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Abstract—Wireless Capsule Endoscopy (WCE) is considered 

as a promising technology for non-invasive gastrointestinal 

disease examination. This paper studies the classification 

problem of the digestive organs for wireless capsule endoscopy 

(WCE) images aiming at saving the review time of doctors. Our 

previous study has proved the Convolutional Neural Networks 

(CNN)-based WCE classification system is able to achieve 95% 

classification accuracy in average, but it is difficult to further 

improve the classification accuracy owing to the variations of 

individuals and the complex digestive tract circumstance. 

Research shows that there are two possible approaches to 

improve classification accuracy: to extract more discriminative 

image features and to employ a more powerful classifier. In this 

paper, we propose to design a WCE classification system by a 

hybrid CNN with Extreme Learning Machine (ELM). In our 

approach, we construct the CNN as a data-driven feature 

extractor and the cascaded ELM as a strong classifier instead of 

the conventional used full-connection classifier in deep CNN 

classification system. Moreover, to improve the convergence 

and classification capability of ELM under supervision manner, 

a new initialization is employed. Our developed WCE image 

classification system is named as HCNN-NELM. With about 1 

million real WCE images (25 examinations), intensive 

experiments are conducted to evaluate its performance. Results 

illustrate its superior performance compared to traditional 

classification methods and conventional CNN-based method, 

where about 97.25% classification accuracy can be achieved in 

average. 

I. INTRODUCTION 

Wireless Capsule Endoscopy (WCE) is a novel 
technology for gastrointestinal disease detection, which was 
first introduced in [1] and put in use by Given Imaging Ltd. 
Israel in 2001. Compared with traditional endoscopy, the main 
advantage of WCE is that the patients can avoid cross 
infection and suffer no pain. 

Commonly, one whole examination process of WCE will 
last for about 8 hours and produce about 50,000 to 100,000 
images per person. Hence, the analysis of the WCE images is 
a time-consuming work. Digestive organs classification is 
able to greatly reduce the workload for doctors when they 
want to quickly review the images of a specific organ. Usually, 
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WCE images consist of four types of organs, including 
esophagus, stomach, small intestine and colon. In most cases, 
there are much fewer images of esophagus than the other three 
organs, and the majority of gastrointestinal diseases do not 
happen in the esophagus. Based on these facts, we just focus 
on classifying WCE images into other three types than 
esophagus by ignoring the images of esophagus. From the 
observation of WCE images, there are huge variances 
between the same organ of the different patients or even the 
same patient. As an example, Fig. 1 shows four WCE images 
of stomach from different patients, where both color and 
texture differs a lot. Fig. 2 shows four WCE images of small 
intestine of the same patient. The hue is almost the same, but 
the texture is varied. 

Vision-based automatic classification of digestive organs 
is a typical pattern recognition problem. Most previous works 
follow the general framework including image feature 
extraction and classifier design. Berens et al. proposed a 
method to automatically discriminate stomach, intestine and 
colon by using hue saturation chromaticity histograms which 
are compressed using a hybrid transform, incorporating the 
Discrete Cosine Transform (DCT) and Principal Component 
Analysis (PCA)[2]. Cunha et al. [3] extracted MPEG-7 
descriptors as low-level image features, and then employed 
SVM classifier and Bayesian classifier to implement WCE 
organ classification. It is noted that the methods introduced 
above all used handcrafted features. The gastric juice and the 
food debris make the digestive tract circumstance very 
complicated. The handcrafted features have proved lack of 
sufficient discriminating power for WCE organs classification 
[9]. In [4], Ma et al. proposed a locality constraint based 
vector sparse coding algorithm to improve the discriminative 
capacity of SIFT for WCE organs classification. This method 
maps the SIFT feature to higher-dimension to gain better 
discriminating ability. 

In 2012, Krizhevsky et al. gave the state-of-the-art 
classification accuracy in ImageNet2012 using Convolutional 
Neural Networks (CNN) [7]. Afterwards, CNN has brought in 
revolutions to the computer vision area. A huge amount of 
researches showed that Deep CNN have been continuously 
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advancing the image classification accuracy [5], meanwhile it 
also plays as generic feature extractors for various recognition 
tasks such as object detection [7], semantic segmentation [6], 
and image retrieval [8]. Our previous study has proved the 
Convolutional Neural Networks (CNN)-based WCE 
classification system is able to achieve 95% classification 
accuracy in average, but it is difficult to further improve the 
classification accuracy [9].  

In this paper, we aim at improving the WCE organ 
classification accuracy. The efforts come from two parts:  
extracting more discriminative WCE image features and 
designing a powerful classifier. It found that the classification 
capacity of the fully-connect layer of the CNN is inferior to 
that of SVM [10]. Moreover, the Extreme Learning Machine 
(ELM) classifier proposed by Huang et al. showed better 
performance compared with SVM classifier [11][16]. 
Motivated by above facts, we propose to design a WCE 
classification system by a hybrid CNN with Extreme Learning 
Machine (ELM). In our approach, we construct the CNN as a 
data-driven feature extractor and the cascaded ELM as a 
strong classifier instead of the conventional used 
full-connection classifier in deep CNN classification system. 
Moreover, to improve the convergence and classification 
capability of ELM under supervision manner, an initialization 
method to avoid the saturation of the output of the hidden 
neurons is adopted. As a result, a hybrid CNN-ELM WCE 
image classification system is developed (named as 
HCNN-NELM). The proposed method is evaluated with 25 
real recording WCE samples (about 1 million WCE images) 
and get about 97.23% classification accuracy on average. 

The rest part of the paper is organized as follows. In 
section 2, the proposed HCNN-NELM WCE image 
classification system is presented. The properties of the 
extracted WCE image features are analyzed, and the 
initialization method to ELM is employed. The experimental 
results are given in section 3 and conclusions are drawn in 
section 4. 

II. THE PROPOSED HCNN-NELM WCE IMAGE 

CLASSIFICATION SYSTEM 

Our proposed HCNN-NELM WCE image classification 
system is shown in Fig. 3, which includes 2 training stages and 
a testing stage. Firstly, in training stage 1, an end-to-end CNN 
classifier is trained, which contains two parts: a CNN feature 

extractor (characterized by the network weights FE) and a 

softmax classifier. The network weights FE, are used to 
extract WCE image features. In training stage 2, the CNN 
feature extractor trained in the training stage 1 is cascaded 
with the ELM classifier (characterized by the network weights 

W, b,  ) and then an end-to-end CNN-ELM classifier is 

trained. The trained network weights W, b,  are used to 
generate the classification labels. Moreover, in order to further 
improve the classification capacity of ELM classifier, a new 
initialization is adopted to avoid the saturation of the output of 

the hidden neurons. In testing stage, the trained FE, W, b,  
are used to predict the labels of testing WCE images. All 
parameters mentioned above are marked in Fig 3. The details 
of proposed method will be addressed in the following 
sections. 

A. Training Stage 1  

Motivated by the excellent performance of CNN classifier 
proposed in [9], an end-to-end CNN classifier shown in Fig. 4 
is constructed where the feature extractor shown in the red 
dash line box containing layer 1 to layer 6, and the softmax 
classifier shown in the blue dash line box. The output of the 
layer 6 is denoted as the feature vector F. The parameter 
settings of each layer are shown in Table I. The training data is 

denoted as D={(X1,Y1)，(X2, Y2),…,(Xn, Yn)}, where XiRwh 

(w and h are the width and height of the image, respectively) is 
the i-th training image with its category label Yi, and n is the 
total number of WCE training images. It is noted that we only 
have three categories, therefore we have Yi ϵ{1,2,3}. 

We denote , FE and SC as the parameters of the full 
CNN, the CNN feature extractor, and the weight matrix of the 

softmax classifier, respectively. Therefore  is expressed as  

  ,FE SCθ θ θ   (1) 

As shown in Fig 4, for the i-th WCE training image, the 

output of the CNN feature extractor is Fi R1024 which is 
denoted as 

 ( )
FEi imF X   (2) 

where mFE(·) denotes the mapping function to extract the 
feature vector Fi from Xi . 

In Fig. 4, it can be seen that Fi is taken as the input of the 
softmax classifier. To compute the output of the softmax 
classifier, let’s define a middle variable as  

 ( )i SC ih X θ F   (3) 

Then the output of the softmax classifier is computed as 

 
1

exp( ( ))
( )

exp( ( ))
i

i
i

h
f

h






X

X
X

  (4) 

To determine the training loss function, let’s firstly define 

the loss of the i-th image as loss(Yi, Xi), which is the 

cross-entropy between the estimated class probabilities f(Xi) 
and the ground truth target vector eYi. Here, the vector eYi is a 
3-element standard basis vector corresponding to 1 at the Yi-th 
entry and 0 at other entries. For example, if Yi=1, then eYi 
=[1,0,0]T. Therefore, we have 

( ) ( )

1

loss ( , ) ,log( ( )) log( ( ) )
class

i i

n
k k

i i Y i Y i
k

Y f f  
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     X e X e X  (5) 
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Fig. 3 The procedure of our proposed HCNN-NELM method 
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where nclass=3 is the number of classes. eYi
(k) and f(Xi)(k) are 

the k-th element of eYi, and f(Xi), respectively.  

The total loss for all training data in D can be computed as 

 
( , )

1( ) loss ( , )
i i

i i
Y

L Y
n 



 
X D

D X   (6) 

The optimal full CNN classifier characterized by the 

parameter  using the training data set D can be achieved by 
minimizing the following loss function: 

 * arg min ( )L


  D   (7) 

Research shows that the back propagation algorithm is 
commonly used to get the optimal solution of (7) . 

Intuitively, the supervised training of the full CNN 
classifier described above serves to ensure that the input WCE 
images of different organs can be distinguished, meanwhile 
the WCE images from the same organ can be clustered. In the 
following section, the properties of the extracted features by 
the full CNN classifier are analyzed for better understanding 
of its class discriminating capability.  

B. Analysis of the properties of the extracted WCE image 

features  

According to the procedure of training stage 1, the 

parameter FE of the CNN feature extractor is obtained by 
minimizing the loss function in (6). In order to get more 
understanding of classification problem of CNN, we break the 
loss function into two parts: a well-defined classification 
problem [13] to maximize the between-class variations and a 
regularizer to minimize the within-class variations. It 
confirms that the CNN feature extractor is able to get the 
discriminant features. The analysis is described as follows.  

Let D(j) denotes the image set whose label is j (j =1,2,3): 

 ( ) {( , ) | ( , ) , , 1,..., }j

i i i i iY Y Y j i n   D X X D   (8) 

So the loss function for D(j) can be computed as 

 
( )

( )
( )

( , )

1( ) loss ( , )
j

i i

j
j i i

Y

L Y
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

 
X D

D X   (9) 

where n(j) is the number of images whose labels are j. And then 

the loss function for D, L(D), can be rewritten as: 

 ( ) ( )

1

1( ) ( )
classn

j j

j

L n L
n 



 D D   (10) 

By applying formula (3), (4) and (5), we can unfold 
formula (9) as  
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 (11) 

We define Favg
(j) as the average feature vector of all images 

whose label is j. 

 ( )

( )
( )

( , )

1
j

i i

j
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Y

i

n

Y j



 



X D

F F
  (12) 

Substituting (12) into (11), we get 
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        (13) 

In the study, we suppose n(1)=n(2)=n(3), and substitute (13) 

into (10), then L(D) can be rewritten as  
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  (14) 

We break (14) into two parts for analysis. The first part is  

 ( ) ( )

11

1 [ , log( exp( ) )]
classn

j j

j SC avg SC avg
jclassn

 


    e F F   (15) 

From [13], it is clear that (15) shows the loss function of a 
multinomial logistic regression problem with input-target 
(Favg

(j), ej). If the average feature vectors for three categories 
are classified correctly, the value of (15) would be zero. If 
there are some average feature vectors misclassified, this term 

Table I. The architecture parameters of CNN 

Layer Type Number of 

maps or 

neurons 

Kernel 

size 

Stride 

1 convolutional 32 55 1 

2 max pooling 32 33 3 

3 convolutional 32 55 1 

4 max pooling 32 33 3 

5 convolutional 64 55 1 

6 max pooling 64 33 3 

7 fully-connected 3 - - 

 

 
Fig. 4 The full architecture of CNN (Best view in e-print) 
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would be greater than zero. Therefore, this term emphasizes 
the correct classification of the average feature vector.  

Then, we analysis the second part of (14) 

 
( )

( )
( ) 1 1

( , )

1 [log( exp( ) )] log( exp( ) )
j

i i

j
j SC i SC avg

Yn
 




X D

F F  (16) 

According to the convexity of the function log||exp[(·)||1 
and Jensen’s inequality, the value of (16) is greater than or 
equal to zero. Only if the feature representation is perfectly 

invariant, which means SCFi = SCFavg
(j), the value of (16) 

will be equal to zero. Therefore, (16) can be viewed as a 
regularizer which enforcing all Fi from the same class to close 
to their average value of that class. 

In conclusion, the proposed approach not only provides 
the ability to classify the WCE images from different 
categories, but also provides the ability to map the different 
images of the same category to a similar CNN feature vectors. 
We are confident that the extracted features by the CNN 
feature extractor have the discriminating power for different 
classes. 

C. Training stage 2 

As mentioned before, Huang et al. [12] proposed the 
extreme learning machine (ELM) classifier as shown in Fig. 5. 

The input of the ELM is feature vector FRninput . ninput = 1024 
is the number of the input neurons. nhidden is the number of the 
hidden neurons. noutput=3 is the number of the output hidden 

neurons. WRnhiddenninput is the input weight matrix, bRnhiddent is 

the bias vector of the hidden layer whileβRnhiddennoutputt is the 

output weight matrix. ORnoutput is the output vector of the 
ELM classifier. 

According to [11], while ELM initializes W and b 
randomly and keeps them fixed, the training procedure of 

ELM classifier aims at computing β  analytically. Their 

theory proves that the ELM has a good generalization 
performance and the learning speed is much faster than that of 
the single hidden layer neural network. To take the advantages 
of the ELM, in training stage 2, we replace the softmax 
classifier by the ELM classifier, and the details about training 
the ELM classifier are introduced as follows. 

As described in Section A, the parameter FE of the CNN 
feature extractor is obtained, then the feature vectors, which 
are the inputs of the ELM classifier, can be calculated directly. 
Specifically, a new training data pairs can be formed to train 
the ELM classifier, which is denoted as DF: 

 {( , ) | , , 1,2,..., }inputn

F i i i iY Y i n   D F F R R   (17) 

where Fi is the feature vector of input image Xi, n denotes the 
number of the training samples. 

As shown in Fig. 5, the output of the hidden layer 

ho(Fi)Rnhiddent and the ELM classifier Oi Rnoutpu can be 
calculated respectively as: 

 
( ) ( )

( )

o i i

i o i

h g

h

 



F WF b

O F β
 (18) 

where g(·) is the activation function in hidden layer, which is 
usually sigmoid or hyperbolic tangent  

The input weight matrix W and the bias vector b are 
initialized by using the numbers that selected randomly from a 
uniform range [-a, a] and [-1, 1], respectively. Obviously, 
selecting different a will lead to different initialization and 
different performance of the ELM classifier. 

With the whole training image data set, the output of 

hidden layer HRnnhidden and the corresponding ground truth 

label matrix K Rnnoutput is denoted as follows: 

 
 

1 2

1 2( ), ( ),..., ( )

[ , ,..., ]
n

T

o o o n

T

Y Y Y

h h h

e e e





H F F F

K
  (19) 

A standard ELM classifier is able to approximate arbitrary 
samples with zero error [12]. It means that given the training 

image set DF, there exit W, b and β that make (20) hold true 

 
ii YO e   (20) 

where i =1,2,3,…,n.  

As a result, the parameter β can be obtained by minimum 
the mean square error. According to (19) and (20), the optimal 

β can be computed by 

 †β H L   (21) 

where H †  is the pseudo inverse of H. 

As described above, nhidden is the only one super-parameter 

in the ELM classifier andβ is calculated by minimum square 

error. Compared with the single hidden layer neural network, 
the ELM classifier has fewer super-parameters and can be 
trained in faster speed. Meanwhile, it has better generalization 
performance than that of the single hidden layer neural 
network [11].  

D. Improvement of the classification capacity of the ELM 

classifier 

From the training procedure of the ELM classifier, it can 
be seen that W and b are initialized randomly and fixed. In this 
section, we will discuss the impact of the parameter W and b 
on the classification performance of the ELM classifier.  

As discussed before, the sigmoid or hyperbolic tangent 
activation function g(·) are commonly used in hidden layer of 
the ELM classifier. However, it is clear that the activation 
function would be saturated at the tails where the gradient is 
almost zero. So, when the input of the activation function is 
with zero mean and small variance, activation function will 
work properly. However, when the input is with large 
variance, the activation function for many inputs will work in 
the saturation condition. This will cause the degradation of the 
performance of the ELM classifier.  

 
Fig. 5 ELM classifier architecture 
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Let F(k) denotes the k-th element of the feature vector F 
and h(j)

input as the input of the j-th hidden neuron. As shown in 
Fig. 5, we can get  

 ( ) ( )

,
1

n
j k

input j k j
k

h


 W F b   (22) 

where Wj,k is the element in j-th row and k-th column, bj is the 
bias vector of the j-th hidden neuron. 

Suppose that F(k) and Wj,k are independent and identically 
distributed with zero mean, the expectation and variance of 
h(j)

input can be expressed as  

 

( )

( ) ( )
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
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h

h F b

F b

  (23) 

According to the probability theory [14], we can get 

 

( ) 2 ( ) ( ) 2

, , ,

( )

,

( ) [ ] ( ) [ ] ( )

( ) ( )

k k k

j k j k j k

k

j k

Var E Var E Var

Var Var

 



W F W F F W

W F
 (24) 

Substituting (24) into(23), we get 

 ( ) ( )

,( ) ( ) ( ) ( )j k

input input j k jVar n Var W Var Var h F b   (25) 

When W and b are initialized respectively by using the 
numbers that selected randomly from an uniform range [-a, a] 
and [-1, 1], we can rewrite (25) as  

 
2

( ) ( ) 1( ) ( )
3 3

j kinput
input

n a
Var Var h F   (26) 

where a is the boundary value of W. 

The original initialization method proposed for the ELM 
classifier [11] sets a as 1, so Var(h(j)

input) in (26) becomes  

 ( ) ( ) 1( ) ( )
3 3

j kinput
original input

n
Var Var h F   (27) 

According to (27), it is clear that Varoriginal(h(j)
input) is larger 

than Var(F(k)) because of ninput >>3, which causes the 
degradation of the performance of the ELM classifier. In order 
to reduce Var(h(j)

input), we need to make (28) hold true. 

 ( ) ( )( ) ( )j k

inputVar Varh F   (28) 

By examining the first item in (26), it is possible for us to 
choose parameter a relevant to ninput and to make the weight of 
Var(F(k)) smaller than 1. In this case, we can achieve (28). 
Specifically, we want to achieve  

 
2

1
3

inputn a
   (29) 

From (29), after simple manipulation, we get 

 3
input

a
n

  (30) 

Furthermore, the performance of the ELM classifier is also 
related to the choice of the hidden neurons, it is reasonable to 
connect to nhidden and we noted nhidden is always larger than 
ninput. As a result, from (30), we get 

 
 

6 6 3
2 input inputinput hidden

a
n nn n

  


 (31) 

Selecting a value according to (31) will guarantee the 
inequality shown in (28) and the method described in (31) is 
termed as the normalization initialization method. Therefore, 
(26) can be reformulated as 

 ( ) ( )2 1( ) ( )
3

1

j k

normalized input

hidden

input

Var Var
n

n

 
 
 

 

h F  (32) 

From (32), it is straightforward to get 

 ( ) ( ) 1( ) ( )
3

j k

normalized inputVar Var h F   (33) 

Comparing (27) and (33), it is clear that  Varoriginal(h(j)
input) 

is always larger than Varnormalized (h(j)
input). As discussed above, 

theoretically, the proposed normalization initialization 
method reduces the variance of the input, then the possibility 
of the saturation of the output of the hidden neurons is also 
reduced.  

The experiment results in section 3 verify the effectiveness 
of the normalized initialization method. 

E. Testing stage 

As shown in Fig 4, the parameter FE of the CNN feature 

extractor and the parameter W, b,β of the ELM classifier are 

obtained in training stages, The testing procedure is 
summarized as follows with the testing image Xtest: 

1). Compute the feature vector Ftest by 

 ( )
FEtest testmF X   (34) 

where mFE(·) is the mapping function introduced in (2).. 

2). According to (18), compute the output of the ELM 
classifier Otest as below: 

 g( )test tet O WF b β  (35) 

3). The predicted label Ytest is calculated as below: 

 ( )argmax k

test test
k

Y  O   (36) 

where Otest
(k) is the k-th element of the Otest. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experiment settings 

There are 25 whole WCE image sets generated for 25 
individuals by WCE examinations. Moreover, there are about 
1 million WCE images which have been labeled by medical 
professionals. All WCE images for experiments are RGB 

color images. The size of original WCE image is 480  480, 

and we scale them down to 96  96 for saving computation 
cost. 

Limited by the memory of the computer, 60,000 images 
are randomly selected for training and 15,000 images are 
randomly selected for testing in each experiment.  

The experimental results are given by averaging over 5 
independent trials. 
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B. Experiment results 

The results of WCE organs classification by our proposed 
algorithm and the compared algorithms are listed in Table II. 
The SIFT-LCVSC-SVM is proposed by Ma et al. in [4]. The 
CNNplain is an end-to-end CNN classifier which contains a 
CNN feature extractor and a softmax classifier [9].The 
CNN-SVM indicates the classifier consists of a CNN feature 
extractor and a SVM classifier. The HCNN-NELM is our 
proposed algorithm where a CNN feature extractor, and a 
normalized initialized ELM classifier are cascaded. For this 
experiment, the hidden layer parameter nhidden is set as 9000. 
From Table II, we can draw the following observations: 1) 
Comparing the results of the SIFT-LCVSC-SVM with that of 
the CNN-SVM, the CNN feature extractor is able to extract 
more discriminate features than the handcrafted feature SIFT 
with the local constraint sparse coding method. 2) Comparing 
the results of the CNNplain, the CNN-SVM, and the 
HCNN-NELM, it can be seen that the classification ability of 
using softmax classifier is inferior to SVM and ELM 
classifiers. Moreover, the proposed normalized initialization 
ELM outperforms to that of the linear SVM. 3) For WCE 
organ classification application, our proposed HCNN-NELM 
method offers the best classification performance with the 
experimental conditions. 

C. Impact of the normalization initialization  

This experiment aims at evaluating the impact of our 
proposed normalization initialization for the ELM classifier. 
In this experiment, the number of hidden neurons varies from 
2000 to 10000. For comparison, the results using the random 
initialization (called original initialization method in Fig. 6), 
with the same experimental settings, are also given. As shown 
in Fig. 6, the normalized initialization method outperforms to 
the random initialization method for all values of nhidden. 
Besides, we can see that the performance of the 
HCNN-NELM is not sensitive to nhidden. When nhidden increases 
from 2000 to 10000, the classification accuracy increases 
about 1%.  

IV. CONCLUSION 

In this paper, motivated by the excellent performance of 
the CNN for image classification problems. We firstly 
analyzed the discriminative capability of the features learned 
by the CNN with full connection softmax classifier. Then a 
novel HCNN-NELM method is proposed for WCE organs 
classification, which is a hybrid system by cascading a CNN 
feature extractor and an ELM classifier. To reduce the 
saturation of the output of hidden neurons in the ELM 
classifier, a normalization initialization is employed. 
Experiment results validate that the effectiveness of our 
proposed method. With 1 million WCE images, we achieve 
97.23% classification accuracy in average which outperforms 
the traditional classification methods and the conventional 
CNN-based method.  
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Table II. The classification accuracy of different methods 

Method Classification Accuracy (%) 

SIFT-LSVSC-SVM [4] 85.79 

CNNplain [9] 95.00 

CNN-SVM 97.05 

HCNN-NELM 97.23 

 

 
Fig. 6 The classification accuracy of different initialization method 
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