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Abstract-Common Spatial Pattern (CSP) algorithm is a 

commonly used effective feature extraction method in motor 

imagery (MI) electroencephalogram (EEG) based brain 

computer interface (BCI). The motor imagery patterns 

extracted by CSP are associated with variations in 

subject-specific frequency bands power. Therefore, optimizing 

frequency band carrying MI intention is required by the CSP 

method. However, the frequency band is usually divided 

manually and evaluated which does make use of the EEG signal 

property and also with low efficiency. In this paper, we propose 

a novel Empirical Mode Decomposition (EMD) based CSP 

method to realize the data-related and adaptive frequency band 

selection. Specifically, the intrinsic mode functions (IMFs) 

decomposed from the EMD and the amplitude modulated signal 

by instantaneous amplitude (IA) calculated from Hilbert 

Transform have been fully explored and employed. Moreover, 

the intensive experiments have been conducted to evaluate the 

proposed method. From the experiment results, we observed 

that the EMD based CSP method enhances the classification 

accuracy in BCI competition IV dataset I for all subjects and a 

paired t-test shows a significant difference level. 

I. INTRODUCTION 

B
rian Computer Interface (BCI) are systems that provide 
an alternative pathway for their users to transmit 

information to external world, which has become an assistive 
tool for neuromuscular disordered people's communication 
and control [1]. Electroencephalogram (EEG) signal recoded 
from the scalp could well reflect the brain activities and it has 
been widely used in noninvasive BCI systems [2]. One kind 
of effective EEG-based BCI system uses the potential 
changes in motor imagery (M!) termed as MI-based BCI. And 
these changes detected by EEG signal during imagination of a 
movement manifest as a rhythmic power decrease and 
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increase in primary sensor-motor areas which is known as 
event-related desynchronization (ERD) and event-related 
synchronization (ERS) [3]. 

A particularly popular signal processing algorithm for 
MI-based BCls called Common Spatial Pattern (CSP) [4] is 
employed to detect the ERD/ERS characterized motor 
imagery intention. The traditional CSP method used in the 
binary-class constructs spatial filters that maximize the 
variance of one kind of task and simultaneously minimize the 
variance of another which could be accomplished by solving 
a generalized eigenvalue decomposition problem [5]. In order 
to achieve high classification accuracy (CA), a pre-filtered 
broad band (8-30Hz) or subject-specific frequency bands (/-l 
and � bands) most reflecting the MI intention are selected. To 
fmd these optimal frequency bands, several algorithms have 
been proposed, such as CSSP (Common Spatio-Spectral 
Pattern) [6], Sub-band CSP (SBCSP) [7] and Filter Bank 
Common Spatial (FBCSP) [8]. These methods aim at 
determining the informative frequency bands and the features 
are extracted accordingly which can also be weighted to 
achieve high classification accuracy. 

In this paper, we propose a novel method employing the 
Empirical Mode Decomposition (EMD) [9] to automatically 
and effectively detect the discriminative and informative 
frequency bands signal. EMD method was pioneered by N,E. 
Huang et al. in 1998 and only uses the original signal for 
decomposition. Hence it is a fully data-driven and 
self-adaptive analysis approach [10]. It adaptively represents 
non-stationary signals as a sum of zero mean amplitude 
modulation frequency modulation components termed as the 
intrinsic mode functions (lMFs). The EMD method could 
behave as filter banks and different IMFs is able to reflect the 
inherent information in the original EEG signal [11]. It is 
desired to note that the first two IMFs (termed as IMFl, IMF2) 
are mainly related to the optimal informative frequency bands 
(alpha band and beta band) which contain the MI intention. 

Hence, the use of the filter property of EMD could avoid 
manually dividing the frequency band, which is usually 
adopted in the traditional CSP method. Moreover, it can be 
expected that a few number of informative frequency band 
related IMFs will lead to higher algorithm efficiency. The 
proposed method has been tested and evaluated by using the 
BCI competition IV dataset I calibration data, where five 
subjects out of seven are used who preformed left hand and 
right hand imagination tasks. The dataset for each subject 
comprises 200 trials (l00 for each class) and the EEG signal 
is sampled at 1000Hz from 59 electrodes. 



II. PROPOSED METHOD 

Thirty-seven electrodes over the primary motor cortex and 
the supplementary motor cortex (SMA) were selected from 
the total fifty-nine electrodes and the block diagram of the 
proposed method was illustrated in Fig. 1. The detailed 
description of each block will be addressed separately in the 
following context. 

Fig. I Block diagram of the proposed method 

A. Preprocessing 

The raw EEG signal was re-referenced by a common 
average referencing (CAR) spatial filter and was filtered with 
a 5-order Butterworth band pass filter with the pass band of 
5-40 Hz. 

B. Common Spatial Pattern Algorithm 

The CSP algorithm analyzes multi-channel EEG data and 

yields spatial filters Wcsp E RCxC (C is the number of 

channels) which project the original signal to a space where 
the differences in variances of two kinds of tasks can be 
maximized. The projected signal is given by: 

Zcs/t) = WE(t) (1) 

where E(t) E RcxT represents the raw EEG signal of a single 

trial (T indicates the length of the samples). Then the CSP 
features could be calculated as [5]: 

var(Zp) 
( ) II' = loge" ) p = (1 ... 2m) 2 

L var(Z;) 
1=1 

where Zp indicates the fust m and last m rows of Zcsp 
The value of m was set to be 3 in this paper. 

C. Empirical Mode Decomposition 

In principle, the EMD method decomposes the given signal 
X(t) into residual and intrinsic modes which ends up in the 

form of [12]: 
N 

X(t) = L c,(t) + r,,(t) (3) 
1=1 

where ", (t) indicates a residual and c; (t), i = 1, ... N stands for 

the IMFs. The zero-mean amplitude IMFs are obtained by a 
sifting process according to the characterizing conditions of 
the IMFs and the process can be finished when residual 
becomes a monotonic component or a constant where no 
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more IMFs component can be extracted. The IMFs have 
well-behaved Hilbert transforms, so the instantaneous 
frequencies and instantaneous amplitude could be calculated 
as follows [9]: 

-C) I +f
ooc,(T)

d c; t =-p.v -- T 
7r _oo t-T 

a; (t) = � C;2 (t) + G;2 (t) 

G (t) 
B.(t) = arctan-'-

I c, (t) 

dB, (t) 
aJ = --

I dt 

(4) 

(5) 

(6) 

(7) 

where G, is the Hilbert transform of c, and p.v denotes the 

Cauchy principal value. Then, the instantaneous frequencies 

and instantaneous amplitude are determined as OJ; and ai (t) 

respectively. 

D. fA modulated SignallfMFs selection approach 

We explore to evaluate the nature of the extracted IMFs 
and IA. An approach to form the input signal to the CSP using 
IA information is explored. The instantaneous amplitude (IA) 
information of the IMFs can be used to modulate a sinusoidal 
signal as: 

X/A(t) = a(t)cos(27rfc(t)) (8) 

where a(t) indicates IA and fc is the frequency of the 

modulated signal. An example of the IMF with IA and the 
amplitude modulated signal was shown in Fig. 5, where fc 
was select at 500Hz and the function cos(27r fc (t)) would be 

of the oscillation property so the inner product of the signal 
x fA and a(t) is the same: 

X/A (t)X� (t) = a(t)aT (t) (9) 
Moreover, in this study, the fust three IMFs and the 
combination of them are selected to be the input to the CSP 
since they hold the informative frequency bands related to the 
ERD/ERS. To evaluate the impact of the selection of IMFs or 
IA on the CA, several experiments have been conducted in 
the next section. 

E. Feature Selection 

In the feature selection stages, the fisher ratio is taken as 
the measure to discriminate the features, which is defined as 
follows: 

C 

SB = L N/M, _M)2 (10) 

(11) 
i=! 1=1 

F= � 
Sw 

(12) 

where M; is the mean value of the features for class i ,N; is 

the number of trials for class i, /, is the feature for one trial 



in one class. M is the mean value of the total classes. The 
higher value of the Fisher ratio defined in (12) indicates the 
higher discriminative property of this set of the features. 

In this study, the fisher ratios of the features computed by 
the CSP method for individual use of the IMFs or IA have 
been calculated, respectively. The most discriminative 
features can be selected corresponding to the largest fisher 
ratios. All the feature dimensions are selected to be equal 
among the method for fair comparison. 

F. Classification 

A linear support vector machine (SVM) classifier is 
adopted as the classifier. The [mal CA is the mean value of 
the result from a 5x5-fold cross-validation procedure. The 
data lasting two seconds was selected (2.5s to 4.5s after the 
cue) to calculated the CSP features. 

III. RESULT AND DISCUSSION 

In this section, in order to evaluate and compare the 
performance of the EMD based the CSP methods, 13 
different methods have been tested. The results of the CA are 
shown in Table I. In Table 1, the CSP, CSP-alpha and 
CSP-beta represent the filtered signal between 8-30Hz, 
8-I3Hz I8-26Hz as the input to CSP, respectively. The IMFI, 
IMF2, IA1, and IA2 refer to the individual IMF1, IMF2, the 
amplitude modulated signal by IAI and IA2 as the input to 
CSP, respectively. The IMF1+IMF2, IMF1+IMF2+IMF3, 
IA 1+IA2 and IA 1 +IA2+IA3 denote the combination of the 
IMF1+IMF2, IMF1+IMF2+IMF3, IA1+IA2 and 
IAI +IA2+IA3 as the input to the CSP, respectively. The IMF 
fisher ratio and the IA fisher ratio indicate that the input of 
CSP is selected by the fisher ratio defined in (12), 
respectively. 

TABLE I 
CLASSIFICATION ACCURACIES CORRESPONDING TO THE PROPOSED 

METHOD AND NORMAL Csp METHOD (%) 
Subject A B e D E Mean 

esp 60.0±2.7 64.8±2.8 86.9± 1.4 92.3±2.1 92.1±1.0 79.22 
eSP·alpha 59.0±3.6 67.9±2.9 77.8±4.2 88.8±1.0 91.2±1.3 76.94 
eSP-beta 54.8± 1.8 50.3±2.2 70.0/2.2 75.8±1.I 92. I± 1.6 68.60 

IMFI 54.3±1.6 55.0±2A 74.7±1.8 87.3 ±I . 6 8l0± 1.3 70.86 

IMF2 58.6±4.1 66.4± 1.3 61.4±4.3 88.9±O.9 85A± IA 72.14 

IMFI+IMF2 67.7±2.2 70.0± 1.2 83.9± 1.3 93.0±1.2 93.2±1.2 81.56 

IMFI +IMF2+IMF3 66.5±1.6 68.3±1.9 88.7±1.5 93.8± 1.7 93.4±O.8 82.14 

I\<IF tisher ratio 55,4±2.8 65,4±3,3 72.8±2.6 93.5±2,3 88A±1.6 75.10 

IAI 50.8±2.3 54.0±2.5 70.1 ±I. 9 78.7±1.8 86.1±1.9 67.94 

IA2 59.1±4.1 673±2.4 61.2±3.6 82.9±2.9 81.6±1.4 70.42 

IAI+IA2 57.6±3.0 59.4±O.5 66.3±3.0 87.3 ±I. 9 94.2±1.2 72.96 

IA I +IA2+IA3 65.1±2,4 70.2±3.2 70.7±4.1 92.2±1.3 94.S±0.6 78.60 

IA fisher ratio 59.H33 61.5±1.4 71.2±3.2 90.2± 1.2 90.4±1.6 74.60 

From the experimental results show in Table I, we can see 
that the CA of the IMFI +IMF2 and the IMFI +IMF2+IMF3 is 
higher than the CSP. Moreover, a paired t-test was computed 
resulting in a significant difference level between the 
IMF1+IMF2+IMF3 and CSP (P = 0.0403). However, the 
IMF 1 +IMF2 failed to reflect a significant different level 
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compared with the CSP. We can infer that the IMF3 should 
contain the MI intention information contributing to the 
classification. To further illustrate the classification 
performance of the IMFs based methods, the CA results of 
the IMFI, IMF2, IMF1+IMF2, IMF1+IMF2+IMF3 are 
plotted in Fig. 3, respectively. From Fig. 3, it is clear to see 
that the CA of the IMF 1 +IMF2 is higher than that of IMF 1 
and IMF2 for each subject. We also noted that the CA of the 
IMFI +IMF2+ IMF3 is higher for subject C, D, and E, but is 
lower for subject A and B compared with that of the 
IMF1+IMF2. These would suggest that the IMFI and IMF2 
extracted by EMD method indeed contain the information of 
MI intention for each subject. Meanwhile, whether the IMF3 
component reflects the MI intention is subject-dependent 
determined by the subject-based predominant ERD/ERS 
frequency bands. The ERD phenomenon of the IMF3 for 
subject C in C3 and C4 channels were shown in Fig. 4. From 
Fig. 4, it is clear to see there is a power decrease in the low 
alpha band during left hand task but the ERD phenomenon is 
a relative unobvious during right hand task. 

From Table I, it is also noted that the CA of the IMFI and 
IMF2 is still lower than the CSP-alpha and the CSP-beta for 
majority of the subjects. This further justifies that the 
frequency components in the IMFs are overlapped and not 
restrict to the frequency band [8]. Therefore, it is nature to 
conclude that a single IMF is not able to reflect the MI 
intention sufficiently. This also contributes to the lower CA 
of the IMF fisher ratio method. 

100% 

'0' � 80% 
o '" 
:; 
o 
o 

<t: 
c 
o 
� 
o 

-= 
'0 '" '" 
u 

_ IMFl _fMFZ------------------------------------------------------
c::::J IMF1+IMF2 
c::::J IMF1+IMF2+IMF3 

Subject A Subject B Subject C Subject D Subject E 
Subjects 

Fig. 3 Bar graph comparing the classification performance of the method of 
different combination of IMFs 
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Fig. 4 Average spectrum of the IMF3 of subject C for C3 and C4 channel 
during left hand task and right hand task. 

0.5 1 
Time[s] 

-IMF 
-IA 

1.5 

1.5 

Fig .5 IMF with IA (top) and amplitude modulated signal (bottom) for one 
trial of subject E 

From Table I, we can see that the CA of IA l+IA2+IA3 is 
higher for four subjects (A, B, D and E). None of the IA based 
method enhances the CA of the subject C. Carefully analysis 
and experimental results show that the CA of the IA based 
CSP method may be impacted by the selection of the 
modulation frequency. The IA modulated signal may not a 
good representation of the MI intention for all subjects. 
Moreover, as the IMFs method, the individual IA fails to 
completely convey the 1M intention for all subjects as well. 
Therefore, how to make use of the IA for representation of the 
MI intention is needed to be further investigated. 

IV. CONCLUSION 

In this paper, we employed the EMD method to extract the 
IMFs and lAs of the EEG signal and a novel EMD-based CSP 
method for the classification of the MI EEG signals has been 
proposed. The fusion of the EMD and CSP utilized the filter 
bank property of EMD which is able to adaptively extract the 
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IMFs of the signal that carrying MI intention to satisfy the 
optimizing frequency band selection requirement in the CSP 
method. Experimental results show that the IMFs-based CSP 
method results in higher CA using BCI competition IV 
dataset I. However, the lA-based CSP method fails to 
increase the CA since the information contained in the 
amplitude modulated signal is insufficient. One of the 
advantages of the proposed EMD based CSP method lies in 
its self-adaptive IMFs extraction where the number of IMFs 
is data-related and limited. This property greatly increases the 
algorithm efficiency. 

Furthermore, the frequency components contained in 
different IMFs are different in the identical location but the 
adjacent IMFs could contain the same scale oscillations. It 
means that the decomposition is not strict to the frequency 
band but according to inherent physical meaningful 
components in the original signal. Therefore, extracting and 
combining MI intention contained components in raw EEG 
signal not merely according to the different frequency 
division but to find the inherent infonnative signal 
components might be efficiency and meaningful. 
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