

Communication

pubs.acs.org/JACS

Iridium-Catalyzed Intermolecular Amidation of sp³ C–H Bonds: Late-Stage Functionalization of an Unactivated Methyl Group

Taek Kang,^{†,‡} Youngchan Kim,^{†,‡} Donggun Lee,^{†,‡} Zhen Wang,^{†,‡} and Sukbok Chang^{*,†,‡}

[†]Center for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS), Daejeon 305-701, Republic of Korea [‡]Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 305-701, Republic of Korea

> Reporter: Dai Lu Supervisor: Prof. Zhao Jing Dr. Hong Mei 2014-03-11

Direct sp³ C–H Amination

Nishioka, Y.; Uchida, T.; Katsuki, T. Angew. Chem., Int. Ed. **2013**, *52*, 1739.

NHR'

Previous Work on sp² C–H Amination

Kim, J.; Chang, S. Angew. Chem., Int. Ed. 2014, 53, 2203.

Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim, S. H.; Chang, S. *J. Am. Chem. Soc.* **2012**, *134*, 9110.

Optimization of the Reaction Conditions

Some Interesting Substrates

 Sp² C–H amidation is more favorable than sp³ C–H amidation

• Acyl azides can be applied to the current Ir-catalyzed conditions to afford acylamido products

Late-stage Functionalization

C–H Amidation To Form Synthetic Building Units

The first example of the use of dioxazines as a directing group in C–H amination reactions

 The reaction can proceed efficiently at room temperature with a higher catalyst loading

Communication

pubs.acs.org/JACS

Double C(sp³)–H Bond Functionalization Mediated by Sequential Hydride Shift/Cyclization Process: Diastereoselective Construction of Polyheterocycles

Keiji Mori,[†] Kazuki Kurihara,[†] Shinnosuke Yabe,[‡] Masahiro Yamanaka,[‡] and Takahiko Akiyama^{*,†}

[†]Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan [‡]Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan

C(sp³)-H Functionalization by Internal Redox Process

• Key Feature:

- a) the [1,5]-hydride shift of the C(sp³)–H bond α to the heteroatom
- b) Subsequent 6-endo cyclization to a cationic species affords heterocycle 2

Two Types Of Sequential Hydride Shift

three contiguous stereogenic centers in 4aa and 6ab were completely controlled 10

Effect Of α-substituent Of α,β-unsaturated Trifluoroacetyl Group

bulkiness of the α -substituent controlled the reaction course

Substrate Scope

benzyl

nitrogen

1,5-hydride shift didn't occur

Thank You!