Literature report

Genetically Encoded Cleavable Protein Photocrosslinker

Shixian Lin¹, Dan He¹, Teng Long², Shuai Zhang¹, Rong Meng¹ and Peng R. Chen*,¹,²

Qian Wu
2014.8.11
Protein-protein interactions

- **FRET**
- **Pull-down**
- **Co-IP**
Protein-protein interactions

- Protein photocrosslinking weak and transient interactions

The CAPP (Cleavage-and-capture After Protein Photocrosslinking) strategy
A general procedure for protein photocrosslinking using a cleavable photocrosslinker.
DiZSeK: N^ε-3-(3-methyl-3H-diazirine-3-yl)-propaminocarbonyl-γ-seleno-L-lysine

Chen, P. R. Nat. Chem. Biol. **2011, 7, 671-677.**
Chen, P. R. J. Am. Chem. Soc. **2011, 133, 20581-20587.**
Why?

1. Unnatural amino acid
2. DiZSeK
Test and Verify

- the Pyrrolysine tRNA-synthetase (PylRS)- tRNA\textsubscript{CUA}Pyl pair

- ESI-MS

1. The DiZSeK is incorporated into GFP-N149DiZSeK specifically and accurately.
• The H$_2$O$_2$-mediated oxidative cleavage

2. The GFP-N149DiZSeK can be converted to GFP-N149Dha
the photocrosslinking efficiency with DiZSeK or DiZPK incorporating in model HdeA protein.

3. The DiZSeK probe showed photocrosslinking efficiency similar to that of DiZPK photocrosslinker.
4. The H_2O_2-mediated cleavage reaction may be used on the Se handle of DiZSeK in order to yield an efficient separation of bait and prey proteins after photocrosslinking.
CAPP: proof-of-concept

- Design a covalently linked GFP-Biotin conjugated system as the “prey-bait” model
• LC-MS/MS to detect the desired cleaved products
The CAPP strategy exhibits high efficiency in capturing the in situ generated prey proteins after cleavage of the crosslinked prey-bait complexes.
Application

- direct profiling of in vivo binding proteins of HdeA under acid stress by using the DiZSeK probe and CAPP strategy in conjunction with 2D-PAGE
The DiZSeK cleavable photocrosslinker, CAPP strategy, and 2D-PAGE offer a powerful tool for the systematic profiling of the interaction protein targets of a given protein in living cells.

<table>
<thead>
<tr>
<th>Number</th>
<th>Protein name</th>
<th>MASCOT score</th>
<th>Molecular weight (Da)</th>
<th>Number of matched peptides</th>
<th>Protein description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>UshA</td>
<td>924</td>
<td>60900</td>
<td>13</td>
<td>External UDP-glucose degradase</td>
</tr>
<tr>
<td>2</td>
<td>OppA</td>
<td>370</td>
<td>60975</td>
<td>6</td>
<td>Periplasmic oligopeptide-binding protein</td>
</tr>
<tr>
<td>3</td>
<td>DppA</td>
<td>132</td>
<td>60483</td>
<td>1</td>
<td>Periplasmic dipeptide transport protein</td>
</tr>
<tr>
<td>4</td>
<td>MasY</td>
<td>1022</td>
<td>60521</td>
<td>13</td>
<td>Malate synthase A</td>
</tr>
<tr>
<td>5</td>
<td>Syk1</td>
<td>931</td>
<td>57624</td>
<td>17</td>
<td>Lysyl-tRNA synthetase</td>
</tr>
<tr>
<td>6</td>
<td>GlpK</td>
<td>404</td>
<td>56480</td>
<td>6</td>
<td>Glycerol kinase</td>
</tr>
<tr>
<td>7</td>
<td>Syk2</td>
<td>248</td>
<td>57847</td>
<td>8</td>
<td>Lysyl-tRNA synthetase, heat inducible</td>
</tr>
<tr>
<td>8</td>
<td>PyrG</td>
<td>151</td>
<td>60792</td>
<td>5</td>
<td>CTP synthase</td>
</tr>
<tr>
<td>9</td>
<td>IlvB</td>
<td>114</td>
<td>60915</td>
<td>2</td>
<td>Acetolactate synthase isozyme 1 large subunit</td>
</tr>
<tr>
<td>10</td>
<td>TreC</td>
<td>208</td>
<td>64082</td>
<td>4</td>
<td>Trehalose-6-phosphate hydrolase</td>
</tr>
</tbody>
</table>
Summary

• Developed a genetically encoded Se-containing cleavable protein photocrosslinker;

• Developed a cleavage-and-capturing of interaction proteins after the photocrosslinking (CAPP) strategy;

• This CAPP strategy, in conjunction with the 2D-PAGE proteomics and MS analysis, is a powerful tool for protein-protein interactions.
Thank you!