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Abstract - The development of robust voice activity 

detection (VAD) for strong noisy speech is a challenging task. In 

this paper, we propose a novel voice activity detection method 

under Hilbert-Huang Transform (HHT) framework by using its 

good ability to automatically extract signal-frequency related 

intrinsic mode functions (IMF) by the empirical mode 

decomposition (EMD), which provides us a more flexible way to 

select different IMFs with strong speech components. With the 

Hilbert transform, the instantaneous frequency (IF) can be 

computed. Making use of the speech characteristics of each IMF, 

a weighted instantaneous frequency average (WIFA) 

measurement is proposed and the corresponding WIFA-VAD 

algorithm is developed, where the VAD threshold can be 

automatically estimated using the first noise frames. 

Experiments show that the proposed WIFA-VAD can achieve 

comparable results at high SNR. For low SNR (e.g., -5dB and 

below) conditions, it is able to achieve lower false alarm ration 

(FAR) and missing error ratio (MER) , compared with those of 

the conventional VAD algorithms. 

Index Terms - Voice activity detection, instantaneous 

frequency, strong noisy speech, weighted instantaneous frequency 

average. 

I. INTRODUCTION  

Voice activity detection (VAD), or speech endpoint 
detection, is a preprocessing part of many speech signal 
processing techniques, such as automatic speech recognition, 
speech enhancement, speech coding, echo cancellation, hands-
free phone system, etc. The accuracy of VAD algorithm has a 
dominate affection on the performance of these techniques. 
The well-known VAD algorithms are mostly based on features 
like short-time energy and zero crossing rate [1], short-time 
autocorrelation, speech cesptrum [2], spectrum entropy [3], 
speech periodicity character [4], speech/noise statistic model 
[5]-[7] and so on, which were developed by taking the 
advantages of speech short-time stationarity, speech statistical 
characteristics and vocal modeling. These algorithms have 
achieved relatively good results under certain circumstances 
but still are confronted with one common problem: the 
performance will decline as the signal-to-noise ratio (SNR) of 
the noisy speech decreases. Sometimes the decline is so rapid 
that those algorithms are almost inapplicable. Thus, 
developing more robust VAD algorithms for strong noisy 
speech (e.g., -5dB and below) is still a valuable exploration. 

In this paper, Hilbert-Huang transform (HHT) theory is 
explored to analyze noisy speech and one novel VAD 
algorithm is developed. In principle, HHT is an empirical, 
adaptive, data-driven signal analysis method, which was first 
proposed by N. E. Huang et al. in 1998 [8]. It is constituted by 
two parts: Empirical Mode Decomposition (EMD) and Hilbert 
Spectrum Analysis (HSA). EMD technique performs an 
adaptive decomposition of a signal into the elementary 
components that don't overlap in frequency domain. These 
components are named as Intrinsic Mode Function (IMF). The 
Hilbert transform can be applied on IMFs to provide the 
instantaneous amplitude and phase information of the original 
signal. Meanwhile, the instantaneous frequency components 
also can be computed. HHT has been viewed as a new, 
efficient data analysis method dealing with signals produced 
by nonlinear and non-stationary processes. Hence, we 
consider it as a good tool in analyzing the non-stationary noisy 
speech signals and provide more flexible way to develop an 
efficient VAD algorithm.  

Literature study shows that there are some preliminary 
studies by exploring HHT to compute the speech endpoints for 
noisy speech. For each frame, Lu et al. took the energy of each 
IMFs to separate speech frames and noise frames, which gives 
a detection rate of 54.46% for noisy speech with SNR=-10dB 
[9]. It is noted that the IMF energy-based solution only 
exploits the amplitude of IMFs while ignoring the phase 
information and instantaneous frequency. After carefully 
evaluating the property of the EMD technique, it is noticeable 
that the EMD exhibits certain filter bank property. Moreover,  
the IF property of the speech frame and noise frame is shown 
with different characteristics, which motivated us to develop 
the novel VAD algorithm by jointly making use of these 
features in the instantaneous frequency domain under HHT 
framework. In the instantaneous frequency domain, a 
weighted instantaneous frequency average (WIFA), which has 
the ability to reflect the frequency distribution of IMFs, has 
been proposed to be a measurement to distinguish speech 
frames and noise frames, resulting in our proposed WIFA-
VAD algorithm. Intensive experimental results show that the 
proposed WIFA-VAD algorithm obtains a remarkable 
improvement of VAD accuracy under low SNR environment 
(SNR<0dB) compared with that of the conventional VAD 
algorithms. 
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II. HILBERT-HUANG TRANSFORM METHODOLOGY 

In this section, we will introduce the HHT algorithm, 
which is constituted by the empirical mode decomposition and 
the Hilbert spectrum analysis, in details. 

A. The Empirical Mode Decomposition Method 

EMD is based on the assumption that any data consists of 
different simple IMFs so that the data can be represented by a 
linear combination of these IMFs and a residue. The definition 
of IMF follows two constraints [8]. First, among the whole 
dataset, the number of extrema and zero-crossing points must 
be equal, or only differ by one. Second, the mean value of the 
envelope defined by the local maxima and the envelope 
defined by the local minima should be constant zero. 

Let us take x(t) to represent the target signal. EMD 
algorithm is described as follows [8]: 

1) Identify all the maxima and minima of x(t). 

2) Generate the upper envelop of x(t) via cubic spline 
interpolation with all the maxima; similarly generate 
the lower envelop with all the minima. 

3) The mean of the upper and lower envelops is 
designated as m1, and the difference between the data 

and m1 is the first IMF candidate h1,  1  1( )h x t m  . 

4) Replace x(t) by h1 and repeat from step 1 to step 3, 
then h11 = h1 - m11. This is called the sifting process. 

5) Repeat the sifting process for k times, that is 

 1  1( 1)  1k k kh h m  . Stop until h1k satisfies the 

previously defined constrains. Then the first order 
IMF is c1 = h1k, and the residue is r1 = x(t)-c1. 

6) Repeat the procedure from step 1 to step 5 by sifting 
the residual data. The process will end when the 
residue satisfies a predefined stopping criterion, 
which is usually that the residue becomes monotonic 
or a constant. And then the original signal can be 
written in the form of (1). In (1), cj is the j-th order 
IMF, rN represents residue after N times of sifting. 
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In step 5), it states that h1k should satisfy the previously 

defined constrains so that we can determine an IMF and 

move on to the next loop. But this statement is not practical 

yet. A mathematical loop stop criterion must be preset. There 

are two criteria that have ever been used. The first one 
requires SDk should be small enough [8], which is the 

normalized squared difference between two successive sifting 

operations defined as  
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The second criterion is that the sifting process will stop only 
after S consecutive times, when the numbers of zero-crossings 
and extrema stay the same and are equal or differ at most by 

one [10]. S is a preset value. In this paper, the first loop stop 
criterion is chosen and SDk is set to be 0.3. 

B. The Hilbert Spectrum Analysis 

After the acquisition of N order IMFs, it is of no difficult 
to perform Hilbert transform on IMFs. The complex conjugate 
cj'(t) of the j-th order IMF cj(t) can be determined by (3). 
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Then analytic function is defined as 

( ) ( ) ( )j j jz t c t ic t  .                             (4) 

The instantaneous amplitude aj(t) and  the instantaneous 

phase function j(t) can be determined as 
2
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The instantaneous frequency can be simply represented by 
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According to Huang [11], for an IMF, IF reflects the 

frequency distribution，related to the signal energy，which 
motivates us to explore the novel approach for the voice 
activity detection technique, as described in section 3. 

III. PROPOSED VOICE ACTIVITY DETECTION ALGORITHM 

Evaluating the principles of the EMD technique, it is noted 

that EMD sequentially extracts the local, relatively high 

frequencies of the signals. This property endues EMD with 

some similar characteristics with a filter bank, which can be 

intuitively observed from Fig. 1. For a segment of noisy 

speech heavily polluted by Gaussian white noise (SNR=-5dB), 
the spectrogram of the original data and its first five IMFs 

extracted by EMD are displayed in Fig. 1, respectively. From 

Fig. 1 (a), we can see that the frequency band of the clean 

speech mainly ranges from 200-2500Hz, lasting from 0.3s to 

1.2s. Moreover, from Fig.1 (b), the IMF1 presents the highest 

frequencies from 2 kHz to 4 kHz and has little information of 

the speech. From Fig. 1 (c) to (f), it is noted that each IMF 

shows certain filter bank property. For example, let’s look at 

the speech frame around 0.3s, from Fig. 1 (b) to (f), it is clear 

to see that the order of IMF increases, the highest speech 

frequency component goes lower at the rate of 2
-j
 (j=1,2…). 

This observation verified that EMD works similarly as a 2-

base filter bank or 2-base discrete wavelet decomposition [8]. 

Moreover, part of the IMF2, its spectrogram and the associated 

instantaneous frequency (IF) computed by (6) are shown in 

Fig. 2 (a) to (c), respectively. From Fig. 2 (c), it is also noted 

that, the instantaneous frequency varies with time and shows 
some random distribution properties. But we can see that the 

low IF value corresponds to high possibility of the presence of 

the speech. Similar conclusions can be drawn for other IMFs. 

More specifically, the instantaneous frequency has a 

decreasing trend when speech presents, therefore the 

instantaneous frequency average (IFA) over one frame may be 

a good indication to detect the activity of voice, which is 

defined as in (7),  
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where Tf is the time duration of one frame, fj,l(t) is the  

instantaneous frequency, j is the IMF order  and l is the frame 

index. From (7), the IFA (pj,l) is essentially the mean value of 

the instantaneous frequency for one frame. Simulations show 

that the IFA of speech frames are most likely smaller than that 

of noise frames. To get better understanding, four IFA curves 
are computed and plotted in Fig. 3, where the speech frames 

and the noise frames are randomly selected. From Fig. 3, it is 

obvious that, for all IMF levels, the IFA for speech frame is 

lower than that of the noise frame, but the larger difference 

occurs at IFA at 2 and 3 IMF levels. This property can be 

further incorporated to develop a more robust VAD algorithm.  

According to the discussions above, the weighted sum of 

IFA of each IMF, which is called weighted instantaneous 

frequency average (WIFA), is proposed as  

1

,2
2

N j

l j lj
P p


                              (8) 

where N is order of IMF used.  

For presentation clarity, the proposed VAD algorithm can 
be termed as WIFA-VAD, which is summarized as follows:  

1) Divide noisy speech into Nf frames. 

2) For each frame, calculate the first N order IMFs.  

3) Perform Hilbert transform to the 2~N order IMFs and 
compute the instantaneous frequency fj,l(t) according 
to (3)-(6), where j is the IMF order and l is the frame 
index (l=1,…, Nf). Since IMF1 mainly consists of 
noise information under low SNR condition, it is not 
taken into account.  

4) Calculate IFA (pj,l) and WIFA Pl by (7) and (8) , 
respectively. To remove the impact of outliers, a 
smoothing approach can be applied to get the final Pl 
curve, such as the median filtering. 

5) Estimate the threshold TS by using the first 10 noise 
frames, and which is computed by  

 S lT E P .                             (9) 

where  is an controlling factor and can be selected 
as 0.92 to 0.95 according to some experiments.  

6) For the l-th frame, if Pl exceeds TS, it will be marked 
as 1 (speech frame), otherwise as 0 (noise frame). 
Repeat till l=Nf. 

IV. SIMULATION RESULTS AND ANALYSIS 

Speech signals from the 863 Speech Corpus of Chinese 
Academy of Sciences, as well as Gaussian white noise from 
the NoiseX-92 Corpus, were adopted to evaluate the 
performance of the proposed WIFA-VAD algorithm. Twenty 
segments of male and female utterances spoken by different 
speakers were randomly selected. The sampling rate is 8 kHz 
and the frame length is of 32ms (Tf = 0.032). The 50% 
overlapping is applied. The testing noisy speech signals were 
generated by mixing speech signals with Gaussian white noise 
at different SNR levels (0dB, -5dB and -10dB). The 
performance of the VAD algorithm is measured by False 
Alarm Rate (FAR, the ratio of the number of falsely alarmed 
frames and the number of non-speech frames) and Missing 
Error Rate (MER, the ratio of the number of missed speech 
frames and the number of speech frames). FAR and MER 
were calculated by the VAD experimental result and the 
manually marked speech endpoints. For a robust and efficient 
VAD, both FAR and MER should be small enough. 

Experiment 1: In this experiment, to visualize the 
performance of the proposed WIFA-VAD algorithm, the 15 
second noisy speech is generated with SNR=-5dB, where the 
clean speech and noise are randomly selected. Fig. 4 shows 
the clean speech, noisy speech marked with the VAD result 
and the corresponding WIFA curve, respectively. From Fig. 4 
(b), it is difficult to identify the speech frames since the clean 
speech is heavily polluted by noise. However, from Fig. 4 (c), 
the WIFA curve is able to detect probably the presence of the 
speech. The red line in Fig. 4 (c) is computed by 10 noise 

frames by using (9) with =0.95. The WIFA-VAD result is 
plotted in Fig. 4 (b) shown as the red line, which corresponds 
to the clean speech quite well.  

Experiment 2: This experiment is carried out to compare the  
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Figure. 1.  Illustration of the filter bank property of EMD (SNR=-5dB)                   
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Figure. 2.    IMF2 and its instantaneous frequency (SNR=-5dB)                   
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TABLE I.  VAD PERFORMANCE COMPARISON 

Algorithms EZCR LRT LTSD WIFA 

Criterions(%) FAR MER FAR MER FAR MER FAR MER 

SNR=0dB 6.8 21.1 17.3 16.5 22.6 14.2 14.7 26.8 

SNR=-5dB 3.8 56.5 16.3 32.4 12.9 37.4 9.7 29.3 

SNR=-10dB 0.8 94.7 16.8 57.5 10.5 70.1 7.7 41.0 

 VAD performance among several VAD algorithms, which are 
WIFA-VAD, Sohn's VAD based on likelihood ratio test (LRT) 
[7], the long term spectral divergence (LTSD) VAD [10], as 
well as the classic VAD based on energy and zero-crossing 
rate (EZCR). The experimental results are shown in TABLE I. 
For each algorithm, all 20 segments have been applied for test 
and the average FAR and MER is recorded. For WIFA-VAD 
algorithm, the threshold is determined as the same as that in 
Experiment 1. From TABLE I. for SNR=-5dB and -10dB, the 
proposed WIFA-VAD outperforms than all other three VAD 
algorithms. But for SNR=0dB, the proposed WIFA-VAD has 
relatively high MER. This indicates that WIFA only has 
superiority when dealing with strong noisy conditions (SNR < 
0dB). For FAR, the WIFA-VAD also outperforms the LRT 
and LTSD methods. Although the EZCR gives the lowest 
FAR, but its MER is worst, which means EZCR almost cannot 
detect the activity of voice for strong noisy speech. 

V. CONCLUSION 

This paper aimed at developing a robust VAD algorithm 
for strong noisy speech, particularly for conditions with SNRs 
lower than -5dB. In order to find more discriminative 
characteristics for speech/non-speech frame detection, HHT is 
used to analyze noisy speech signals. Based on the 
observations of filter bank property of EMD and IMF 
characteristics when speech presents, the WIFA is proposed to 
be the right characteristic for VAD. The threshold is estimated 
by using the noise frames, and then a simple binary rule is 
applied as the decision rule. The experiment results show the 
proposed WIFA-VAD algorithm has better anti-noise ability 
than the conventional VAD methods. But for higher SNRs (i.e. 

0dB and above), WIFA are not superior to the  existing VAD 
measurements. In our further work, the WIFA and other 
features of the IMFs, such as the energy of IMFs, will be 
jointly explored to improve the VAD performance for strong 
noisy speech. 
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Figure. 4.   VAD result of the proposed method (SNR=-5dB) 
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Figure. 3.   IFA comparison between noise frames and 
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