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ABSTRACT 

Visual object counting (VOC) is important in many real-

world applications. Our previous work approximated 

sparsity-constrain example-based VOC (ASE-VOC) works 

well with insufficient training data. It assumes that image 

patches share the similar local geometry with counterpart 

density maps, and then the density map of the image patch 

can be estimated by preserving such geometry. However, 

ASE-VOC has a weak constraint for data structure and 

experiments reveal that the performance of ASE-VOC 

degrades when facing with complex background. To solve 

this problem, we proposed a novel local low-rank constrained 

example-based VOC (LLRE-VOC) method. Because local 

low-rank constraint can choose the samples belonging to the 

subspace that lies closest to the test samples. Even with 

complicated data structure, LLRE-VOC can guarantee the 

patches selected share similar structure with input patch. 

Extensive experiments conducted on public benchmarks 

demonstrate the superior performance of our proposed 

LLRE-VOC method. 

Index Terms— Visual object counting, complex 

background, local low-rank, density map estimation, 

example-based 

1. INTRODUCTION 

The task of Visual Object Counting (VOC) is to label an 

image with the exact object counts. In recent years, it has been 

widely applied in fields such as crowd analysis[2, 5-7], city 

resource management[8], public security[9] and wildlife 

census[10]. VOC has shown its great value in computer 

vision. 

There are primarily two mainstream types of object 

counting techniques in a supervised way: one is based on 

global regression  [2, 5-7, 11] and the other is density 

estimation  [1, 3, 12, 13]. For global regression based method 

(GR-VOC), they learn an intrinsic mapping between image 

global features and their corresponding counts (in scalar 

form). These methods discard the location information of the 

objects. Moreover, the performance of GR-VOC depends on 

the well-design of feature heavily.  

Compared with GR-VOC method, density map estimation 

based method (DE-VOC) takes full advantage of the spatial 

information and can provide object distribution information. 

The main idea of the DE-VOC method is firstly proposed by 

Lempitsky who estimates a density function as a real function 

of pixels in an image regressed from dense local features of 

the image [1]. Based on Lempitsky’s work, several 

algorithms [3, 12, 13] have been proposed to handle with 

different application scenes. Among those application scenes, 

how to deal with the insufficient training data is a tough 

problem.  

In our previous work example based VOC (E-VOC) [3], 

we find that patches extracted from images share the similar 

local geometry with their corresponding patches extracted 

from counterpart generated density maps, therefore, by 

preserving such local geometry, the object density map can 

be reconstructed. E-VOC can work well with a few training 

images, but its result is unstable due to the effect of 

neighborhood size. To overcome this disadvantage, we 

introduce a sparsity constraint in our extended version which 

is called approximated sparsity-constrain example-based 

VOC (ASE-VOC). Experimental results show that ASE-

VOC is able to give a good result when the background is 

clean or the foreground can be extracted. However, it is a 

challenge work to extract the foreground especially when the 

training data is insufficient (for example there is only one 

image). In this paper, we address the VOC problem for 

complex scenes with insufficient training data.  

 
Fig. 1. Conceptual Illustration of sample selection 

mechanisms. Patches filled with same colors are in the 

same subspace and have similar structure. (a) Sparsity 

constraint may select the patches in different subspace (b) 

LLRE constraint selects the patches in the closest 

subspace. 

(a) ASE-VOC (b) our LLRE-VOC



As discussed above, our previous proposed ASE-VOC [3] 

utilizes the sparsity constrain which does not consider the 

underlying structure of the data. As a result, when the training 

images are of complex scenes, the sparse constrain can’t 

guarantee the sample selected are in similar structure, which 

degrades the performance. In this paper, we proposed a novel 

Local Low-Rank constrained example based VOC (LLRE-

VOC). Instead of using sparse constraint, we exploit the 

property of local low-rank constraint for selection of samples. 

Work [14] shows that utilizing Locality-constrained Low 

Rank Coding (LLRC) in face recognition, the training 

samples used to reconstruct a given test sample can be chosen 

from just one class rather than a mixture of classes, thus 

enhances the classification accuracy. Motivated by it, we 

make an effort to apply local low-rank constrain to choose 

those samples that are in similar structure. Fig.1 shows the 

conceptual illustration of sample selection mechanisms in our 

proposed LLRE-VOC method and ASE-VOC method. 

Extensive experiments have been conducted to evaluate the 

performance of our proposed LLRE-VOC method on both 

simple and complex background datasets. Experimental 

results on public databases demonstrate the effectiveness of 

our proposed LLRE-VOC method. The flowchart of LLRE-

VOC is shown in Fig.2. 

The rest of paper is organized as follows. In next section, 

we will briefly introduce the general generation of density 

map. In section 3, we will give a description of the E-VOC 

problem formulation, followed by the presentation of our 

novel LLRE-VOC method. In Section 4, we will show the 

experimental results, and section 5 concludes our paper. 

2. PRELIMINARIES 

As our method is based on object density estimation, here we 

will introduce the generation of the ground truth density map 

briefly. Following the work [1], we assume that a set of N 

training images I1, I2, …, IN are given. And for each training 

image Ii , the objects interested are annotated with a set of 2D 

points Pi = { P1,… , Pc(i) }, where C(i) represents the number 

of objects which we are interested in image Ii. Therefore, we 

define the ground truth density function to be a kernel density 

estimate based on the provided points: 
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where P is a user-annotated dot and δ is the smoothness 

parameter. In our paper, δ we used here is set to be 6 in 

experiments.With the definition in Eqn. (1), the ground truth 

density map 𝑰𝑖
𝑑of training image 𝑰𝑖 is defined as  
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With the density map, the object count can be computed 

by integrating over the density map 
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In our paper, the training image patches which are 

extracted from training images Ii,𝑖 ∈ {1,2, … , 𝑁} are denoted 

as 𝒀 = {𝑦1, 𝑦2, … , 𝑦𝑀} . And the density maps 𝒀𝑑 =
{𝑦1

𝑑 , 𝑦2
𝑑 , … , 𝑦𝑀

𝑑 } of corresponding image patches are derived 

from  𝑰𝑖
𝑑 , 𝑖 ∈ {1,2, … , 𝑁}.  For all training patches in Y, the 

feature set can be represented as 𝒀𝑓 = {𝑦1𝑓 , 𝑦2𝑓 , … , 𝑦𝑀𝑓}. 

3. METHOD 

3.1. Example-based VOC 

In E-VOC, it supposes that the two manifolds formed by 

image patches and their density map patches, respectively, 

share similar local geometry. Such local geometry of a feature 

vector can be characterized by how the feature vector can be 

linearly reconstructed by its neighbors [15]. Given the feature 

of a test image patch xf, the reconstruction weights of 

neighbors in feature space Yf can be computed by minimizing 

the reconstruction error. Then we apply the reconstruction 

weights to the density maps of neighboring patches from Yd 

and obtain the density map xd. This kind of method which 

uses the generalization of examples is named as example-

base VOC (E-VOC) [3]. The formulation of E-VOC can be 

described as follows: 
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where DY = [�̃�1𝑓 , �̃�2𝑓 , … , �̃�𝑘𝑓] is a training patch subset 

formed by the k nearest neighbors of  xf  from Yf . �̃�𝑑 =

[�̃�1
𝑑, �̃�2

𝑑, … , �̃�𝑘
𝑑] and �̃�𝑖

𝑑is the density map of �̃�𝑖. 

The Eqn.(4) computes the local geometry of xf and then 

Eqn. (5) reconstructs the density map xd by preserving the 

same local geometry. Due to the constrain with least square 

form, Eqn.(4) has an analytic solution and w can be calculated 

efficiently in Eqn.(6) 
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Fig. 2. Flowchart of proposed LLRE-VOC method. Dashed and solid boxes represents data and operations, respectively. 
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Here the k nearest neighbors DY are searched by K-nearest-

neighbors (KNN) algorithm. 

3.2. Our proposed Local Low Rank Example-based VOC 

(LLRE-VOC) method 

E-VOC works well with a small training set as it estimates 

density over generalization training patches. However, the 

result is unstable due to the fact that E-VOC fixes the 

neighbors size [3].  To overcome this disadvantage, we add 

the sparse constrain in extended version (ASE-VOC) to 

choose samples automatically. The formulation is as follows: 
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w
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Because ASE-VOC doesn’t take structure of examples 

into account, thus, it cannot guarantee the selected examples 

are in similar structure especially when the data structure is 

complicated (for example the complicated background). As 

the Fig. 3 shows, the chosen samples in ASE-VOC method 

do not keep the similar data structure. To improve the 

performance of complex background, examples in similar 

data structure are favorable for reconstruction. 

Recently, in face recognition, Locality-constrained Low 

Rank Coding (LLRC) [14] which chooses face images that 

belong to the same class that lies closest to the test face image 

by taking advantage of the low rank structure of data has 

achieved great success. Motivated by this, we introduce the 

local low-rank constrain into the E-VOC problem. And a 

novel local low-rank constrained example-based VOC 

(LLRE-VOC) method is proposed. The formulation of our 

proposed method is described as follows: 
 * 2 2

2 1 * 2 2arg min|| || || ( )|| || ||f
w

w x w diag w l w    
Y Y

D D   (8) 

where 𝑤 ∈ ℝ𝑘denotes the weights over these k vectors, the 

matrix DYdiag(w) denotes the training sample used to 

reconstruct the input 𝑥𝑓 and 𝑙 ∈ ℝ𝑘represents a vector which 

measures the exponential distance from xf to each training 

sample di. Therefore, li is given by 

  exp || ||/i f il x d     (9) 

here, we normalize the value of l from 0 to 1. Parameter 𝜆1 

and 𝜆2 are the regularization coefficients for trading off the 

structural similarity and locality.  

For solving the optimization problem, we convert the Eqn. 

(8) to the following formulation: 
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Eqn. (10) can be solved by taking advantage of augmented 

lagrangian formulation. The detailed information about the 

solution of this model can refer to literatures [14, 16].  

4. EXPERIMENTS 

In order to demonstrate the effectiveness of our proposed 

LLRE-VOC method, we conduct experiments on three public 

dataset including Bacterial cell dataset [1], Fly dataset [17] 

and Honeybee dataset [17]. Fig.3 shows the example frames 

of three datasets. To compare with different methods, mean 

absolute error (MAE) is employed as the evaluation metric. 

4.1. Bacterial cell dataset 

The synthetic bacterial cell dataset [1] consists of 200 images 

with an average of 171 ± 64 cells per image. The resolution 

of each image is 256-by-256. Partial occlusion and image 

saturation exist in this dataset. Following the work [1], we 

only use the blue channel. Besides, the first 100 images used 

for training and the second 100 images for testing just as the 

same setting in [1]; the subset of N out of all training images 

is randomly selected. For each N (N =1,2,4, … ,32), the 

experiments have been repeated for five times and the mean 

absolute errors and standard deviations are calculated. 

For our proposed LLRE-VOC method, the patch size is set 

to 4×4 both for training and testing, patch step is set to 2. The 

number of nearest neighbors k is set to 128.  

Table 1. Mean absolute errors (MAE) for cell counting 

Method Feature Validation N=1 N=2 N=4 N=8 N=16 N=32 

RR[2] (1) counting 67.3±25.2  37.7±14.0 16.7±3.1 8.8±1.5 6.4±0.7 5.9±0.5 

KRR[4] (1) counting 60.4±16.5 38.7±17.0 18.6±5.0 10.4±2.5 6.0±0.8 5.2±0.3 

detection[1] (2) counting 28.0±20.6 20.8±5.8 13.6±1.5 10.2±1.9 10.4±1.2 8.5±0.5 

detection[1] (2) detection 20.8±3.8 20.1±5.3 15.7±2.0 15.0±4.1 11.8±3.1 12.0±0.8 

Density learning[1] (1) MESA 9.5±6.1 6.3±1.2 4.9±0.6 4.9±0.7 3.8±0.2 3.5±0.2 

E-VOC[3] (3) counting 20.5±11.8 5.5±1.1 4.4±0.6 5.2±0.6 5.0±0.2 4.8±0.5 

ASE-VOC[3] (3) counting 8.1±3.6 5.9±0.9 4.9±1.1 4.8±0.7 3.9±0.3 3.6±0.1 

LLRE-VOC (3) counting 7.5±3.1 5.8±0.8 4.8±0.7 4.1±0.3 3.9±0.1 3.7±0.2 

(1) Dense SIFT+Bag of words; (2) Dense SIFT; (3) Raw data (extracted from blue channel) 

Table 2. Mean absolute errors (MAE) for fly counting 

Method N=1 N=2 N=3 N=4 N=5 N=32 

Density 

 learning[1] 
27.55 26.14 27.28 26.53 27.03 28.41 

ASE-VOC[3] 16.50 12.31 11.71 11.04 10.69 10.06 

LLRE-VOC 11.84 9.39 9.31 8.97 8.59 8.58 

 

 



 The results are shown in Table 1. Compared with the 

classical detection based or GR-VOC methods, LLRE-VOC 

gives better results with no matter what the size of training 

samples is. Compared with the Lempitsky’s method [1], our 

method offers more accurate estimation when training 

samples are insufficient, and provides competitive result 

when the size of training set grows. The mean absolute errors 

(MAE) produced by E-VOC (k is set to 5) method is unstable, 

which suddenly drops with N =4 and then rises with N =8 in 

Table 1, In comparison, our LLRE-VOC offers a more stable 

and accurate estimation. Compared with ASE-VOC, our 

method provides smaller mean absolute errors and standard 

deviations. Therefore, our proposed method has showed its 

superiority on benchmark dataset compared with existing 

mainstream methods. 

4.2. Fly and honeybee datasets 

Paper [17] provides four public datasets including fly, 

honeybee, fish seagull for detection. To further evaluate the 

performance of our proposed method on clean and complex 

background, we choose the fly and honeybee datasets which 

own the clean and complex background respectively. It is 

noted that here used features are just raw data extracted 

grayscale images and patch step is set to 4. 

Fly dataset: contains 600 frames with an average of 86 ± 

39 flies. The resolution of each frame is 648-by-72. 

Following the work [4], the first 32 images(1:6:187) are 

utilized for training and 50 images for testing(301:6:600).  

For detailed performance comparison on insufficient 

training dataset, in this experiment, we use first N (N = 

1,2,…,32) image for training respectively. Table 2 shows the 

results for fly dataset. From the table, we can find that both 

of our proposed method and ASE-VOC can achieve a 

satisfactory performance than density learning [1]. However, 

our LLRE-VOC method has a slight superiority over ASE-

VOC, and shows a big improvement than ASE-VOC 

especially when there is only 1 training sample. 

Honeybee dataset: contains 118 images with an average 

of 28 ± 6 honeybees per image. The resolution of each image 

is 640-by-480. First 32 images are used for training and last 

50 images for testing. 

 To obtain the detailed performance comparison under 

complex background. We also use first N (N =1,5,…,32) 

images for training respectively. The results are given in 

Fig.5. It is obvious that ASE-VOC performs badly under the 

complex background. However, our proposed method still 

performs well and our MAE is almost the half of ASE-VOC’s, 

which verifies the effectiveness of the proposed LLRE 

method with complex background. To validate the salient 

property of our method on patch selection, we visualize the 

patch selection result in Fig.3. The figure shows that our 

LLRE-VOC method choose those patches with similar 

structure. However, in ASE-VOC method, some dissimilar 

patches are chosen. As a conclusion, our proposed LLRE-

VOC method is suitable for visual object counting with 

complex background. 

5. CONCLUSION 

This paper introduces a novel local low-rank constrained 

example based VOC method for estimating the object count 

which achieves a better performance than existing algorithms 

even with a complex background. This is because we take 

advantage of local low-rank constrain to choose samples just 

from one subspace rather than mixed subspaces at the 

reconstruction stage, which enhances the performance. 

Extensive experiments conducted on public datasets validate 

the effectiveness of our method regardless of the insufficient 

data or complex background. 
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Fig. 5. Mean absolute errors (MAE) for honeybee counting 

 

 
Fig. 3. The selection result for the input test patch. The 

numbers indicate the index of sample. The patches in red 

and green boxes are selected training samples. 
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