, 8, 5665–5668.

J.-F. Poisson: Org. Lett. 2006, 8, 5665–5668.

(b) 10% overall 16 steps

J.-F. Poisson: Org. Lett. 2006, 8, 5665–5668.

Mechanism

Summary

- C²–C³ Bond Formation Pathways
 J. Clayden: Dearomatising Cyclisation
 T. Fukuyama: Michael addition
- 2. C³–C⁴ Bond Formation PathwaysJ. M. Chalker: Pd-catalyzed Zn-ene cyclization
- **3. Cycloaddition Pathways M. Lautens**: MgI₂ -mediate cyclization
- 4. C–N Bond Formation Pathways T. Fukuyama: A reductive ring opening reaction
- 5. Starting from an Existing Pyrrolidine Ring J.-F. Poisson: Diels-Alder reaction

(-)-kainic acid (1)
Total Syntheses of (–)-α-Kainic Acid (2011-2020)

Reporter: Mingze Yang Supervisors: *Prof.* Tao Ye *Dr.* Yian Guo

Oct 19th, 2020

Structure Analysis I (the key syn C4-C3)

Note: Ene reaction – relative syn C4-C3 The center of C2 – face selectivity

□ SmI₂-mediated intramolecular coupling

J. M. Chalker: Org. Lett. 2007, 9, 3825

D Retrosynthetic analysis of kainic acid

Fuyuhiko Matsuda et. al. Org. Biomol. Chem. 2017, 15, 6557

I-a: SmI₂-mediated intramolecular coupling

Synthesis of the intermediate

Dess-Martin oxidations

I-a: SmI₂-mediated intramolecular coupling

113

I-a: SmI₂-mediated intramolecular coupling

□ Still-Gennari modified HWE olefination

□ SmI₂-mediated intramolecular coupling

Entry	Substrate	HMPA (equiv.)	H ₂ O (equiv.)	NiI ₂ (equiv.)	Ligand ^b	Yield ^c (%)	15 : 16 ^d	
1	<i>E</i> -14	24	10	0	None	68	28:72	
2	<u><i>E</i>-14</u>	60	10	0	None	64	18:82	
3	E-14	0	0	0.3	None	55	32:68	
4	<i>E</i> -14	0	10	0.3	None	61	31:69	
5	<i>E</i> -14	0	0	0.05	PPh ₃	54	36:64	
6	<i>E</i> -14	0	0	0.05	dppm	41	29:71	
7	<i>E</i> -14	0	0	0.05	dppe	40	36:64	
8	<i>E</i> -14	0	0	0.05	dppp	50	48:52	
9	<i>E</i> -14	0	0	0.05	dppb	54	37:63	
10	<i>E</i> -14	0	0	0.05	Ethylenediamine	38	29:71	
11	<i>E</i> -14	0	0	0.05	1,10-Phenanthroline	41	36:64	
12	<i>E</i> -14	0	0	0.05	2,2'-Bipyridylamine	43	48:52	
<mark>13</mark>	<u><i>E</i>-14</u>	0	0	0.05	2,2'-Bipyridine	45	62:38	
14	E-14	0	10	0.05	2,2'-Bipyridine	51	58:42	
15	Z-14	60	10	0	None	73	38:62	
16	Z-14	0	10	0.3	None	56	45:55	
<mark>17</mark>	<mark>Z-14</mark>	0	0	0.05	2,2'-Bipyridine	66	62:38	
18	Z-14	0	10	0.05	2,2'-Bipyridine	69	50:50	

^{*a*} 6.0 equiv. of SmI₂ was used. ^{*b*} 0.2 equiv. of ligand was used. ^{*c*} Combined yield after silica gel chromatography. ^{*d*} Ratio estimated by ¹H NMR.

Fuyuhiko Matsuda et. al. Org. Biomol. Chem. 2017, 15, 6557

D Total synthesis of Kainic Acid

D Jones oxidation

Complete mechanism which accounts for the observed stoichiometry:

$$\begin{array}{rcl} R^{1}R^{2}CHOH + Cr^{(VI)} &\longrightarrow & R^{1}R^{2}C=O + Cr^{(IV)} + 2 \ H^{+} \\ R^{1}R^{2}CHOH + Cr^{(IV)} &\longrightarrow & R^{1}R^{2}C=O + Cr^{(II)} + 2 \ H^{+} \\ & Cr^{(II)} + Cr^{(VI)} &\longrightarrow & Cr^{(III)} + Cr^{(V)} \\ R^{1}R^{2}CHOH + Cr^{(V)} &\longrightarrow & R^{1}R^{2}C=O + Cr^{(III)} + 2 \ H^{+} \end{array}$$

116

□ Rh(I)-catalyzed asymmetric enyne cycloisomerization

Retrosynthetic analysis

Synthesis of the intermediate

□ Amidation mediated by BOP-Cl

I-a: Optimization of the Rh(I)-catalyzed asymmetric cycloisomerization of enyne

Entry	Catalyst/ligand	Additive	Yield ^{b} (%)	ee ^c	
1	[Rh(COD)Cl] ₂ /L1	AgBF ₄	98	81 PAr ₂	
2	Rh(NBD)Cl] ₂ /L1	$AgBF_4$	96	78	
3	Rh(CH ₂ CH ₂) ₂ Cl] ₂ /L1	$AgBF_4$	98	79 💊 🔧 🦷	
4	[Rh(COD)Cl] ₂ /L2	$AgBF_4$	97	69	
5	Rh(COD)Cl] ₂ /L3	$AgBF_4$	92	53 Ar = C ₆ H ₅ L1	$Ar = C_6 H_5 $
6	Rh(COD)Cl] ₂ /L4	$AgBF_4$	<5	- 🔿	$3,5-d/-Me-C_6H_3$ L3 3,5-d/- ¹ Bu-4-OMe-C_6H_3 L4
7	[Rh(COD)Cl] ₂ /L5	$AgBF_4$	99	77	5,5 dr 5d + 6116 6612 L
8	[Rh(COD)Cl] ₂ /L6	$AgBF_4$	21	71 MeO	2
9	[Rh(COD)Cl] ₂ /L7	AgBF ₄	24	73 ^{MeO}	2
10	[Rh(COD)Cl] ₂ /L8	$AgBF_4$	96	61	
11	[Rh(COD)Cl] ₂ /L9	$AgBF_4$	N.R.	— —	
12	[Rh(COD)Cl] ₂ /L10	$AgBF_4$	98	91 $^{R = C_6 H_5}_{3.5 - di^{-t} Bu - 4 - OMe - C_e}$	L5 H ₂ L6
13	[Rh(COD)Cl] ₂ /L10	AgOTf	98	92 3,5- <i>di</i> - ^t Bu-C ₆ H ₃	L7
14	Rh(COD)Cl] ₂ /L10	AgSbF ₆	96	90 3,5- <i>di</i> -Me-C ₆ H ₃	L8 120
15^d	[Rh(COD)Cl] ₂ /L10	AgOTf	98 $(95)^e$	92 3,4,5- <i>tri</i> -OMe-C ₆ H ₂	L9 L10

Eschenmoser methenylation

Luche reduction

D Palladium catalyzed hydrogenolysis of allylic acetate

I-a: Synthesis of (-)-kainic acid.

I-a: Synthesis of (-)-kainic acid.

Strecker reaction

Mechanism in the presence of an organocatalyst (Corey, 1999):

Structure Analysis I (the key syn C4-C3)

Fuyuhiko Matsuda et. al. Org. Biomol. Chem. 2017, 15, 6557

I-b: S_N2' reaction

D Retrosynthetic analysis

I-b: S_N2' reaction

Synthesis of the intermediate

I-b: Formal Total Synthesis of (-)-kainic acid.

Jun Yang et. al. *Tetrahedron*. **2016**, *72*, 5502

I-b: Formal Total Synthesis of (-)-kainic acid.

□ Wittig-horner reaction

Jun Yang et. al. *Tetrahedron*. **2016**, *72*, 5502

Structure Analysis II (the key C1-C5)

II: The key C1-C5II-a: The nucleophilicity of N(Michael addition)

T. Fukuyama: Org. Lett. **2007**, 9, 1635–1639.

Retrosynthetic analysis

Tetsuro Shinada et. al. Org. Lett. 2014, 16, 2550

Synthesis of the Michael Addition Reaction Acceptor

https://www.sohu.com/a/142106393_610519

Synthesis of Chiral Pyrroline

"s=0

ΗN

entry	base	solvent (0.1 M)	acceptor (equiv)	time (min)	11 (%)	24 (%)	25 (%)
1	Et ₃ N	DCE	1	16 h	trace	trace	45
2	DBU	DCE	1	120	11	10	55
3	TBD	DCE	1	120	20	14	46
4	none	DCE	1	60	24	20	14
5^a	none	THF (0.5 M)	2	40	54	24	9

134

Total Synthesis of Kainic Acid via Stereoselective Reduction of Pyrrolines

T. Fukuyama: Org. Lett. **2007**, 9, 1635–1639.

Takai, K, et al, J.Org. Chem. 1994, 59, 2668.

Structure Analysis II (the key C1-C5)

II: The key C1-C5 II-b: The nucleophilicity of N (S_N2 reaction)

Noritaka Chida: Org. Lett. 2010, 12, 5756.

Chirality transfer

Eschenmoser-Claisen rearrangement

140

Overman rearrangement

Mechanism of the Hg^(II)-catalyzed rearrangement:

II-b: The nucleophilicity of N (S_N2 reaction)


```
□ Mitsunobu reaction
```


Structure Analysis III (the key C1-C5)

III: The key C1-C2 III-a: The nucleophilicity of N (S_N2 reaction)

Srivari Chandrasekhar: J. Org. Chem. 2013, 78, 3355.

III-a: Synthetic of Epoxy Alcohol

III-a: Synthetic of Epoxy Alcohol

Noyori asymmetric hydrogenation

III-a: Synthetic of Epoxy Alcohol

□ Sharpless Asymmetric Epoxidation

III-a: The nucleophilicity of N (S_N2 reaction)

III-a: The nucleophilicity of N (S_N2 reaction)

Staudinger reaction

III-a: The nucleophilicity of N (S_N 2 reaction)

5-exo-tet cyclization VS Blum–Ittah reaction

149

I: The key syn C4-C3 I-a: Major Ene reaction I-b: S_N2' reaction I-c: D-A reaction

II: The key C1-C5 II-a: The nucleophilicity of N (Michael addition) II-b: The nucleophilicity of N (S_N2 reaction)

III: The key C1-C2 III-a: The nucleophilicity of N (S_N2 reaction)

III: The key C1-C2 III-b: The nucleophilicity of N (Michael addition)

IV: The key cycle IV-a: [3+2] cycloaddition

