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ABSTRACT 

1This paper investigates speaker direction of arrival (DOA) 

estimation using a single acoustic vector sensor (AVS). 

With the definition of the inter-sensor data ratio (ISDR) in 

the time-frequency (TF) domain and the use of the high 

local signal-to-noise ratio (HLSNR) TF points, an effective 

ISDR data model is derived, which determines the 

relationship between the ISDR and the AVS manifold vector. 

With the spatial sparse representation of the ISDR data, the 

DOA estimation is formulated by recovering the sparse 

matrix and locating the peak of the power spectrum of the 

reconstructed sparse matrix. Preliminary experimental 

results using simulations and real AVS recordings show that 

the proposed DOA estimation method is able to achieve 

high elevation and azimuth estimation accuracy for all 

angles when the SNR is above 10dB, avoiding the spatial 

aliasing problem and suppressing the adverse impact of the 

room reverberation. It is expected that the proposed DOA 

estimation method may find wide applications in portable 

devices due to its small compact physical size and superior 

performance.  

Index Terms—Direction of arrival estimation, acoustic 

vector sensor, spatial sparse representation, inter-sensor data 

ratio, time-frequency sparsity 
 

1. INTRODUCTION 

Direction of arrival (DOA) estimation of the spatial speech 

source is a key technique in hands-free communication 

applications such as the audition system of the service robot, 

which is of significant application value. Compared to 

common microphone array based techniques for DOA 

estimation [1] , the acoustic vector sensor (AVS) has a 

smaller size and a spatial compact structure making it 

attractive for mobile speech applications [2][3].  

In our previous work [4], the high resolution DOA 

estimation using AVS array under a spatial sparsity 

representation (SSR) framework was developed by making 

use of the relationship between the received data model of 

the AVS array and its subarray manifold. The proposed 

DOA estimation algorithm provided better DOA estimation 

accuracy. In [4], 8 AVS units with spacing of half of the 
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source wavelength are used for data capture, which limits its 

applications when size is the main concern. To reduce the 

size of the data capture system, a single AVS based DOA 

estimation system and algorithm have been developed [5], 

which is able to estimate the DOAs of the multiple spatial 

speech sources by exploiting the time-frequency (TF) 

sparsity of the speech and the DOA information provided by 

the inter-sensor data ratios (ISDRs) of AVS sensors. As a 

result, the trigonometric relations between the ISDRs at the 

TF points with high local SNR (HLSNR TF points) and the 

DOAs have been established and the DOAs can be obtained 

by estimating the mean values of ISDR data using a 

clustering method [5]. In practice, the ISDRs extracted at 

the HLSNR TF points have increased variance compared to 

ideal conditions due to corruption by strong noise or 

competing speech and room reverberation. Hence, DOA 

estimation using the clustering method may be biased away 

from the true DOA. Highly reverberant environment is a 

serious problem for many existing DOA estimation methods, 

where the DOA estimation accuracy will be degraded [6]. 

In this paper, we propose a new approach using the ISDR 

data for DOA estimation. The motivation lies on four 

aspects: 1) The DOA estimation methods developed under 

the SSR framework usually are able to estimate the 

elevation and azimuth angle at the same time and achieve 

higher DOA estimation accuracy than traditional DOA 

estimation methods [5][7]. 2) Using the HLSNR TF point 

extraction strategy, the ISDR data model can be formulated 

to ignore the impact of the room reverberation, which 

essentially leads to the superior performance under heavy 

room reverberation. 3) ISDRs of an AVS are independent of 

the source frequencies, so there will be no need to consider 

the spatial aliasing problem; 4) A spatial sparse 

representation can be formulated with the ISDR data model 

and the solution can be obtained by the well-known l1-SVD 

method [8]. The rest of this paper is organized as follows. 

The problem formulation is introduced in Section 2. The 

proposed DOA estimation algorithm is presented in Section 

3. The experiments and results are given in Section 4 and 

the conclusions are drawn in Section 5.  

2. PROBLEM FORMULATION 

This section presents the AVS data model and proposes a 

robust DOA estimation approach using a single AVS based 

on both TF domain sparsity and spatial sparsity. 

2.1. AVS Data Mode 
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Generally each AVS unit consists of an omnidirectional 

sensor (o-sensor) and three orthogonally oriented directional 

sensors (named as u-, v-, w-sensor, respectively), where 

particle velocity sensors or differential microphones are 

often used as the directional sensors according to [9]. In this 

study, to address the problem formulation, the DOA 

estimation of one spatial speaker is investigated. When the 

speech signal s(t) impinges upon an AVS with DOA (s,s), 

the manifold vector can be denoted as [9]  

 
4 1( , ) [ , , ,1] ,T

s s s s su v w Ra a      (1) 

where [.]T denotes the vector/matrix transposition, 

s[0,180°], s[0,360°) are the elevation and the azimuth 

angle, respectively. Elements us, vs and ws are respectively 

the x-, y-, z-axis direction cosines given by: 

 sin cos , sin sin , coss s s s s s s su v w         (2) 

The data captured by the AVS at time t is expressed as: 

 ( ) ( ) ( ) ( )u s ux t u s t h t n t     (3) 

 ( ) ( ) ( ) ( )v s vx t v s t h t n t     (4) 

 ( ) ( ) ( ) ( )w s wx t w s t h t n t     (5) 

 ( ) ( ) ( ) ( )o ox t s t h t n t     (6) 

where xu(t), xv(t), xw(t) and xo(t) represent the output of the 

u-, v-, w- and o-sensor, respectively. h(t) represents the 

room impulse response. nu(t), nv(t), nw(t) and no(t) are the 

additive zero-mean Gaussian noise at the u-, v-, w- and o-

sensor, respectively, which are assumed uncorrelated to 

each other, and uncorrelated to the speech signal. 

2.2 Data Model of Inter-Sensor Data Ratio 

It is widely accepted that speech signals have sparsity in the 

TF domain [10]. This indicates that only one speech source 

with the highest energy dominates at a specific TF point 

(while the contributions from other speech sources can 

be negligible. With this assumption, the ISDRs of the AVS 

defined in the frequency domain can be expressed as 

follows [5]: 

 ( , ) ( , ) ( , )uo u oI X X        (7)

 ( , ) ( , ) ( , )vo v oI X X        (8) 

 ( , ) ( , ) ( , )wo w oI X X        (9) 

where Iuo(Ivo( and Iwo(are the ISDRs between 

u- and o-sensor, v- and o-sensor, w- and o-sensor, 

respectively. Xu(Xv(Xw(and Xo(are the 

short-time Fourier transform (STFT) of (3)-(6):  

 ( , ) ( , ) ( ) ( , )u s uX u S H N          (10) 

 ( , ) ( , ) ( ) ( , )v s vX v S H N          (11) 

 ( , ) ( , ) ( ) ( , )w s wX w S H N          (12) 

 ( , ) ( , ) ( ) ( , )o oX S H N          (13) 

where H() is the Fourier transform of h(t). 

Taking Iuo(as an example, the relation between the 

ISDR and the DOA of the speaker can be derived as follows. 

Substituting (10) and (13) into (7), we obtain 
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Simply, Eqn. (14) can be rewritten as follows  

 ( , ) ( , ) ( , )uo s uI u           (15) 

with 
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Eqn. (15) can be viewed as the data model of the ISDR 

between u- and o-sensor. Similarly, the data models of 

ISDRs between v- and o-sensor, w- and o-sensor can be 

modeled as follows, respectively. 

 ( , ) ( , ) ( , )vo s vI v           (18) 

 ( , ) ( , ) ( , )wo s wI w           (19) 

where   
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  (21) 

To simplify the notation, the data model of ISDRs can be 

expressed in a compact form: 

 
( , ) ( , ) ( , ) ( , )s s         I b ε

  (22) 

where  ( , ) [ ( , ), ( , ), ( , )]T
uo vo woI I II           (23) 

 ( , ) [ , , ]Ts s s s su v wb      (24) 

 ( , ) [ ( , ), ( , ), ( , )]Tu v w          ε   (25) 

From (24), it can be seen that b(s,s) is the manifold 

vector of the u-, v-and w-sensor. The DOA estimation can 

be achieved by estimating us, vs and ws from (22). In [5], a 

DOA estimation method based on clustering has been 

developed with the assumption of an anechoic environment.  

In this paper, we propose a novel method to estimate 

DOA with (22). Firstly, it is noted that Eqn. (22) is valid for 

each TF point. For the DOA estimation task, it is beneficial 

to use the HLSNR TF points, where the effects of the 

additive noise component ( will be smaller. Secondly, 

the HLSNR TF points for speech signals can be effectively 

extracted by the Sinusoidal tracks extraction (SinTrE) 

method [11]. In our study with an AVS, the HLSNR TF 

points are estimated by using Xo(. From (13), assuming 

(is a HLSNR TF point extracted by SinTrE, then we 

have S(H(No(. From (16),we can get (≈

. Accordingly, from (22), the data model of the ISDRs can 

be reformulated as  

 1( , ) ( , ) ( , )s s      I b ε   (26) 

where ( can be viewed as the residual error caused by 

additive Gaussian noise, room reverberation, and SSR 

model mismatch. 

2.3. Spatial Sparse Representation Model of ISDRs 

In (26), we have established the relation between the ISDRs 

of the AVS and its direction manifold vector b(s,s). In the 

following subsection, a novel DOA estimation method 
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under the SSR framework by using the ISDR data model in 

(26) will be presented in details. 

Firstly, the azimuth angle range and the elevation angle 

range are uniformly divided into N1 and N2 grids (N1, 

N2 >>1), respectively. As a result, the whole spatial space is 

divided by M grids (M=N1N2). Moreover, N1 and N2 can be 

selected corresponding to different application requirements. 

Accordingly, a predefined angle set (i,j), i=1,…,N1, 

j=1,…,N2is formed. Correspondingly, an overcomplete 

manifold matrix of the u-, v- and w-sensor can be 

constructed according to : 

 
1 2

3
1 1( , ), , ( , ), , ( , ) , M

i j N N R           Ψ b b b Ψ  (27) 

where b(i,j) is given in (24). Therefore, with the 

assumption of a sufficiently small grid spacing, using  

instead of b(s,s), the ISDR data model in (26) can be re-

formulated as follows: 

 
3 1

1( , ) ( , ), ,M MR R        I Ψz ε Ψ z  (28) 

where z is called sparse vector and there is only one nonzero 

element corresponding to the DOA (s,s). Essentially, (28) 

is the spatial sparse representation model derived from (22) 

and it is termed the AVS-ISDR-SSR model. Therefore, the 

estimation of DOA (s,s) can be achieved by locating the 

nonzero element in the reconstructed z. Moreover, the DOA 

estimation accuracy is affected by the choice of N1 and N2. 

Obviously, a larger value of N1 or N2 leads to a smaller grid 

spacing. This gives higher probability of matching the true 

DOA of the speaker with the predefined angle in set . 

To make the presentation clear, we denote the number of 

extracted HLSNR TF points as L. Besides, it is noted that, 

for each HLSNR TF point, the sparse vector z maintains the 

same sparse structure given in (28). Utilizing this property, 

we form a joint SSR-ISDR model as follows   

  A ΨΖ Ε   (29) 

 
3

1 1[ ( , ), , ( , )], L
L L R      A I I A   (30)

 
3

1 1 1 1[ ( , ), , ( , )], L
L L R      E ε ε E   (31) 

 1[ , , ], M L
L RZ z z Z

  
  (32) 

where ii (i=1,…,L) denotes the ith HLSNR TF point 

extracted by the SinTrE method [11]. The vector zi 

represents the sparse vector associated with the ith HLSNR 

TF point iiwhich satisfies the relation in (28). In (29), 

for estimating the DOA of a speaker, we can see that the 

matrix Z should have only one nonzero row corresponding 

to the DOA (s,s). As a result, the DOA (s,s) estimation 

problem now turns to locating the index of the nonzero row 

of the reconstructed matrix Ẑ via (29). 

3. THE PROPOSED DOA ESTIMATION 

ALGORITHM 

Research shows that the sparse matrix Z in (29) can be 

recovered by solving the following optimization problem 

 
2

2 1
ˆ arg min   

Z
A ZΨZ Z   (33) 

where the l2-term forces the reconstruction error to be small, 

whereas the l1-term enforces sparsity of the representation. 

The regularization parameter controls the tradeoff between 

the sparsity and the reconstruction error. It is a commonly 

used approach to employ the l1-SVD technique [8] to solve 

(33). In our study (DOA estimation), is selected as 30 

according to several experiments, which emphasizes the 

spatial sparsity and suppress the adverse impact of the noise 

on the reconstruction error. The merits of l1-SVD technique 

lie on its computational efficiency and robustness to noise. 

In our study, the sparse matrix Z in (33) is estimated by 

using the optimization software CVX [12]. For DOA 

estimation, we compute the following: 

 
2

1
ˆ( ) 10log ( , ), 1, ,

L

j
P i i j i M


  Z Z   (34) 

 arg max ( )p
i

i P i Z   (35) 

where ip represents the index of the dominant row of the 

sparse matrix Ẑ , which is determined by locating the peak 

of the PZ. Hence, the index (i,j) of the grid corresponds to 

the estimated DOA can be computed from ip and we have 

 ˆ ˆ, ,  ,s i s j i jwhere          (36) 

To simplify the notation in the following context, the 

proposed DOA estimation algorithm is termed as the AVS-

ISDR-SSR algorithm, which addresses the DOA algorithm 

developed under the SSR framework with the ISDR data 

model using a single AVS. The AVS-ISDR-SSR algorithm 

is summarized as follows: 

1) Segment xu(t), xv(t), xw(t) and xo(t); Calculate the STFT; 

2) Extract L HLSNR TF points [11]; 

3) Get the ISDRs by (7)-(9) for L HLSNR TF points ; 

4) Construct the data matrix A in (30); 

5) Construct the overcomplete manifold matrix  in (27); 

6) Utilize l1-SVD technique to determine Ẑ  in (33); 

7) Compute PZ and ip by (34) and (35); 

8) Compute the grid index from ip and obtain the 

estimated DOA by (36).  
 
 

4. EXPERIMENTAL RESULTS 

In this section, the performance of our proposed AVS-

ISDR-SSR algorithm is evaluated and compared with that of 

the GMDA-Laplace method [10]. The simulation 

parameters are set as follows: 1) 3 seconds of male speech 

sampled at 32kHz; 2) A 1024-point DFT using a Hamming 

window of 30ms duration and 20ms overlapping. For the 

AVS-ISDR-SSR algorithm, s[0,180°], s[0,180°], 

N1=N2=180. For the GMDA-Laplace algorithm, following 

the setup in [10], two microphones are placed along the z-

axis with 8cm spacing. The absolute error (AER) and the 

root mean squared error (RMSE) are taken as the 

performance metrics, which are defined respectively as 

 ˆ ˆ(| | | |) 2AER          (37) 

  2 2

1
ˆ ˆ0.5 ( ) ( ) )TN

i i Ti
RMSE N   


     (38) 

where NT is the number of independent trails. 
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Experiment 1: DOA estimation accuracy at different angles 

This simulation has been performed to test the DOA 

estimation accuracy of our proposed AVS-ISDR-SSR 

algorithm at different angles, where SNR=10dB without 

reverberation, 60° and is randomly generated between 

0° to 180° for each trial. With this setup, the DOA of the 

speaker has high probability of mismatch with the grids in  

and may cover the full range from 0° to 180°. The AER is 

obtained for 100 different trials and the simulation results 

are plotted in Fig. 1. It is clear that the AER of AVS-ISDR-

SSR is superior to that of the GMDA-Laplace for all angles, 

especially when the DOA at the range of 0°-20° and 160°-

180°. This result shows that our proposed AVS-ISDR-SSR 

algorithm is able to achieve an RMSE of about 0.5° under 

this simulation condition.  

Experiment 2: RMSE versus different noise levels 

The simulation aimed at evaluating the robustness of the 

AVS-ISDR-SSR to additive noise without reverberation. 

s=60°, s=45°, SNR varies from 0dB to 30dB. The RMSE 

results shown in Fig. 2 are obtained by 100 independent 

trials (NT=100) for each SNR. It can be seen that the RMSE 

of AVS-ISDR-SSR is much smaller than that of GMDA-

Laplace method for all SNR values. It is encouraging to see 

that when the SNR<5dB, the RMSE of AVS-ISDR-SSR is 

about 1° and when SNR>15dB, the RMSE of AVS-ISDR-

SSR goes to 0°. It shows that our proposed AVS-ISDR-SSR 

is not sensitive to additive noise and is able to obtain good 

DOA estimation accuracy when SNR> 5dB. 

Experiment 3: RMSE versus different reverberation levels 

In this experiment, the behavior of the AVS-ISDR-SSR 

under different reverberation levels is evaluated. The 

experimental setup is as follows: The room impulse 

response is simulated by the image method [13] with the 

virtual room size of 10×5×4 m3. Five different reverberation 

times (RT60) were simulated. The distance between the 

speaker and AVS is 1m. The DOA of the speaker is set as 

s=60°, s=45° and the SNR=10dB. The results averaged 

over 100 trails for each RT60 are shown in Fig. 3. We can see 

clearly that the curve of the AVS-ISDR-SSR is 

approximately constant for all RT60 conditions. This 

indicates that our proposed algorithm is not sensitive to 

room reverberation, which is a very favorable property since 

many existing DOA estimation algorithms perform badly 

when heavy room reverberation exists. 

Experiment 4: DOA estimation in a real scenario 

In this experiment, we evaluate the performance of the 

AVS-ISDR-SSR algorithm in a real scenario using the 

recorded data by the AVS data capturing system developed 

in the ADSPLAB (refer to Fig. 4) [5]. The parameters are as 

follows: the room is about 8.5×3×5 m3 and an uncontrolled 

acoustic environment with background noise and 

reverberation is present. The SNR measured is 

approximately 20dB. The distance between the speaker and 

the AVS is 0.5m. The sampling rate is 32kHz, the 1024-

point STFT is used, s=90°, we set 5 different azimuth (°): 

s =0, 45, 90, 135, and 180, respectively. The estimated 

DOAs are (87,4), (90,41), (92,89), (86,135) and (86,180). 

Obviously, the maximum DOA estimation error is about 4º. 

These preliminary experimental results further validate the 

assumptions and derivation of our proposed method. 
 

 

5. CONCLUSION 

In this paper, a novel DOA estimation algorithm (termed as 

the AVS-ISDR-SSR) has been developed under the spatial 

sparse representation framework and the speech TF sparsity 

together with the ISDR data model of a single AVS. 

Extensive experiments have been carried out with simulated 

and recorded data. The preliminary results show that the 

AVS-ISDR-SSR is able to achieve high DOA estimation 

accuracy compared to existing approaches. It is encouraging 

to see that the AVS-ISDR-SSR is not sensitive to the room 

reverberation and additive noise, which are desired 

properties for possible real applications. Future work will 

focus on the theoretical analysis of the performance.  

   
Fig. 1 RMSE versus different source DOA     Fig. 3 RMSE versus RT60 

      
Fig. 2 RMSE versus different SNR    Fig 4. Experimental setup in real scenario  
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