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ABSTRACT 
 
The performance of DOA estimation with scalar sensor 
arrays using spatial sparse signal reconstruction (SSR) 
technique is affected by the grid spacing. In this paper, we 
formulate the DOA estimation with the acoustic vector 
sensor (AVS) arrays under SSR framework. A coarse-to-
fine DOA estimation algorithm has been developed. The 
source spatial sparsity and the inter-relations among the 
manifold matrices of the AVS subarrays are jointly utilized 
to eliminate the grid effect in the SSR technique and the 
improvement of the overall DOA estimation performance is 
achieved at low complexity. Simulation results show that 
the proposed method effectively mitigates the DOA 
estimation bias caused by off-grid sources. Interestingly, our 
method gives good DOA estimation accuracy when sources 
are closely located. 
 

Index Terms  direction of arrival estimation, acoustic 
vector sensor, sparse signal reconstruction, manifold vector, 
signal subspace. 
 

1. INTRODUCTION 
Direction of Arrival (DOA) estimation using the acoustic 
vector sensor (AVS) arrays firstly has been investigated in 
the field of acoustic direction-finding applications [1]. 
Generally, each AVS unit consists of an omnidirectional 
sensor spatially collocated with two to three orthogonally 
directional sensors, where particle velocity sensors or 
differential microphones are often used as the directional 
sensors according to its applications. The AVS arrays are 
able to provide more information than the commonly used 
scalar sensor arrays. Many DOA estimation algorithms with 
the scalar sensor arrays can be extended for AVS arrays, 
with which the better performance of DOA estimation is 
expected [1]-[4]. For example, in [3], Wong et al. proposed 
a novel non-spatial realization of ESPRIT using AVS array, 
where the interrelations among the sensors in one AVS unit 
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has been explored. Recently, a new DOA estimation 
framework based on sparse signal reconstruction (SSR-
DOA) with scalar sensor arrays [5] quickly gains intensive 
attention. Using the same framework as that in [5], 
Malioutov et al. developed a 1 -SVD method by imposing 
1 -norm penalties to enforce sparsity and using the singular 

value decomposition (SVD) of the multi-snapshot data 
matrix to achieve joint processing with less computation [6]. 
Research outcomes show that the SSR-DOA estimation 
methods are able to achieve super-resolution and robustness 
to noise. However, the performance of the SSR-DOA 
estimation methods is affected by the grids sampled in the 
space, which is termed as grid effect. Candidate grids need 
to be dense for high DOA estimation accuracy. The iterative 
grid refinement strategy [6] is a compromise between the 
estimation accuracy and the computation cost. From the 
view of model error, sparse total least square (STLS) [7] is 
proposed to resolve the off-grid DOAs. Unfortunately, 
STLS is non-convex. Off-grid error linearization and 
constraint relaxation are used in [8] to effect a convex 
problem. 

The basic idea of this study lies on eliminating the grid 
effect by exploring the inter-relations between the subarrays 
of an AVS array under SSR framework. We proposed a 
coarse-to-fine multisource DOA estimation algorithm. In the 
coarse stage, according to the computational requirement, a 
relative low accuracy (coarse) source elevation and azimuth 
angles are estimated by SSR-DOA estimation methods 
using the omnidirectional subarray. In the fine stage, based 
on the initial estimates, we exploit the inter-relations of 
subarray manifold between the omnidirectional subarray and 
each directional one and a closed form of the DOA 
estimation is derived. Simulations show that the proposed 
algorithm is able to effectively reduce the DOA estimation 
bias caused by grid effect with low complexity. In addition, 
it gives good DOA estimation accuracy when sources are 
closely located. 

2. DATA MODEL FOR AN AVS ARRAY 
An AVS array of M identically oriented AVS units is 
considered. Each AVS unit is composed of J constituent 
sensors, where each sensor is termed as an AVS-component. 
Without loss of generality, J is chosen as four in this study. 
Supposing there are K (K<M) narrowband acoustic signals 
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( )ks t  (k=1, ,K) impinging upon the AVS array. An AVS 
unit with J AVS-components has the following J×1 
manifold vector for the kth spatial source coming from 
( k , k ) [3]: 
 ( )( , ) [ , , ,1] ,J T

k k k k ku v wa  (1) 
where (.)T denotes the matrix transposition, [0 ,180 )k  
is the elevation angle, [0 ,360 )k  is the azimuth angle, 
and sin cosk k ku , sin sink k kv and cosk kw  
is the x, y, z direction-cosine. Hence, a JM×1 array manifold 
vector of the AVS array for the kth spatial source coming 
from ( k , k ) is given as 
 ( )( , ) ( , ) ,J

k k k k ka a q  (2) 
where  denotes the Kronecker-product operator, and kq  
is the M×1 steering vector for a spatial source located at 
( k , k ) [9]. Therefore, for K spatial sources, the output 
data of the AVS array at time t can be modeled as: 

 
1

( ) ( , ) ( ) ( ) ( ) ( ),
K

k k k
k

t s t t t tx a n As n  (3) 

 1 1[ ( , ),..., ( , )],K KA a a  (4) 

 1 1( ) [ ( )... ( )] , ( ) [ ( )... ( )] ,T T
K JMt s t s t t n t n ts n  (5) 

where ( )tx  is the JM×1 measurement vector, ( )tn  is the 
JM×l additive zero-mean white Gaussian noise vector, and 
A is the AVS array manifold matrix for all K sources. When 
L snapshots (t=t1 tL) are taken, the output signal of the 
AVS array can be written into a matrix form 
 ,X AS N  (6) 
where X=[x(t1)...x(tL)], S=[s(t1) s(tL)] and N=[n(t1) n(tL)]. 
As a result, the DOA estimation problem using an AVS 
array is formulated to determine ( k , k ), (k ,K) from 
the JM×L data matrix X.  

From another point of view, an AVS array can be viewed 
as J co-located subarrays. Each subarray is composed of M 
AVS components of the same type. We denote them as u-, 
v-, w-, o-subarray, respectively. For instance, the o-subarray 
is formed by M omnidirectional components in the AVS 
array. Following the formulation from (1) to (6) and with 
some simple derivations, the output data from each subarray 
can be expressed as follows 

 

, ,
, ,

u u u v v v

w w w o o o

X A S N X A S N
X A S N X A S N  (7) 

where block matrices [ ]T T T T T
u v w oX X X X , [ ]T T T T T

u v w oN N N N , 
and [ ]T T T T T

u v w oA A A A  are row partitions of X, N and A, 
respectively. Specifically, as an example, Xo, No and Ao 
represents the sub-matrices of the output data, the additive 
noise and the subarray manifold associated with o-subarray, 
respectively. It is clear that the o-subarray is identical to a 
scalar sensor array in [6]. Inserting (2) into (4) and 
comparing to the row partition of A, the following relations 
can be derived 
 , , ,u v w

u o v o w oA A A A A A  (8) 

where u=diag(u1 uK), v= diag(v1 vK) and w= 
diag(w1 wK) are diagonal matrices and Ao=[q1 qK]. It 
is interesting to see that the equation (8) shows the subarray 
manifold inter-relations between the o-subarray and other 
directional subarrays. Substitute (8) into (7), we get 

 

, ,
, .

u v
u o u v o v

w
w o w o o o

X A S N X A S N
X A S N X A S N  (9) 

3. PROPOSED METHOD 
In this section, we will develop a coarse-to-fine DOA 
estimation algorithm under SSR framework. 

3.1. The coarse stage with o-subarray based on SSR 
Since the o-subarray can be viewed as a scalar sensor array, 
DOA estimation with the o-subarray can be implemented 
under the SSR framework using the methods proposed in [6]. 
First of all, the whole spatial space is sampled by N (N>>M) 
grids and an angle set ={ 1 1( ),...,( )N N } is formed 
accordingly. Then a predefined overcomplete manifold 
matrix of the o-subarray can be constructed according to the 
predefined angle set :  
 1 1[ ( ),..., ( )],N Na a  (10) 

where  is of JM×N. Obviously, if bigger N is used, then 
the smaller grid spacing is formed and it is more probably to 
match the true spatial source DOA with angle set . 
Therefore, with the assumption of sufficient small grid 
spacing, using  instead of Ao, the last equation in (9) can 
be re-formulated as  

 ,o oX Z N  (11) 
where Z is of N×L. It can be seen that Z should have only K 
nonzero rows which correspond to the K spatial sources. 
Therefore, DOA estimation can be achieved by locating the 
indices of nonzero rows in Z. This is the core concept of 
SSR-DOA estimation methods [6]. In this formulation,  
is predefined, Xo is measured from o-subarray, and Z needs 
to be estimated. Research shows that DOA estimation using 
(11) is an inverse problem regularized by the row sparsity 
and it can be solved by several techniques [5][6]. In our 
research, we use the 1 -SVD technique [6] due to its 
computational efficiency and better robustness to noise. 
Supposing that the K dominant rows in recovered Z are with 
indices Ik {1, ,N} (k=1, ,K), the DOA estimation results 
can be expressed as  
 ( , ) ( ), 1,..., .k kk k I I k K  (12) 

According to (12), an estimate of the manifold Ao can be 
expressed as 
 1(:, ), { ,..., }.o KI I I IA  (13) 

It is straightforward that the DOA estimation formulation 
for an AVS array under SSR framework can also be 
formulated at higher computation cost. However, we find 
that there are no considerable performance improvements. 
Analyzing (12), the smaller grid spacing. i.e., larger N, is 
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required for higher DOA estimation accuracy, which leads 
to the higher computation cost. If we reduce N, the 
probability of the spatial source off-grid increases, and the 
resultant SSR-DOA estimation accuracy decreases. To 
compromise between the DOA estimation accuracy and the 
computation cost, the grid refinement is one of the solutions 
[6]. However, the grid refinement algorithm still requires 
relative small grid spacing to avoid numerical unstable 
problem [6]. Moreover, the refining process needs to solve 
the sparse regularized inverse problem for each iterative 
level. In short, the grid refinement is still computation 
demanding. In this study, we choose a small N in the coarse 
stage and the estimated DOAs are used as an initial 
estimation for the fine stage. In the next section, subspace 
technique is used to explore the inter-relations among the 
AVS subarrays. 

3.2. The fine stage based on subspace technique 
If there is no noise present, substituting the estimate of Ao in 
(13) into (9), we could obtain the diagonal matrices u, v 
and w . The DOA estimation can be derived immediately. 
To reduce the adverse impact of the noise on the 
performance of the DOA estimation, we employ the 
subspace technique in the fine stage. Let s define the 
correlation matrix of the output data X as RXX=XXT, which 
is of JM×JM. The eigen decomposition of RXX gives the 
signal subspace matrix Es in size of JM×K, which is 
composed of K signal eigenvectors. Matrix Es holds the 
following relation with A [3]: 
 ,sE AT  (14) 
where T is a nonsingular K×K transform matrix. Noted that, 
for the noiseless case, Es=AT. Substituting the row partition 
of A into (14), Es can also be partitioned as 
 [ , , , ] [ , , , ] .T T T T T T T T T T

su sv sw so u v w oE E E E A A A A T  (15) 

From (8) and (15), the signal-subspace matrices satisfy 
 ,u

su u oE A T A T  (16) 
 .so oE A T  (17) 

With the estimation of Ao from (13), T can be computed 
from (17), which can be substituted into (16) to yield 
 (:, ) (:, ),u

su soI IE E  (18) 
where (.) denotes the pseudo-inverse operator. Similarly 

analyzing the relations between Esv, Esw and Eso separately, 
we can obtain the estimates of v and w as follows 

 (:, ) (:, ),
(:, ) (:, ).

v
sv so

w
sw so

I I
I I
E E
E E

 (19) 

From the definitions of u, v and w, then we have the 
estimation for uk, vk and wk (k ,K) as follows: 
 [ ] ,u

k kku [ ] ,v
k kkv [ ] ,w

k kkw  (20) 
where [.]kk denotes the kth diagonal element of a matrix. 
Following the definitions of uk, vk, wk, the closed-form of 
the DOA estimation can be expressed as follows 
 1cosk kw ,  1tank kv / .ku  (21) 

It is noted that the above fine stage is an ESPRIT-like 
subspace method utilizing the subarray manifold inter-
relations based on the estimated manifold oA . Essentially, 
(18) is the least square solution of u under the constraints 
(16)-(17). The constraint (16) contains DOA information in 

u and thus the least square solution improves the DOA 
estimates over the initial ones in oA , which has been 
verified through several experiments in section 4. The major 
computation cost is the eigen-decomposition of RXX, which 
can be solved by many fast algorithms [9]. 

4. SIMULATION STUDY 
In this section, the performance of the proposed coarse-to-
fine DOA estimation algorithm, named by AVS-CFSSR, is 
evaluated and compared with the 1 -SVD and 1 -SVD-GR 
algorithms [6] for far-field narrowband source DOA 
estimation under white Gaussian noise. For AVS-CFSSR, 8 
AVS units (M=8) are used to form an ULA, each AVS unit 
is along the z-axis, and the distance between the adjacent 
AVS unit is half of the source wavelength. For 1 -SVD, 
and 1 -SVD-GR, the simulation parameters are selected 
according to those used in [6]: 8-element ULA is formed, 
shrinking rate is 3 ( =3), and 3 refinement levels are used. 
For comparison fairness, for these three algorithms, the 
azimuth angle  is set to be zero, and only the estimation of 
elevation angle  is considered. The number of snapshots is 
set to be 100. Root mean square error (RMSE) of the 
estimates over 200 independent trials is used as the metric. 
1) Impact of grid spacing on DOA estimation accuracy 
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Fig. 1.  RMSE of the estimation versus grid spacing. Fig. 2.  RMSE of the estimation versus source separation. 
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One spatial source is considered. The source elevation 
angle is randomly generated between 20° to 160° for each 
trial. To evaluate the DOA estimation accuracy of the 
algorithms under different grid spacing, the elevation 
angular space is sampled uniformly with different gird 
spacing varying from 1° to 8°. In such experiment setup, we 
can infer that the source may be off-grid with high 
probability. The SNR is set as 30dB. The RMSE of the 
elevation estimates versus the grid spacing are plotted in Fig 
1. It is clear to see that the 1 -SVD performs worse than 
1 -SVD-GR and AVS-CFSSR for all gird spacing. With the 

increase of the grid spacing, RMSE of 1 -SVD linearly 
increases, which directly indicates the off-grid effect for 1 -
SVD algorithm. The RMSE of 1 -SVD-GR is comparable 
to the AVS-CFSSR for all grid spacing. From this result, it 
can be concluded that AVS-CFSSR has similar ability to 
eliminate the grid effect. In addition, there exist numerical 
unstable cases for 1 -SVD-GR during experiment trials, 
especially when the grid spacing is larger than 3°. 
2) Performance under different source separations 

Two uncorrelated narrow-band sources with different 
spatial separations are considered. The elevation angle of 
the first source is fixed to 42.5°, while the elevation angle of 
the second source varies from 46.5° to 70.5°. The whole 
elevation space is uniformly sampled with the grid spacing 
of 2°. The SNR equals to 30dB. The RMSE of the estimated 
elevation angles versus source separation are plotted in Fig. 
2. It is noted that AVS-CFSSR and 1 -SVD-GR perform 
better than 1 -SVD for all source separations. When two 
sources separate larger than 16°, the bias of 1 -SVD 
remains about 0.6° because sources are off-grid; meanwhile, 
1 -SVD-GR has much smaller RMSE, which is comparable 

to that of AVS-CFSSR. But when two sources closely 
located (the separation is less than 16°), there is large 
estimation bias for both 1 -SVD and 1 -SVD-GR; while 
the DOA estimation accuracy of AVS-CFSSR is excellent 
even when two sources are separated by only 4°. The 
simulation results reveal that AVS-CFSSR is able to greatly 
improve the DOA estimation accuracy for closely located 
sources where 1 -SVD-GR fails. 
3) Performance under different noise levels 

Two uncorrelated sources are set to be located at (63.3°, 
0°) and (73.3°, 0°), respectively. The angle space is 
uniformly sampled with the grid spacing of 2 °. The SNR 
varies from 0dB to 40dB. The RMSE results shown in Fig. 3 
are obtained by averaging over 200 independent trials for 
each SNR. We can clearly see that AVS-CFSSR performs 
best when SNR is larger than 5dB. AVS-CFSSR performs 
comparable to 1 -SVD-GR, but better than 1 -SVD when 
SNR is from 0dB to 5dB. 

5. CONCLUSION 
In this paper, a coarse-to-fine SSR-based DOA estimation 
algorithm (AVS-CFSSR) has been derived by employing 

the spatial sparse processing and subspace signal technique 
for an AVS array. The joint utilization of the spatial sparse 
information and the inter-relations among AVS subarray 
manifold matrices give the favorable characteristics of 
AVS-CFSSR. Experiments showed that AVS-CFSSR is a 
super-high resolution DOA estimation method with less grid 
effect and smaller estimation bias for the small source 
separation (about 4°) compared with other two algorithms 
with same simulation conditions. The performance of AVS-
CFSSR may be limited by strong additive noise, which will 
be further studied. 
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Fig. 3.  Performance under different noise levels. 
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