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ABSTRACT 
 
1It is a challenge task for maintaining high correct word accuracy 

rate (WAR) for state-of-art automatic speech recognition (ASR) 

systems when the SNR goes very low. To deal with such situation, 

the missing feature technology (MFT) has shown as one of the 

mainstream algorithms. In principle, conventional MFT firstly 

separate the unreliable spectral bins from the reliable ones. Then 

the unreliable bins are reconstructed by missing feature algorithm 

[7]. When SNR goes low, the performance of the conventional 

MFT for ASR system is limited since both the reliable and 

unreliable spectral bins will be corrupted by the noise components. 

In this paper, a novel missing feature compensation method was 

developed by considering compensating both unreliable and 

reliable spectral bins. With the assumption of GMM distribution of 

the clean speech spectral vector, a dual MFT (DMFT) algorithm is 

developed, where the reliable spectral bins corrupted by noise have 

been compensated by removing the noise components. Several 

experiments have been carried out to evaluate the performance of 

the proposed DMFT algorithm by using AURORA2 database. 

From the results, it is clear to see that the proposed DMFT 

algorithm improves the WAR under all types of noises at different 

SNR levels compared with the traditional MFT algorithm.  

 

Index Terms—speech recognition, missing feature 

technology, feature compensation, noisy environment, GMM  
 

1. INTRODUCTION 
 

Automatic Speech Recognition (ASR) has gained very wide 

applications in the wireless mobile communication industry 

currently due to the fast development of speech technologies. The 

word accuracy rate (WAR) of the ASR system is able to achieve 

over 95 percent in the clean environment. However, under noisy 

condition, the WAR declines drastically due to the mismatch 

between the training model and the testing speech. Literature study 

shows that there are many methods have been developed to 

improve the robustness of the ASR systems in noisy environment, 

which mainly include the Missing Feature Technology (MFT) [1], 

Perceptual Linear Predictive Relative Spectral (RASTA-PLP) 

method [2], the Parallel Model Combination (PMC) method [3] 

and the Vector Taylor Series (VTS) method [4].  

Recent research outcomes have shown that the missing 

feature technology (MFT) achieved great improvement of the 
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WAR performance of the ASR system, especially in low SNR and 

non-stationary noisy condition  compared with other techniques 

[1],[7],[8]. In principle, the development of the MFT is based on 

the observations that the speech signals have a high degree of 

redundancy and the human listeners are able to comprehend speech 

that are partly missing [7]. Specifically, the traditional framework 

of the MFT consists of two main steps: the mask estimation and 

the missing feature reconstruction.  

In the first step, the unreliable spectral bins in the log Mel-

spectral (LMS) domain, which are dominated by the noise, are 

estimated, and the binary mask to remove the unreliable spectral 

bins and keep the reliable spectral bins is generated [1],[6]. Under 

MFT framework, a local SNR based binary mask is firstly 

estimated from the noisy speech, as follows. Let (i,ω) represent 

one bin in the LMS domain, SNR(i,ω) denote the local SNR at 

(i,ω), the mask at (i,ω) is defined as: 
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where T is the SNR threshold which is often set according to the 

specific condition. Ru and Rr is the reliable and unreliable bin set 

respectively. Hence, with this binary mask, the reliable spectral 

bins and the unreliable ones can be extracted separately.  

The second step is the missing feature compensation (MFC), 

which aims at reconstructing the unreliable spectral bins by the 

estimated reliable spectral bins with the aid of prior knowledge of 

clean speech provided by the training data. It is clear that the 

missing feature compensation technology tries to remove the 

adverse impacts of the noise in the feature extraction level. Hence, 

the acoustic model trained by the clean data can be kept unchanged 

although the testing speech is corrupted by noise.  

Several effective missing feature compensation (MFC) 

algorithms have been proposed, such as the cluster-based feature 

compensation method (CBFC) [7], the correlation-based approach 

[8] and the sparse-coding based method [9]. For the existing MFC 

methods, we note that the extracted reliable spectral bins are left 

unchanged. However, at low SNR condition, the extracted reliable 

spectral bins are simultaneously corrupted by noise and we believe 

these noise components in the reliable spectral bins also will 

contribute to the degradation of WAR.  To verify our concerns, we 

have conducted the following experiments. 

Let SN(i,ω) and SC(i,ω) represent the log Mel-spectral (LMS) 

of the noisy and clean utterance at (i,ω), respectively. To measure 

the distance between the corrupted and the clean log Mel-spectral 

of reliable bins in one utterance, we define: 
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where M is the number of the frames used and D is the number of 

the filterbank channels for computing log-Mel spectral.  
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Figure 1: (a) D1 of fifteen utterances under subway noise 

condition at 20 dB SNR level (b) D1 of the same fifteen utterances 

under subway noise condition at 0dB SNR level. 

In Figure 1, D1 of fifteen randomly selected utterances corrupted 

by subway noise at 20dB and 0dB is presented. From Figure 1, it is 

clear to see that D1 will increase when the SNR goes lower, which 

indicates that the reliable bins are also corrupted and require to be 

compensated, especially at the low SNR condition. Compensating 

the reliable spectral bins will help to reduce D1 and hence improve 

the WAR performance of ASR at low SNR noisy condition. 

In this paper, we will develop the solution to compensate both 

reliable and unreliable spectral bins. We propose a dual missing 

feature compensation technique (DMFT) to reconstruct the reliable 

spectral bins as well as the unreliable ones in two stages. At the 

first stage, the reliable bins in a log-Mel spectral vector are 

compensated based the method proposed in Section 3.1. Next, the 

unreliable spectral bins in the vector are reconstructed based on the 

compensated reliable bins in the same vector using the CBFC 

method proposed in [7]. The re-estimation of the reliable spectral 

bins can alleviate mismatch between clean log-Mel spectral and the 

noisy one and thus lead to improvement of the whole ASR system 

performance. Intensive experiments have been carried out to 

evaluate the performance of the proposed algorithm on the 

AURORA2 database. The results are compared to those of the 

classical cluster-based feature compensation method CBFC [7]. 
 

2. ASR SYSTEM DESCRIPTION 
 

In our work, the architecture of the proposed dual missing feature 

compensation technique (DMFT) ASR system is presented in 

Figure 2. The design of the ASR system follows the famous 

HMM-based architecture with Gaussian mixture acoustic models 

[11]. Specifically, the log-Mel spectrum vectors (LMSVs) and 

MFCC are determined according to the method proposed in [1].  

In the training procedure, the LMSVs of clean speech signals 

are modelled as GMM distribution and the GMM parameters are 

obtained by EM method [12]. The HMM models are trained using 

MFCC as input feature by Baulm-Welch algorithm [10].  

As discussed before, in the existing MFT methods, only the 

unreliable bins have been compensated (or reconstructed) using 

CBFC [7] but leave the reliable spectral bins unchanged. In our 

proposed system, as shown in Figure 2, the reliable spectral bins 

also have been compensated to further reduce the adverse impacts 

of the noise. The details of our proposed method are described in 

the following section.  
 

3. THE PROPOSED DUAL MISSING FEATURE 

COMPENSATION TECHNQIUE (DMFT) 
 

To differentiate our proposed method from the existing MFT 

methods, we termed our method as dual missing feature 

compensation technique since we not only reconstruct the 

unreliable spectral bins but also compensate the reliable ones. It is 

obvious that different compensation methods should be applied to 

the reliable spectral and unreliable spectral bins since they have 

totally different properties. The proposed compensation method for 

reliable spectral bins will be described in subsection 3.1. The 

reconstruction method proposed in [7] for unreliable ones will be 

briefly presented in subsection 3.2 for presentation completeness. 
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Figure 2: The DMFT speech recognition system architecture 
 

3.1. The compensation method for reliable spectral bins  
 

Let’s define Y, X and N represent the D1 Mel spectral vector of a 

frame of noisy speech, clean speech and noise, respectively. Since 

the input speech is corrupted by uncorrelated additive noise, we 

have the following relation: 

 
2 2 2
 Y X N   (3) 

Taking logarithm on Eq.(3), we have: 

 
2 2 2 2

log log(1 ) log  Y N X X   (4) 

To make the presentation clear, let’s define y=log|Y|2 (the LMSV 

of the noisy speech,), x=log|X|2 (the LMSV of the clean speech) 

and n=log|N|2 (the LMSV of the additive noise). With some 

manipulations, Eq.(4) can be derived as: 

 log(1 exp( ))   y x n x   (5) 

Moreover, we define: 

 ( , ) log(1 exp( ))f   x n n x   (6) 

then Eq.(5) becomes: 

 ( , )f y x x n   (7) 

By expanding Taylor series of the second term in (7) at an initial 

point (x0, n0), which is randomly selected, and taking only up to 

the first-order Taylor Vector series, Eq. (7) can be approximated as: 

 0 0 0 0 0 0( , ) ( , ) ( , )f f g     x ny x x x n n x n x n   (8) 

where the functions xf(x,n) and nf(x,n) represent the partial 

derivative of  f(x,n) with respect of x and n, respectively: 

The function g(x,n) is defined as follows: 

 ( , ) ( , ) ( , ) ( , )g f f f     x nx n x x n n x n x n   (9) 

As described before, n is modeled as a single Gaussian 

distribution, mathematically, we have: 

 ~ ( , ), , ,D D D D
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where µn and Θn denotes the mean vector and the covariance 

matrix of the Gaussian noise, respectively. D denotes the 

dimension of the LMSV.  

Moreover, the LMSVs of clean speech are molded as a 

mixture Gaussian distribution, then the prior probability of x can 

be denoted as wk: 
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where µk , Θk  and wk are the mean vector, covariance matrix and 

the priori probability of the k-th component of the GMM. Q is the 

number of Gaussian components.  
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Therefore, according to the central limit theorem, y also can 

be modelled as a mixture Gaussian distribution given as: 
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where  µk,  Θk and wk are the mean vector, covariance matrix and the 

priori probability of the k-th component of the GMM of the noisy 

speech. The priori probability of the noisy speech GMM is 

assumed to be the same with that of the clean speech GMM. 

With the MMSE criteria, the estimation of x from y can be 

derived as follows (More details can be referred to [4]): 
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In Eq.(13), 0 0( , , , )c x n x n  and c is defined as [4]: 

0 0 0 0 0 0 0 0( , , , ) ( , ) ( , ) ( , )c f f g     x nc x n x n x x n n x n x n    (14) 

and p(k|y) represents the posterior probability that y belongs to the 

k-th Gaussian component given as [4]: 
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By taking expectation of both sides of Eq.(8), we can get:  

 ( 1) ( , )k k n k ng     x nμ f μ μ f μ μ   (16) 

In order to compute µn，we need to estimate the Gaussian 

parameters of the background noise µn and Θn when a set of y is 

given. This estimation can be done iteratively using Maximum 

likelihood (ML) method. Specifically, the likelihood function is: 
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where yi is the LMSV extracted for the i-th frame noisy input. The 

parameter set λn
(t)

 ={µn
t,Θn

t} describe the the Gaussian distribution 

of the noise in the t-th step and λn
(t+1) describe the Gaussian 

parameter vector of the noise in the (t+1)-th step respectively in the 

ML estimation procedure. The initial value for µn
0 is estimated 

from the first several noise frames of the input. By taking 

derivation of Eq.(17) in respect of µn and set derivation to zero, we 

can get: 
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When Eq.(18) converges,  µn is estimated.  

To estimate its clean LMSV of a specified noisy LMSV y in 

Eq.(13), by replacing x0 with x, and n0 with its mean value 

estimated by Eq.(18), Eq.(13) can be approximated as: 

1
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To make the presentation clear, let’s assume D-by-1 vector y 

consists of the reliable spectral bins and unreliable bins, denoted as 

sub-vectors yr and yu, respectively. Correspondingly, let xr, xu 

denote the counterparts of yr and yu in x (LMSV of clean speech), 

respectively. Since  x is the estimated LMSV of clean speech x, 

and  x also consists of reliable and unreliable spectral bins, named 

as sub-vectors  xr and  xu. Let’s define cr as the counterparts of yr in 

c (computed in Eq.(14)), then  xr is computed as: 
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3.2. Reconstruction of unreliable spectral bins 
 

As presented in Eq.(19), we have obtained the optimal MMSE 

estimation of the LMSVs for the clean speech by giving the testing 

noisy speech. In [7], the reconstruction of the unreliable bins is 

completed by using the prior knowledge of the GMM model of all 

clean speech. In our proposed solution, we will use the 

compensated reliable spectral bins given in Eq.(20) to help to 

reconstruct the unreliable bins. 

Motivated by the cluster-based feature compensation (CBFC) 

[7], PDFs of partly missing components are used. The posterior 

probability that the noisy speech LMSV y belongs to the k-th 

Gaussian component is determined by [7] :  
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After obtaining the posterior probability of the k-th Gaussian 

component, the clean estimates of yu using the k-th Gaussian 

component is calculated as: 

 argmax ( | , , )
u

k
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x
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Eq.(22) can be solved using iterative Bounded Maximum a 

posterior (BMAP) procedure described in [7].  xu is computed as: 
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3.3. The proposed DMFT Algorithm  
 

To make the presentation clear, the proposed DMFT algorithm is 

summarized in Table 1 The proposed DMFT algorithmTable 1. 

Table 1 The proposed DMFT algorithm 

For each utterance of noisy speech 

1. Convert the speech signal into LMSVs 

2. Estimate spectral mask or calculate oracle mask 

3. Calculate the initial value of µn
0
  

4. Estimate µn according to Eq.(18) 

5. Re-estimate µk according to Eq.(16) 

6. Redo Step.4 to Step.5 until  µn converged 

7. Compute  xr referring Eq.(19)  

8. Compute  xu using CBFC method according to Eq.(23) 

 

4. EXPERIMENTS AND ANALYSIS 
 

In our experiments, the AURORA2 database [13] was used. We 

formed the training data set by using 8440 clean utterances from 55 

male and 55 female adult speakers. Then, the acoustic HMM 

models are trained using this training data set. Speech data in 

testing sets A and testing sets B (termed as Sets A and Sets B in 

short) are used for evaluation. There are eight types of background 

noise in the AURORA2 database. In Sets A, the noise includes 

subway, babble, car and exhibition noise. In Sets B, the noise 

includes the restaurant, street, airport and station noise. Noisy 

speech data set are generated by artificially adding the noise data at 

a variety of SNR levels.  

A conventional 36-dimensional Mel-frequency cepstral 

coefficient (MFCC) feature vector is used. The specific parameters 

used to compute MFCC vector is as follows: The number of Mel-

filterbanks is 23. The analysis window is of 25ms duration and 

10ms step rate. The number of cepstrum coefficients is 12 (i.e., c1–

c12). The first and second-order time derivatives of the cepstrum 

coefficients are used. 
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We employed the toolbox HTK [7] to train the HMMs.  Each 
HMM represents a word consisting of 16 states with 6 Gaussian 
components per state. The LMSVs of the clean speech is modeled 
as a GMM with 32-components and EM algorithm is used to 
obtain the GMM parameters. The first and the last 5 frames of the 
input are used to estimate the initial value of µn

0
 in Eq.(17). 

The word accuracy rate (WAR) is taken as the performance 
measure. The performance of the baseline system [10] and the 
CBFC method [7] is compared. The experiment settings of 
baseline system and CBFC are exactly same as DMFT. 
Experiment 1: The WAR performance under different SNR levels. 
This experiment aims at evaluating and comparing the WAR 
performance of the MFT methods with two binary masks, which 
are oracle mask [8] and SS-mask [6]. It is noted that the oracle 
mask is obtained by assuming the knowledge of the clean speech is 
exactly known, therefore, it is impractical and we take it as 
reference. The SS-mask is extracted by the spectral subtraction 
method [6].  According to the extraction of binary mask in Eq.(1), 
the SNR threshold T is set to 0dB when oracle masks are computed 
and -6dB when SS-masks are estimated. Besides, six SNR levels 
are evaluated which are clean, 20dB, 15dB, 10dB, 5dB, 0dB and -
5dB respectively. For each SNR level and each type of noise in 
Sets A and Sets B, there are 1001 utterances from 52 male and 52 
female adult speakers. Experimental results of are given in Table 2.  

From Table 2, it is clear to see that the proposed DMFT 
method with oracle mask outperforms CBFC over different SNR 
under noise conditions in both Set-A and Set-B, especially when 
SNR is below 10dB. Under noise conditions in Set-A, when the 
SNR is higher than 10dB, the proposed DMFT outperforms CBFC 
by 1.61% on average, when the SNR goes low, DMFT outperforms 
CBFC by over 5%, especially at low SNR and non-stationary noise. 
Moreover, it is also clear to see the impact of the binary mask 
estimation where the SS-mask degrades the WAR for all SNR 
levels compared with those using oracle masks. The best WARs 
for different SNR levels are highlighted. From Table 2, we also 
clearly see the impact of the binary mask. The same algorithms 
with different masks gave different performance. Specifically, 
when SNR goes lower than 10dB, the impact of the noise is bigger. 
The proposed DMFT obtains a more significant improvement over 
the CBFC when adopting the estimated SS-masks. When SNR is 
below 10dB, the DMFT outperforms CBFC by over 20%. Under 
the noise condition in Sets-B, the performance is similar. However, 
the performance improvement of DMFT over CBFC is smaller 
than that under noise conditions from Sets-A, which indicates the 
WAR performance using MFT depends on the type of noise. These 
results in Table 2 validate the necessity of compensating the 
reliable spectral bins and the effectiveness of our proposed method. 
Moreover, all algorithms outperform the baseline system, which 
reflects the effectiveness of the MFT.  
Experiment 2: The WAR performances of the proposed DMFT 
method. This experiment is carried out purposely to further 
evaluate the proposed DMFT method with oracle mask and SS-
mask under 8 types of the noise at different SNR levels. The 
simulation parameters are the same as those used in Experiment 1. 
The simulation results are listed in Table 3. Comparing the results 
in Table 3, we can see clearly that the WAR performance of the 
proposed DMFT method with SS-masks is inferior to that with the 
oracle mask. However, carefully evaluating the results, we found 
the WAR difference between the proposed DMFT method with the 
oracle mask and SS-mask is small when SNR level larger than 
10dB (about 0.35% to 1.74%), but the difference goes larger when 
SNR is less than 10dB. It can be seen that the largest WAR 
difference is 10.96%. The extraction of the good binary mask 
should be further studied.  
 

Table 2: WAR performance averaged across 4 different types of 

noise in Sets A and Sets B of the AURORA2 database  

WAR (Sets-A) 

Method 20dB 15dB 10dB 5dB 0dB -5dB 

Baseline[10] 96.75 91.77 74.54 41.79 22.04 12.09 

CBFC [7] 98.19 96.53 91.96 80.56 59.87 44.24 

DMFT 98.37 97.53 95.61 89.82 74.65 47.11 

CBFC-SS[7] 96.91 93.19 80.4 56.53 35.04 20.88 
DMFT-SS 97.88 96.98 94.05 86.80 68.93 42.20 

(WAR) Sets-B 

Method 20dB 15dB 10dB 5dB 0dB -5dB 

Baseline[10] 96.855 92.643 83.633 51.165 25.173 12.033 

CBFC [7] 98.05 97.76 95.09 86.80 62.10 46.05 

DMFT 98.51 98.24 96.58 92.93 80.13 53.26 
CBFC-SS[7] 96.77 96.32 81.6 59.87 39.8 24.97 
DMFT-SS 97.79 97.88 95.73 88.78 69.42 43.01 

Table 3: WAR (%) for DMFT with oracle mask and SS-mask for 8 

types of noise in Sets-A and Sets- B of the AURORA2 database 

( (1) Subway (2) Babble (3) Car (4) exhibition (5) Restaurant (6) 

Street (7) Airport (8) Train Station) 

Noise 

type 

Mask 20dB 15dB 10dB 5dB 0dB -5dB 

(1) 
Oracle 98.28 97.36 94.87 87.75 74.76 51.24 

SS 97.73 96.61 93.76 84.66 69.19 45.98 

(2) 
Oracle 98.58 97.82 96.95 93.23 79.9 51.18 

SS 98.23 97.22 95.21 89.99 73.84 46.33 

(3) 
Oracle 98.63 97.91 95.94 89.5 71.67 39.1 

SS 98.25 97.33 94.20 86.61 65.64 34.08 

(4) 
Oracle 97.99 97.04 94.69 88.8 72.26 46.9 

SS 97.29 96.75 93.03 85.93 67.06 42.39 

(5) 
Oracle 98.56 98.53 97.7 94.29 84.74 60.7 

SS 98.03 97.92 96.92 89.61 74.14 49.74 

(6) 
Oracle 98.04 97.34 94.95 89.24 74.15 46.83 

SS 97.28 97.18 93.73 85.31 63.41 36.88 

(7) 
Oracle 98.78 98.81 97.76, 95.32 84.67 58.28 

SS 98.18 98.63 96.66 91.34 74.05 48.40 

(8) 
Oracle 98.67 98.27 97.1 92.87 76.95 47.21 

SS 97.66 97.77 95.61 88.85 66.07 37.00 

In conclusion, from the simulation results using the 

AURORA2 database, we are confident that, under MFT 

framework, the proposed DMFT method is able to further improve 

the WAR performance of speech recognition system by 

compensating the reliable spectral bins as well as the unreliable 

spectral bins, especially under low SNRs and non-stationary noise 

environment.  

 

5. CONCLUSION  
 

In this paper, we proposed a new approach that not only 

reconstruct the unreliable spectral bins but also compensate the 

reliable bins under the missing feature compensation technique for 

improving the performance of the ASR system. For compensating 

the reliable spectral bins, an algorithm is derived with the 

assumption that clean speech is modeled as GMM distribution. 

Intensive experiments have been conducted to evaluate the WAR 

performance. An increase of WAR above 10% over that of CBFC 

[7] at SNR below 10dB shows that the proposed DMFT method is 

effective in further improving WAR performance of the ASR 

system in non-stationary and low-SNR noisy conditions. 
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