
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 1

Improved Blind Timing Skew Estimation Based
on Spectrum Sparsity and ApFFT in

Time-Interleaved ADCs
Sujuan Liu , Member, IEEE, Ning Lyu , Jiashuai Cui, and Yuexian Zou , Senior Member, IEEE

Abstract— Timing skews among channels degrade seriously
the time-interleaved analog-to-digital converter (TIADC) per-
formance, which can be improved by the blind timing skew
estimation (TSE) technique. In this paper, we proposed the all-
phase fast Fourier transform (ApFFT) based on spectrum spar-
sity signal phase relationship blind TSE (ApFFT-SSPR-BLTSE)
algorithm. The ApFFT-SSPR-BLTSE algorithm reduces compu-
tational complexity based on the phase relationship of the total
output from TIADC and the corresponding reference channel
output compared with the existing spectrum sparsity blind TSE
(SS-BLTSE) algorithm. We also utilized the ApFFT technique to
increase the accuracy of phase spectral estimation. Simulation
results show that the proposed ApFFT-SSPR-BLTSE algorithm,
which as a reduced number of fast Fourier transforms (FFTs)
and low hardware complexity, has higher accuracy for blind
TSE compared to the existing SS-BLTSE algorithm. In addi-
tion, this paper presents an efficient hardware architecture
of the ApFFT-SSPR-BLTSE algorithm on the Xilinx Virtex-6
vlx550tff1759 field-programmable gate array (FPGA) chip for
the blind TSE of the four-channel 400-MHz 14-bit TIADC real
system. The validation results show that the proposed algorithm
uses only a few percent of the hardware resources of the
FPGA chip, and the mismatch spurs were suppressed to better
than −81.54 dB.

Index Terms— All-phase fast Fourier Transform (ApFFT),
nonoverlapping point, spectrum sparsity, time-interleaved
analog-to-digital converter (TIADC), timing skews

I. INTRODUCTION

TO MEET the demands of digital signal processing and
high performance of mixed-signal systems, high-speed

and high-resolution analog-to-digital converters (ADCs) are
required. It is complicated to achieve a high speed and
high resolution simultaneously for a single state-of-the-art
complementary metal–oxide–semiconductor ADC. The time-
interleaved analog-to-digital converter (TIADC) structure is a
good technique for increasing significantly the sampling rate
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Fig. 1. TIADC system.

by using M identical parallel ADCs (sub-ADCs), as shown
in Fig. 1 [1]. Ideally, all M parallel channels are assumed
to have the same gain and offset and should be operating
at precise equally spaced sampling time instants. Therefore,
the overall sampling rate of TIADC is M times the sampling
rate of a single ADC.

Due to practical implementation constraints, some channel
mismatches, such as gain mismatch, offset mismatch, and tim-
ing skew mismatch, in the TIADC system are inevitable [2].
It is generally known that channel mismatches will result in
distortion of sampled waveforms and reduce the spurious-free
dynamic range (SFDR) of the TIADC [2]–[4]. In addition,
digital correction of frequency-dependent mismatch error is
also essential for high-resolution and high-speed TIADCs [5].
Among these mismatches, gain and offset mismatches can
be easily calibrated and timing skew mismatch is difficult to
calibrate. Timing skew mismatch compensation has attracted
substantial attention recently. However, most of the traditional
algorithms require an accurate estimate of the timing skew
mismatch.

Blind estimation techniques in [6]–[8] do not require knowl-
edge of the input signal to estimate the channel mismatch para-
meters, and the timing mismatch compensation performance
is inferior to those of the nonblind mismatch compensation
techniques in [9]–[11]. A multichannel-filtering method is
utilized in [9] for TIADC mismatch compensation, which
has lower computational complexity and is more robust than
the filter-bank approach. An adaptive calibration method is
proposed in [12], which is a training method that is suitable
for high-resolution applications since it can correct general
linear mismatches at the expense of system suspension during
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each calibration. The experimental results showed that these
nonblind compensation methods all require accurate measure-
ments of the channel parameters.

In contrast, the blind timing skew estimation (TSE) method
is more favorable because it can track channel mismatch
variations without interrupting the work of the TIADC system
and operate in an online manner. However, several stud-
ies [13]–[19] indicate that the blind TSE method may have
some limitations.

1) In [14], the mismatches are compensated using a pro-
posed iterative stochastic gradient minimization algo-
rithm. However, this algorithm is of high computational
complexity.

2) Jamal et al. [16] and Huang and Levy [19] utilized the
alias-free bandwidth to estimate the channel mismatch
parameters in a blind estimation manner. However,
the approach in [16] is only suitable for two-channel
TIADC.

3) The oversampling of input signals is necessary in [17].
4) Zou et al. [18] proposed an efficient blind estimation

method that evaluates the autocorrelation of the analog
input signal and the mean squared difference.

However, the approach only performs well when the frequency
bandwidth of the analog input signal is lower than half of the
Nyquist frequency. In [1], the proposed spectrum sparsity blind
TSE (SS-BLTSE) algorithm performs well and can estimate
accurately the timing skew when the input analog signal has
a specific frequency spectral sparsity attribute. There is a
tradeoff between its computational cost and TSE accuracy.

In this paper, we focus on the blind TSE method of TIADC
system and estimate the channel timing skews in a blind
manner, where the channel gain mismatch and offset mismatch
are not taken into account. We proposed the all-phase fast
Fourier transform (ApFFT) based on spectrum sparsity signal
phase relationship blind TSE (ApFFT-SSPR-BLTSE) algo-
rithm, which we developed by improving the SS-BLTSE algo-
rithm in [1] based on the phase relationship of the spectrum
sparsity signal at the nonoverlapping frequency points between
the total output from TIADC and its corresponding reference
channel output. The spectrum sparsity is defined comprehen-
sively and two types of amplitude spectrum of the analog input
signals are discussed: the range continuous spectrum and the
discrete spectrum in [1]. As discussed in [1], the spectrum
sparsity of the input signal is defined as SSL = Nk/NT , where
Nk denotes the number of nonzero spectrum components and
NT denotes the total number of the spectrum components.
In this paper, we use following definitions from [1]: 1) the
input signal is sparse when SSL is smaller than 2/M for
the range continuous spectrum and 2) the input signal may
be sparse and the nonoverlapping frequency may be nonzero
when SSL < 2/M for the discrete spectrum. In conclusion,
the smaller SSL is the better our ApFFT-SSPR-BLTSE algo-
rithm performs. We also utilized the ApFFT technique to esti-
mate the phase spectrum accurately. Simulation results show
that the improved ApFFT-SSPR-BLTSE algorithm can reduce
the number of fast Fourier transform (FFT) operations with
low computational complexity for hardware implementation.
In addition, the improved ApFFT-SSPR-BLTSE algorithm has

higher accuracy in the blind TSE compared to the existing
SS-BLTSE algorithm. In this paper, an efficient estimated
system hardware architecture of the ApFFT-SSPR-BLTSE
algorithm is presented for the blind TSE of the TIADC. The
proposed architecture is implemented on the Xilinx Virtex-6
vlx550tff1759 field-programmable gate array (FPGA). This
synthesized design consumes only a few percent of the hard-
ware resources of the FPGA chip with a clock frequency
of 116.82 MHZ.

In this paper, we use the following assumptions and defin-
itions in developing the blind TSE algorithm [1].

1) Input signal xa(t) is bandlimited with the highest
frequency smaller than fs/2.

2) The system parameters of the TIADC system are known,
such as the number of sub-ADCs (M) and the overall
sampling frequency ( fs).

3) The discrete output signals (ym(n), y(n)) are available.
4) No channel dc offset and gain mismatches are consid-

ered since they can be compensated using the simple
subtraction and scalar gain approaches.

5) No additive noise is considered.
6) As the timing skew is usually much smaller than the

sampling period (smaller than 10%), the input analog
signal is much stronger than the disturbance that is
introduced by TIADC channel timing skews.

7) The first ADC channel is used as the reference channel
when estimating the timing skew of the TIADC system,
namely, �t0 = 0.

A literature review shows that the above assumptions are
commonly satisfied in TIADC technology research.

This paper is organized as follows. The system model of
TIADC, a new TSE model, and the motivation for the new
model are presented in Section II. The ApFFT-SSPR-BLTSE
algorithm is explained in detail and summarized in Section III.
Simulation results are presented in Section IV. The hard-
ware implementation of the ApFFT-SSPR-BLTSE algorithm
is described in Section V. FPGA implementation results are
presented in Section VI, and our conclusions are discussed
in Section VII.

II. SYSTEM MODEL AND ESTIMATION MODELING

In this section, we will introduce the system model of
TIADC, which was introduced in [1] and propose a TSE
model.

A. System Model of TIADC

The architecture of the TIADC system is shown in Fig. 1,
where sub-ADCs operate in the under-sampling situation with
an under-sampling factor M relative to the overall TIADC
system. The relation among xa(t), y(n), and ym(n) of the
TIADC in the time domain and the spectrum domain are
described in [1].

From Fig. 1, the analog input xa(t) is a bandlimited signal
and the discrete-time-domain expression of the output of the
mth sub-ADC with a sampling period Tss is obtained

ym(n) = xa(t)|t=nTss+mTs+tm (1)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: IMPROVED BLIND TSE BASED ON SPECTRUM SPARSITY AND ApFFT IN TIADCs 3

where n = 0, 1, . . . , N/M − 1, m = 0, 1, . . . , M − 1, Ts

represents the sampling period of the TIADC system, and �tm
represents the timing skews for the mth sub-ADC. N is the
total number of samples for TIADC and m is the channel
index. The digital spectrum [the discrete-time Fourier trans-
form (DTFT)] of ym(n) is denoted by Ym(e j�) and expressed
as follows:

Ym(e j�) = 1

Tss

+∞∑

k=−∞
Xa

(
e j

(
�− 2πk

Tss

))
e j

(
�
Tss

− 2πk
Tss

)(
m+�tm

)
Ts

(2)

where � and ω are the digital angular frequencies of the
single-channel output and total output signals, respectively.
The digital frequency � that is associated with fss = 1/Tss
has the following relation with the analog frequency �.
According to (2), Ym(e j�) is the sum of the frequency-scaled
and the shifted versions of Xa( j�), where Xa( j�) is the
Fourier transform of input signal xa(t). In addition, Ym(e j�)
is also a periodic function of � with period 2π .

According to assumption 1), the DTFT of y0(n) can be
expressed as follows:

Y0(e
j�) = 1

Tss

Nh∑

k=Nh −M+1

Xa
(
e j

(
�− 2πk

Tss

))

= 1

Tss

M−1∑

k=0

Xa
(
e j�(−k)

<2π fs>
)

(3)

where we define �
(−k)
<2π fs>

= (� fss − 2πk fss + π fs) mod
2π fs − π fs . According to assumption 4), the DTFT of y(n)
is given in [2] and can be simplified as

Y (e jω) = 1

Tss

M−1∑

k=0

M−1∑

m=0

(
e j�(−k)

<2π fs>Ts�tm

×e− j 2πk
M m)

Xa
(
e j�(−k)

<2π fs>
)

(4)

where the ω = �Ts = 2π f/ fs .

B. Timing Skew Blind Estimation Model

In this section, we will propose a novel TSE model.
According to [1], if the analog spectrum Xa( j�) has a
specific spectral sparsity property, there are nonoverlapping
frequency components ωp in Ym(e j�), where ωp ∈ (0, 2π).
The DTFT of the sub-ADC0 output signal at frequency point
ωp = (�pTss)<2π> can be expressed as

Y0(e
j�p) = 1

Tss
Xa(e j�p) + 1

Tss

M−1∑

k=1

Xa
(
e j�(−k)

<2π fs>
)
. (5)

According to the property of the nonoverlapping frequency
point, the frequency component of Y0(e j�) at �ponly depends
on Xa( j�p), which is the frequency component of Xa( j�)
at �p[1]. Therefore, (5) can be rewritten as follows:

Y0(e
j�) = Xa( j�p)/Tss. (6)

Similarly, ω
(q)
p〈2π〉 = �

(q)
p〈2π〉Ts(q = 0, . . . , M − 1) at

nonoverlapping frequency point �p. From (4), frequency

component Y (e j�) at the nonoverlapping frequency point can
be expressed as follows:
Y

(
e jω(q)

p〈2π〉
)

= 1

Tss

M−1∑

m=0

(
e j�pTs�tm e− j 2π(k−q)

M m)
Xa(e

j�p)

+ 1

Tss

M−1∑

m=0

M−1∑

k=0,k �=q

(
e

j�(q−k)
p〈2π fs 〉 Ts�tm e− j 2π(k−q)

M m)
Xa

(
e j�(−k)

〈2π fs 〉
)

(7)

where q represents the channel that contains the nonover-
lapping frequency point. The first term of the sum in (7)
represents Y (e jω) when k = q , and the second term of the
sum represents Y (e jω) when k �= q . Based on the property of
the nonoverlapping frequency point, when k �= q , the second
term of the sum in (7) is 0. Therefore, (7) can be simplified to

Y
(
e jω(q)

p〈2π〉
) = 1

Tss

M−1∑

m=0

(e j�pTs�tm )Xa(e
j�p). (8)

From (6) and (8), the frequency-domain relationship

between Y0(e j�p) and Y (e jω(q)
p<2π>) can be derived as

Y
(
e jω(q)

p<2π>
) =

M−1∑

m=0

(e jωp�tm )Y0(e
j�p). (9)

In addition, (9) can be written as

Y (e jωp)

Y0(e j�p)
= 1 +

M−1∑

m=0

e jωp�tm . (10)

After FFT, the TIADC system output can be expressed in
the form of amplitude and phase angle. The FFTs of system
total output y(n) and sub-ADC output ym(n) can be expressed
as follows: {

Y (e jωp) = ReP( jωp)

Ym(e j�p) = RmePm( j�p)
(11)

where R and Rm are the amplitudes of Y (e jωp) and Ym(e j�p),
respectively, for m = 0, 1, . . . , M − 1, P( jωp) and Pm( j�p)
are the phases of Y (e jωp) and Ym(e j�p), respectively, for
m = 0, 1, . . . , M − 1, and �p(ωp) is the nonoverlapping
frequency component, which must be estimated. From (11),
we obtain

Y (e jωp)

Ym(e j�p)
= R

Rm
e(P( jωp)−Pm( j�p))<2π>. (12)

According to the signal decimation theory by M , the deci-
mated signal amplitude is the 1/M of original signal amplitude.
We obtain the following equation:

R/Rm = M. (13)

According to (12), the TSE model in [13] can be rewritten
as follows:

�tm = (Pm( j�p) − P0( j�p))〈2π〉
j
(�p

M + 2(k p − 1) π
M

)
〈2π〉

− m,�p ∈ (0, 2π).

(14)

We assume that there is timing skew between only one
channel of the TIADC system and the first channel. We assume
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that the channel is the mth sub-ADC. Then, (10) can be
rewritten as follows:

Y (e jωp)

Y0(e j�p)
= M − 1 + e jωp�tm (m = 1, . . . , M − 1) (15)

ωp =
(�p

M
+ 2(k p − 1)

π

M

)

〈2π〉
(16)

where kp and 2k p−1 are the digital-frequency subband indices
that are associated with ωp [1]. As previously described,
we assume that sub-ADC0 is the reference channel. Therefore,
we define the following expression when there is timing skew
only in sub-ADC-m:

�Pm = (Pm( j�p) − P0( j�p))<2π> (17)

where Pm( j�p) and P0( j�p) are the phase expression of
Ym(e j�p) and Y0(e j�p), respectively. We define

�P = (P( jωp) − P0( j�p))<2π>. (18)

Therefore, according to (12), (13), and (15)–(17) we can
obtain

�tm = ln(Me�Pm − M + 1)

j
(�p

M + 2(k p − 1) π
M

)
〈2π〉

(m = 1, . . . , M − 1). (19)

According to assumption 6), �Pm tends to 0. Thus, (19)
can be reformulated as

�tm = M�Pm

j
(�p

M + 2(k p − 1) π
M

)
〈2π〉

(m = 1, . . . , M − 1). (20)

In the next context, we will introduce a systematic
method for estimating the timing skew of the TIADC sys-
tem using (14) and (20) without considering the gain mis-
match or the dc offset mismatch. The specific values of the
timing skews of the channels cannot be determined based only
on �P . �P satisfies the following relationship:

�P = �P1 + �P2 + . . . + �PM−1. (21)

The estimation procedure is as follows.
1) Calculate �t1,�t2, . . . �tM−2 using (14).
2) Calculate �P1,�P2, . . .�PM−2 using (20).
3) Substitute �P,�P1,�P2, . . . ,�PM−2 into (21) to

obtain �PM−1.
4) Obtain �tM−1 using (20).

The estimation procedure of �tm is a blind TSE algorithm
since only the output spectrum of the TIADC system is
required. The proposed SSPR-BLTSE algorithm requires fewer
FFT operations for the TIADC system compared with the
SS-BLTSE algorithm in [14]. Therefore, this algorithm is of
lower computational complexity.

From (14) and (20), the accuracy of the phase spectral
estimation determines the estimation accuracy of the timing
skews. In this paper, N-point FFT and (N /M)-point FFT are
used to compute the sub-ADC spectrum, namely, Y (e jω) and
Ym(e j�), in (4) and (3). TSE accuracy decreases with the
increasing of the input spectrum sparsity and the decrease
of the data length for FFT. However, performance analysis
suggests that FFT-based spectral estimation has multiple lim-
itations, such as “spectral leakage” due to windowing and
the picket fence effect, which is caused by the discretization

Fig. 2. N -order traditional FFT spectral analysis.

Fig. 3. N -order ApFFT spectral analysis.

of the spectrum, where the spectral leakage is a continuous
function of the frequency and will lead to spreading of
the spectrum in different frequency bands [21]. These two
factors will affect the estimation accuracy of ωp and phase
spectra. Choosing a proper window function and increasing the
data length are effective approaches for reducing the spectral
leakage, at the expense of high computational cost. However,
this can induce the restriction of online applications. Another
possible approach is to use decaying window functions, such
as the Hamming window function, to achieve a better tradeoff
between computational cost and performance.

III. APFFT-SSPR-BLTSE ALGORITHM

In this section, we will apply FFT to the output of the
TIADC system after all-phase data preprocessing [7]; this
approach is called ApFFT [23]. It is one of the most effective
methods for improving the accuracy of the phase spectrum.

A. ApFFT Spectral Estimation Technique

Spectrum leakage is a very serious shortcoming of FFT [24]
and severely degrades the spectral analysis. As shown in Fig. 2,
FFT with simple windowing is used to improve the spectrum
analysis performance. However, compared with the traditional
FFT-based spectrum estimation methods, the ApFFT spectral
estimation method can inhibit efficiently spectral leakage and
has the phase-invariance property. In addition, it can improve
substantially the accuracies of the amplitude spectrum and
the phase spectrum. Therefore, we can extract precisely the
signal phase information without performing any additional
corrective actions, even in the case of “nonsynchronous sam-
pling.” The structure of ApFFT spectral analysis is illustrated
in Fig. 3.

In the next context, a comparison between the analyses of
the traditional FFT and ApFFT. We use a single-frequency
complex exponential sequence

x(n) = e j (ω0n+φ) = e j (nk02π/N+φ) (22)
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where ω0 is the digital frequency, φ is the phase, and
k0 = floor(ω0 N/2π) is the signal frequency index. The
traditional N-point FFT spectrum of {x(n)} is

X (k) = 1

N

N−1∑

n=0

e jϕe j2πk0n/N e− j2πkn/N

= 1

N
e jϕ 1 − e j2π(k0−k)

1 − e j2π(k0−k)/N

= 1

N

sin [π(k0 − k)]

sin(π(k0 − k)/N)
e j

[
ϕ+ N−1

N π(k0−k)
]

(23)

where k = 0, 1, . . . , N − 1. The source of the all-phase data
sampling sequence is a (2N − 1)-length data vector

x = [x(−N + 1), x(−N + 2), . . . , x(0), . . . , x(N − 1)].
(24)

All N-length shifted data vectors that include x(0) are
constructed

z0 = [x(−N + 1), x(−N + 2), . . . , x(0)]
z1 = [x(−N + 2), x(−N + 3), . . . , x(1)]

. . .

zN−1 = [x(0), x(1), . . . , x(N − 1)]. (25)

Get another set of N-length data vectors where sample
points x(0) is located in the first of each vector through cyclic
shifting operation on the N vectors obtained in (25)

x0 = [x(0), x(−N + 1), . . . , x(−1)]
x1 = [x(0), x(1), x(−N + 2) . . . , x(−1)]

. . .

xN−1 = [x(0), x(1), x(2) . . . , x(N − 1)]. (26)

From (26), a new N-length data vector can be formed by
averaging x0, x1, . . . xN−1

xap = 1

N
[Nx(0), (N − 1)x(1) + x(−N + 1), . . . , x(N − 1)

+ (N − 1)x(−1)]. (27)

The N-length data vector xap in (27) is the all-phase data
vector of a (2N − 1)-length data vector x . This approach is
named the ApFFT spectral estimation method. According to
the shift property of FFT, the FFT spectrum of zi and xi

(i = 0, . . . , N − 1) has the following straightforward
relationship:

Xi (k) = Zi (k)e j 2π
N ik(k = 0, 1, . . . N − 1). (28)

Therefore, the FFT spectrum of xap can be derived as

Xap(k) = 1

N

N−1∑

i=0

Xi (k)

= 1

N

N−1∑

i=0

Zi (k)e j 2π
N ki

= 1

N2

N−1∑

i=0

N−1∑

n=0

x(n − i)e− j 2π
N kne− j 2π

N ki

Fig. 4. Block diagram of double-window all-phase data preprocessing.

= 1

N2

N−1∑

i=0

N−1∑

n=0

e jϕe j 2π
N (n−i)k0 e− j 2π

N kne− j 2π
N ki

= e jϕ

N2

N−1∑

i=0

e− j
2π(k0−k)i

N ·
N−1∑

n=0

e− j
2π(k0−k)n

N

= e jϕ

N2 · 1 − e− j2π(k0−k)

1 − e− j2π(k0−k)/N
· 1 − e j2π(k0−k)

1 − e j2π(k0−k)/N

= 1

N2

sin2[π(k0 − k)]
sin2[π(k0 − k)/N] e jϕ. (29)

By comparing (29) with (23), we determine that the spectral
amplitude of |Xap(k)| that is computed by the ApFFT method
is equal to the square of the spectral amplitude of |X (k)|
that is computed by the traditional FFT method, which means
the attenuation of the sidelobes in |Xap(k)| is greater than
that of those in |X (k)|. We conclude that the ApFFT spectral
estimation method outperforms the traditional FFT spectral
estimation method in terms of spectral leakage.

According to (23) and (29), each phase value of the spectral
line in the traditional FFT method is closely related to the
frequency deviation value (k0 − k). However, the phase value
of the ApFFT spectrum is φ, which is the theoretical phase
value of the center sampling point x(0), and φ is not related
to the frequency deviation value (k0 − k).

All-phase data preprocessing can be divided into three cat-
egories: the no window, single window, and double windows.
For different types of convolution windows, double windows
outperform no window or a single window in terms of spectral
performance. Therefore, as shown in Fig. 4, the double-
window data preprocessing method is utilized before FFT in
this paper.

B. Proposed ApFFT-SSPR-BLTSE Algorithm

In this section, a new blind TSE algorithm, which is
called the ApFFT-SSPR-BLTSE algorithm, will be presented
in detail.

Part I (All-Phase Spectrum Estimation): In this part,
the ApFFT spectral estimation method will be used to estimate
the spectrum of y(n) and ym(n). The steps, as shown in Fig. 4,
are listed as follows.

1) Obtain the 2N −1-length data vector xaccording to (24)
using the (2N − 1)-length output data of the TIADC.
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2) Obtain the shifted data vector zi (i = 0, . . . , N − 1)
using (24).

3) Use the Hanning window to weight xi (i = 0, . . . , N−1).
4) Calculate the periodic extension in the original position

using the weighted sequence and the Hanning window
for vertical weight.

5) Obtain a new periodic sequence using the sequence that
has been double weighted and the periodic extension for
summation in the vertical direction.

6) Truncate the new periodic sequence using the rectangu-
lar window and get the double-window all-phase input
sequence xap.

7) Perform N-point FFT on xap and obtain the all-phase
spectrum estimation Y (e jω).

8) Similarly, estimate all-phase spectrum Ym(e j�) of
ym(n)(m = 0, 1 . . . , M − 2) using the same procedure
and use the (2N /M − 1)-length output data of sub-ADC
(ym(n)) to form N /M-length all-phase data vector xap.

Part II (Determination of Nonoverlapping Frequency Com-
ponent ωp): In this part, we will propose a new method for
determining the nonoverlapping frequency point ωp .

1) Scan the digital frequency from 0 to π , find the
maximum-amplitude point {�m : f |Y0(e j�m )|max} as
the nonoverlapping frequency candidate point.

2) For �m , the corresponding M amplitude frequency
spectrum values are

N(k) = ∣∣Y
(
e j

(
�m
M +2(k−1) π

M

))∣∣, k = 1, . . . , M. (30)

3) Determine the maximum value and the second maximum
value of N(k), for k = 1, . . . , M , which are denoted by
Np(k p) and Ns (ks), respectively, and calculate the ratio

ε = Ns (ks)

Np(k p)
. (31)

4) Judge whether ε is smaller than ε2 and larger than ε1.
We will discuss ε1 and ε2 in detail in Experiment 4
in Section IV-B. If

ε1 ≤ ε ≤ ε2. (32)

We define ωp = (�/M) + 2(k p − 1)(π/M) as the nonover-
lapping frequency point and its index k p can be determined.
Otherwise, let |Y0(e j�)|max = 0 and return to step 1) to find
the nonoverlapping frequency point. This process is repeated
until (32) is satisfied.

Part III: Calculate the Relative Timing Skews �tm
1) Calculate the all-phase spectrum Y (e jω) and the all-

phase spectrum Ym(e j�)(m = 0, 1, . . . , M − 2) using
the method described in Part I.

2) Find nonoverlapping frequency component ωp and
its index kp , as described in Part II. Compute the
phase spectrum P( jωp) of Y (e jωp) and Pm( j�p)
(m = 0, 1, . . . , M − 2) of Ym(e j�p)(m = 0, 1, . . . ,
M − 2).

3) Compute the relative timing skews �tm(m = 1, 2, . . . ,
M − 1) by (14), (20), and (21), as described in
Section II-B.

Fig. 5. Comparison of the traditional FFT spectrum and the ApFFT spectrum.
(a) Traditional FET amplitude diagram. (b) ApFET amplitude diagram.
(c) Traditional FET phase diagram. (d) ApFET phase diagram.

IV. SIMULATION RESULTS

To evaluate the performances of the ApFFT algorithm
and the proposed ApFFT-SSPR-BLTSE algorithm, several
experiments are presented in this section. In Section IV-A,
the experiment is performed to verify the accuracy of the
ApFFT in estimating the phase. In Section IV-B, we simulate
a four-channel TIADC system that is assumed to have only
timing skews.

A. Phase Estimation Precision of All-Phase FFT
for Multifrequency Signal

In this part, the experiment is performed to evaluate the
performance of the ApFFT algorithm in calculating the signal
phase.

Experiment 1: A multifrequency signal is given as follows:

x(t) =
10∑

k=1

Ak cos(2π fk + φk) (33)

where fk = f1 + (k − 1) ∗ 0.05 × 108, f1 = 4.456873 MHz,
ϕk = [0, −20, 40, −60, 80, −100, 120, −140, 160, −175],
and Ak is an uniformly random distribution sequence, which
ranges from 5 to 10. The sampling frequency fs = 100 MHz
and the number of FFT points is 212. The results of the
traditional FFT spectral analysis and the all-phase Hanning
double window FFT spectral analysis are shown in Fig. 5.
The estimated phase values of all frequency points are shown
in Table I. According to Fig. 5 and Table I, higher phase
estimation accuracy is achieved by the all-phase double-
window analysis than by the traditional FFT analysis [25] and
the signal phase value can be estimated accurately by 212 point
with ApFFT.

B. Performance of the Proposed ApFFT-SSPR-BLTSE
Algorithm for the Simulated TIADC System

In this part, we evaluate the performance of the
ApFFT-SSPR-BLTSE algorithm in difierent aspects. A four-
channel TIADC system is considered, in which the timing
skews values are set as �t0 = 0,�t1 = 0.03/ fs,
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TABLE I

RESULTS OF PHASE ESTIMATION

TABLE II

SIMULATION RESULTS OF THE ApFFT-SSPR-BLTSE ALGORITHM

�t2 = 0.02/ fs , and �t3 = −0.06/ fs , where fs = 400 MHz
is the overall sampling frequency of the system.

1) Experiment 2: This experiment evaluates the TSE capa-
bility of the proposed ApFFT-SSPR-BLTSE algorithm under
noiseless conditions. The input signal is set as follows in two
cases.

1) The sinusoidal random signal with random frequency,
phase, and amplitude that is given by

x1(t) = A0 sin(2π f0t + ϕ0) (34)

where f0, A0, and ϕ0 are uniformly distributed random
values. The signal frequency f0 ranges from 1 Hz to
200 MHz, A0 ranges from 5 to 10 and ϕ0 ranges from
−π to π .

2) The multifrequency random input signals that is given by

x2(t) =
L∑

k=1

Ak sin(2π fk t + ϕk) (35)

where L = 32 denotes the number of the input frequen-
cies and fk , Ak and ϕk are uniformly distributed random
sequences and the ranges of the values are the same as
for f0, A0 and ϕ0, respectively.

The total number of samples N for TIADC is defined as
65 536 and the FFT point of each sub-ADC is N /M = 16 384.
One hundred independent simulations were conducted for each
of the two cases. The mean and variance are estimated, and the
simulation results are shown in Table II and Fig. 6. We carried

Fig. 6. Statistical results of RMSE. Figures in brackets represent the number
of tones of the multifrequency signal.

the same experiment as the two cases when L = 16 and
L = 64 in (35). The root-mean-square error (RMSE) is taken
as the measure for the four cases that are specified above,
which is defined as

RMSE = 20 log10

√√√√ 1

M − 1

M−1∑

m=1

(
�m − �′

m

)2
(dB)

(36)

Relative error =
∣∣�m − �′

m

∣∣
�m

(37)
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Fig. 7. RMSE versus input frequency.

where �m and �′
m denote the true and estimated relative

timing skews for the mth sub-ADC, respectively.
According to Table II and Fig. 6, the ApFFT-SSPR-BLTSE

algorithm can estimate the channel timing skews effectively
with low estimation errors for a single-frequency and multi-
frequency sine wave. The experimental results can be summa-
rized as follows.

1) The mean relative errors are all below 0.6%, with the
extremely low variance.

2) All the estimated results of the RMSE are below −47 dB
and most are below −67 dB.

3) The estimation accuracy is better for the multifrequency
signal than for the single-frequency signal.

2) Experiment 3: This experiment is carried out to evaluate
the impacts of fi (input frequency) and N (FFT length) on the
TSE accuracy of the ApFFT-SSPR-BLTSE algorithm when
the input signal is single-frequency sine wave. As in the
previous experiment, we use the RMSE as the measure. The
other simulation parameters are set to the same values as in
Experiment 2. The simulation results are shown in Fig. 7.

According to Fig. 7, the RMSE values of the frequencies
are bounded by −60 dB, except for a few of the low-
frequency points. That is to say, the estimation accuracy of
the proposed algorithm is relatively low for the signal at
low frequency because the estimated �tm is inversely propor-
tional to the input frequency [1] according to (14) and (20).
In addition, RMSE decreases as the number of sampling
points N increases. The ApFFT-SSPR-BLTSE algorithm
already achieves higher accuracy estimation results. Based
on the above analysis, we choose N = 65 536 as a trade-
off between the estimation accuracy and the computational
complexity.

3) Experiment 4: This experiment evaluates the relationship
between parameter ε and the estimation accuracy of the
ApFFT-SSPR-BLTSE algorithm using the RMSE measure-
ment, which is defined in (36). As shown in (31), parameter ε
is the ratio of the maximum and the second maximum values
of the nonoverlapping frequency for the corresponding four
points in the amplitude spectrum of the total output of the
TIADC system. The four types of input signals that are used in
Experiment 2 are also used in this experiment and 200 random
experiments are conducted for each type of the input signal.
The experiment results are shown in Fig. 8.

From Fig. 8, the RMSE is higher when the parameter ε is
smaller, and the accuracy of the estimation method is lower

Fig. 8. RMSE versus ε in different signals. (a) Single frequency.
(b) Multifrequency (composed of 16 sinusoids). (c) Multifrequency (composed
of 32 sinusoids). (d) Multifrequency (composed of 64 sinusoids).

in this situation. Furthermore, a small value of parameter ε
corresponds to a low-frequency signal according to an analysis
of the experimental data. Therefore, the value of parameter ε
should not be too small when selecting the nonoverlapping
frequency point. However, a larger value of parameter ε could
be the result of signal aliasing. We conclude that each channel
timing skew can be estimated accurately when parameter ε
satisfies (32). From the experimental results of Fig. 8, we can
obtain the empirical values of ε1 and ε2 for 0.006 and 0.2,
respectively. The RMSE will reach below −60 dB. In addition,
we can further improve the estimation accuracy of the algo-
rithm by increasing the value of parameter ε1 appropriately.
Poor estimation accuracy can be efiectively avoided by using
a low-frequency signal.

4) Experiment 5: This experiment aims at evaluating the
impact of the variation of the timing skews. In this paper,
timing skews �t1 and �t2 are evaluated by using (14) directly
and timing skew �t3 is not evaluated directly. According
to the difierent estimation methods of the timing skews in
each channel, the parameter settings in this experiment can be
divided into the following two groups.

1) �t2 = 0.02,�t3 = −0.06, and �t1 is set from −0.10 Ts

to −0.10 Ts with a step size of 0.002 Ts.

2) �t1 = 0.03,�t2 = 0.02, and �t3 is set from −0.10 Ts

to −0.10 Ts with a step size of 0.002 Ts .
The other simulation parameters are set to the same values as
in Experiment 2, with the input signal generated by (35) and
L = 16. One hundred random simulations are conducted for
each value of the timing skew and the mean relative error and
variance of the estimation results are calculated. The overall
results are shown in Fig. 9.

According to (37), the relative error of the timing skew
near the zero point is large, as shown in Fig. 9(a), because the
absolute value of the timing skew is small at these points. The
variance is very small at these points, as shown in Fig. 9(b).
In Fig. 9(b), the total variance values are below −130 dB
and almost constant with the change of timing skews. Thus,
we conclude that the timing skew does not affect the estimation
accuracy of the ApFFT-SSPR-BLTSE algorithm.
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Fig. 9. Estimation results with the variance. (a) Relative error versus value
of timing skew. (b) Variance versus value of timing skew.

Fig. 10. Relationship between RMSE and input signal frequency.

5) Experiment 6: This experiment is carried out to com-
pare the SS-BLTSE, SSPR-BLTSE, and ApFFT-SSPR-BLTSE
algorithms, and includes the following two subexperiments.

a) Relationship between RMSE and input signal fre-
quency: The experimental method that is used in Experiment 3
is also used in this experiment, and the results are shown
in Fig. 10. From Fig. 10, we conclude that using the ApFFT
method can improve the stability and the estimation accuracy
of the estimation algorithm when the input signal frequency
is 50, 100, or 150 MHz. That is to say, the spectral leakage
can be suppressed by ApFFT at these frequency points.

b) Relationship between RMSE and parameter ε: The
experimental method that is used in Experiment 4 is also used
in this experiment, and the results are shown in Fig. 11. From
Fig. 11, the following conclusions are obtained.

1) The estimation accuracies of the three algorithms are
similar when the input signal is a single-frequency sig-
nal. The performance in terms of RMSE is not substan-
tially improved compared with the SS-BLTSE algorithm and
ApFFT-SSPR-BLTSE algorithm. However, the proposed
ApFFT-SSPR-BLTSE algorithm has lower computational
complexity than other algorithms.

2) The estimation accuracy of the ApFFT-SSPR-BLTSE
algorithm is superior to those of other algorithms when the
input signal is a multifrequency signal, and the ApFFT-SSPR-
BLTSE algorithm has lower computational complexity than
others.

No matter how much number of tones of the input signal,
the RMSE are all below −60 dB by using the algorithm of
the ApFFT-SSPR-BLTSE.

Fig. 11. Relationship between RMSE and parameter ε. (a) Single frequency.
(b) Multifrequency (composed of 16 sinusoids). (c) Multifrequency (composed
of 64 sinusoids).

To compare the ApFFT-SSPR-BLTSE algorithm and the
SS-BLTSE algorithm in [1] in terms of estimation effec-
tiveness, we use the estimated timing skew parameters that
are listed in Table II to compensate the timing mismatches.
In this experiment, the frequencies of the two-tone input
signal are 61 and 110 MHz and the sampling frequency of
the four-channel TIADC system is fs = 400 MHz. For
visualization purposes, the compensated output spectra of
the original TIADC system and the TIADC system that is
assumed to have only timing skews are plotted in Fig. 12.
The output spectrum spurs without compensation are shown
in Fig. 12(a). According to Fig. 12(b), the spectrum spurs,
which are due to the timing skews of the TIADC sys-
tem, have been effectively compensated using the proposed
ApFFT-SSPR-BLTSE algorithm. From Fig. 12(b) and (c),
the proposed ApFFT-SSPR-BLTSE algorithm has better esti-
mation effectiveness than the SS-BLTSE algorithm in [1].
In addition, the SFDR after the calibration can be enhanced
from 20.18 to 80.23 dB for the ApFFT-SSPR-BLTSE algo-
rithm and from 20.18 to 75.16 dB for the SS-BLTSE
algorithm.

V. HARDWARE IMPLEMENTATION

The overall architecture of the proposed ApFFT-SSPR-
BLTSE algorithm is shown in Fig. 13. It has three main blocks:
1) ApFFT unit; 2) estimation of nonoverlapping frequen-
cies (ENF); and 3) timing skew computation unit. In addition,
it has memory and control units. The mismatched TIADC
output of the total system y(n) and the output of mth sub-
ADC ym(n) are stored in the memory units. We choose a sine
signal as the input of the four-channel TIADC system with
N = 65 536 sample point in this design. In the ApFFT unit,
the IPs of FFT, which are used to process data in parallel for
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Fig. 12. (a) Original spectrum of input signal. (b) Compensated output
spectrum (TSE by the ApFFT-SSPR-BLTSE algorithm). (c) Compensated
output spectrum (TSE by the SS-BLTSE algorithm).

Fig. 13. Architecture of the ApFFT-SSPR-BLTSE algorithm.

output y(n) and ym(n), receives the discrete output signals
of the TIADC system and computes the ApFFTs Y (e jω) and
Ym(e j�). The nonzero results of the ApFFT unit are stored in

Fig. 14. Structure of ApFFT.

memory units. The ENF unit receives the nonzero results from
the memory units, finds the frequency component of maxi-
mum amplitude point ωp and calculates the phase spectrum
P( jωp) and Pm( j�p). The timing skew computation unit
calculates the relative timing skews �tm(m = 1, 2, . . . , M−1)
using (14), (20), and (21). The control unit generates the
address values for performing read and write operations on
the memory unit, and sends the necessary control signals to
the computing units to initiate their operations.

A. Proposed Structure of ApFFT

The structure of ApFFT is shown in Fig. 14 for N = 65 536,
M = 4, and sampling frequency of TIADC system
fs = 400 MHz. It is composed of two IPs of FFT with
different data sizes, multipliers, and adders. In this design,
we set the number of sample points for subchannels as N/M
and the number of total output sample points as N . Therefore,
N-point FFT and N/M-point FFT are used to calculate
all-phase spectra of the output data. The output of the TIADC
system y(n) and the output of sub-ADC ym(n) are stored in
RAMs. The main difference between the traditional FFT and
the ApFFT is that the data are preprocessed in different ways.
In this unit, the double-window data preprocessing method is
implemented before FFT. Therefore, to simplify processing,
we can store the calculated data of the window functions
into RAMs before the calculation starts. Since the design
uses two different signal lengths, two different lengths of
window functions are also required. During the N cycles of
each channel for the computation of ApFFT, ym(n), y(n) and
corresponding window functions can be retrieved separately
from the RAMs in serial order and fed to the multiplier unit.
For each channel, the results of multiplication are divided into
two equal parts and can be stored in two shared RAMs of the
same size to complete the addition operation.

The operations of subchannels and total output are per-
formed at the same time to improve the parallelism. After the
preprocessing of the data, the results are sent to the FFT units
and all-phase spectra Ym(e j�) and Y (e jω) are obtained. The
ApFFT unit has accomplished the work of Part I: all-phase
spectral estimation, as described in Section III.

B. Proposed Structure of the ENF Unit

The ENF unit consists of a judging unit, a square sum
unit, an Arctan unit, a computation unit, and a comparison
unit. Since the input signal of the TIADC system is sparse,
the results of only a few points after the FFT are nonzero.
In this unit, we set a threshold for determining the nonzero
value in the judging unit and store separately the imaginary
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Fig. 15. Internal structure and data flow of the ENF unit.

part and the real part in the RAMs. The square of the amplitude
can be calculated in the square sum unit and the nonoverlap-
ping frequency point can be found in the comparison unit.
The comparison unit generates the temporary ordering tp of
the maximum value and the real location kp. The comparison
unit can arrange all the phase values in descending order. The
input data of the comparison unit are positive and serial and
we can scan sequentially the input data. In this design, we only
select the two maximum values for calculating the ratio in (31)
for every cycle until (32) is satisfied. Otherwise, the maximum
value is set to 0 in the next cycle. Finally, the temporary
ordering tp can be used as an address to obtain the maximum
value from the RAMs of the real part and the imaginary part.
In the computation unit, �p can be calculated according to
�p = πk p/N/2 and ωp can also be calculated using (16).
Therefore, the computation unit consists of a division unit,
multiplication unit, and an addition (subtraction) unit. These
units can be reused in the timing skew computation unit. Then,
the IP of the Arctan unit calculates phase spectrum P( jωp)
and Pm( j�p) for m = 0, 1, 2.

Fig. 15 shows the internal structure and the data flow of
the ENF unit. In this design, we first determine the position
of the nonoverlapping frequency point according to the first
channel (the reference channel) of the TIADC system. Then,
we calculate the phase spectra Pm( j�p) of the other subchan-
nels and P( jωp) of the total output at frequency point ωp . The
results of other subchannels and the total output through the
ApFFT unit are stored into temporary memory and can be
used to obtain the phase spectrum. In this design, temporary
memory is implemented in some registers.

C. Timing Skew Computation Unit

According to (14), (20), and (21), we obtain the timing
skews of each channel in the TIADC system. The internal
structure and data flow of the timing skew computation unit
are shown in Fig. 16. In this design, we optimize the archi-
tecture by inserting pipeline registers for different operations
to improve the performance of this design. Phase spectra
P( jωp) and Pm( j�p) can be obtained by the ENF unit
and the intermediate value by the subtraction operation. The
intermediate value and ωp are inputs of the division unit.
Many division algorithms and implementations have been
published in [26] and [27]. In this paper, to invert ωp in
the division unit, we have developed a reciprocal operator
that is based on the Goldschmit method for calculating the

Fig. 16. Data flow of the timing skew computation unit.

Fig. 17. Internal structure of the Goldschmit algorithm.

inverse of ωp . The internal structure of the Goldschmit method
is shown in Fig. 17. Parallel computing can double the
computational speed of the division operation and the iterative
formula is defined in (38), which can be calculated from xi

using only multiplication and subtraction. First, we standardize
parameters C and D. Then, we initialize x0 = C = 1 and
t0 = D(0.5 ≤ D < 1). Finally, the cycle is repeated until the
required accuracy is obtained by the iterative operation. The
Goldschmidt algorithm is normally implemented by using an
initial approximation (see value). Then, k iterations, where k
depends on the accuracy of the initial approximation and the
required final precision, are performed.

The result of the division operation and m are inputs of the
subtraction unit and are used to calculate �tm by (14). Then,
the multiplication unit receives �tm and ωp/M and generates
�pm using (20). After obtaining �p,�p1,�p2, . . . ,�pM−2,
we calculate �pM−1 using (21). In this process, accumulators
can be utilized and the subtraction unit can be reused. Finally,
�tM−1 is calculated according to (20) and the multiplication
unit is reused

⎧
⎪⎨

⎪⎩

fk = 2 − tk
xk1 = xk × fk

tk1 = tk × fk .

(38)

VI. RESULTS OF FPGA IMPLEMENTATION

In this section, we present the implementation and perfor-
mance evaluation of the proposed design, and the results in
the case of N = 65 536, M = 4, and fs = 400 MHz.

A. FPGA Implementation Approach

To implement the ApFFT-SSPR-BLTSE algorithm on the
hardware, an estimation algorithm is designed and optimized
in terms of the fixed points of signals using MATLAB. In this
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Fig. 18. (a) Four-channel 14-bit 400-MHz TIADC system. (b) FPGA
calibration platform.

design, we use 25-bit data precision with 20 bits for the
fractional part. We have transformed the abstract representa-
tion of our system-level design into a hardware description
language code for register transfer level-level representation.
The hardware operators that are included in the design have
been optimized to reduce their critical paths as much as
possible. All operators (addition, accumulation, multiplication
and division) have been designed in a pipeline fashion to
boost the circuit performances. The model of the proposed
architecture is designed using a fixed-point data representation.
The precision (number of bits) and the scale (binary point)
of the fixed-point data are defined as parameters. To validate
the proposed hardware implementation, we have developed a
MATLAB code of the ApFFT-SSPR-BLTSE algorithm.

B. Implementation Results

Considering the requirements of high performance and low
power consumption, the proposed architecture of the ApFFT-
SSPR-BLTSE algorithm is synthesized and placed on a Xilinx
Virtex-6 vlx550tff1759 FPGA device. Xilinx Virtex-6 FPGA
represents advanced integrated-chip technology and adopts
40-nm FPGA technology. Power consumption and area reduc-
tion are not addressed in this paper since the main objective
is to provide higher clock frequency. The architecture logic
synthesis was performed using the Xilinx ISE 14.7 tool.

The TIADC board is shown in Fig. 18(a). It was improved
on the basis of [12] by our team. The TIADC in Fig. 18(a)
is plugged into the FPGA board in Fig. 18(b). [The back of
the TIADC board is shown in the left of Fig. 18(b).] The
measured data from the 400 MHz, four-channel, 14-bit TIADC
board are fed to the FPGA board. The data are calibrated

Fig. 19. (a) Measured output spectrum before calibration. (b) Measured
output spectrum after calibration.

TABLE III

HARDWARE IMPLEMENTATION RESULTS

through the FPGA board and sent to a PC through the USB
interface for analysis of the spectrum by MATLAB. The
spectral plots, which aim at comparing the output spectra
before and after calibration using the proposed calibration
method, are shown in Fig. 19(a) and (b) with the input signal
frequency of 141.2 MHz. Comparing Fig. 19(a) and (b), the
mismatch spurs were suppressed to better than −81.54 dB.
After calibration, the mismatch distortions were no longer
visible above the noise floor. Spurs that are marked as “o” are
the harmonics that are caused by the nonlinearity of the sub-
ADCs, which cannot be calibrated by the proposed algorithm.
The validation results demonstrate the high performance of the
algorithm. As shown in Table III, the design can operate on the
FPGA at a clock frequency of 116.82 MHz and consumes only
a few percent of the hardware resources in the FPGA chip.
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TABLE IV

COMPARISON OF COMPUTATINAL COMPLEXITY

C. Analysis of Computational Complexity

The computational complexity of the proposed architecture
is evaluated in this part. As described in Section II, an
M-channel TIADC system generates a total of N discrete
data samples. Compared with the SS-BLTES algorithm in [1],
the proposed ApFFT-SSPR-BLTSE algorithm decreases the
computational complexity as shown in Table IV. The com-
putational complexities of the SS-BLTES algorithm in [1] and
the proposed ApFFT-SSPR-BLTSE algorithm mainly originate
from three parts.

1) An N-point FFT for obtaining Y (e jω) has a computa-
tional complexity of N log N .

2) For each sub-ADC output, the calculation of the
SS-BLTES algorithm in [1] requires M (N /M)-point
FFT operations and that of the proposed ApFFT-SSPR-
BLTSE algorithm requires M − 1 (N /M)-point FFT
operations. Reducing the number of FFT operations
will reduce dramatically the calculation burden of the
algorithm.

3) The computational complexity of determining ωp and
calculating the relative timing skews �tm(m = 1, 2, . . . ,
M −1) using (14), (20), and (21) is slightly increased in
the proposed ApFFT-SSPR-BLTSE algorithm compared
with the SS-BLTES algorithm in [1].

In conclusion, the proposed ApFFT-SSPR-BLTSE algorithm
is of lower computational complexity because N 
 M .

In addition, we compare the computational complexity of
the proposed approach with that of the approach in [14].
As mentioned in [14], the correction involves a discrete Fourier
transform (DFT) calculation and an inverse DFT calculation,
which require N log2 N operations each per ADC. This results
in a total of M2 N +2M N log2 N operations for the correction
of each data batch. Here, one operation is defined as one
multiplication and one summation. However, in this paper,
an N-point FFT for obtaining Y (e jω) has a computational
complexity of N log2 N , and M − 1(N/M)-point FFTs are
required. In conclusion, the computational complexity of the
proposed ApFFT-SSPR-BLTSE algorithm is approximately
o(2N log2 N). Therefore, the ApFFT-SSPR-BLTSE algorithm
can be considered a low-computational-complexity estimation
method.

VII. CONCLUSION

In this paper, the ApFFT-SSPR-BLTSE algorithm has
been proposed. The channel timing skew parameters can be

determined effectively by the phase relationship at the
nonoverlapping frequency points. The ApFFT-SSPR-BLTSE
algorithm can reduce the number of FFT operations and
has low hardware complexity. In addition, the ApFFT-
SSPR-BLTSE algorithm uses the ApFFT spectral estimation
technique, which can estimate the signal phase accurately.
Simulations show that the mean estimation error of the ApFFT-
SSPR-BLTSE algorithm is below 0.6%, with extremely low
variance. Finally, the proposed architecture is implemented
and validated on the Xilinx Virtex-6 vlx550tff1759 FPGA
with only a few percent of the hardware resources of the
FPGA chip. It is applied to the four-channel 400-MHz 14-bit
TIADC real system, and the mismatch spurs are suppressed
to better than −81.54 dB. Compared with the SS-BLTSE
algorithm, the proposed algorithm has significant advan-
tages in terms of both estimation accuracy and computa-
tional complexity. We are confident in concluding that our
proposed ApFFT-SSPR-BLTSE algorithm is a good candi-
date for scenarios in which real-time high-accuracy TSE is
required.
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