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ABSTRACT
We consider the image classification problem via multiple
kernel collaborative representation (MKCR). We generalize
the kernel collaborative representation based classification to
a multi-kernel framework where multiple kernels are jointly
learned with the representation coefficients. The intrinsic idea
of multiple kernel learning is adopted in our MKCR model.
Experimental results show MKCR converges within reason-
able iterations and achieves state-of-the-art performance.

Index Terms— Multi-Kernel, Collaborative Representa-
tion, Image Classification

1. INTRODUCTION

One of the major reasons for the prominence of the sparse
representation-based classification (SRC) [1] is its discrimi-
native power and robustness in classifying visual categories,
especially faces. SRC classifies images by enforcing l1 nor-
m constraint to the representation coefficients and computing
the residuals of each class. Such sparse representation tech-
nique is also widely used in a variety of problems including
image restoration [2], image denoising [3] and data cluster-
ing [4]. Recently, Zhang et al. generalize the SRC model
and propose the collaborative representation-based classifica-
tion (CRC) [5, 6] with impressive results on face recognition.
CRC instantiates an efficient regularized least square algorith-
m which constrains the representation error and regularization
term with l2 norm. To enhance the discrimination power of
CRC, our previous work [7,8] considers to apply kernel tech-
nique to CRC model, reporting promising results in image
classification tasks. However, [7] only adopts a pre-fixed ker-
nel that not only may greatly affect the classification accura-
cy but also is difficult to determine. Since image classification
tasks usually handle various subjects and the images may vary
a lot, such fixed kernel strategy may be detrimental to the per-
formance. Naturally, we consider to learn multiple kernels for
CRC, further boosting its discrimination power.
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Recent efforts on multiple kernel learning (MKL) [9–11]
have shown that learning support vector machine (SVM) [12]
with multiple kernels not only increases the accuracy but also
enhances the interpretability of the resulting classifiers. Sin-
gle kernel-based approaches often have trouble dealing with
large-scale data with various distributions [13], non-flat da-
ta [14], unnormalised data [10] or data containing heteroge-
neous information [15]. In most cases, MKL refers to learn-
ing the optimal linear combinations of kernels. The basic
idea behind MKL is to add a set of parameters to the min-
imization problem of the learning algorithm. Thus, this pa-
per generalizes the kernel framework in [7, 16] and proposes
to learn the optimal linear combination of multiple kernels
from training samples. Specifically, we learn the weights of
kernels by minimizing the representation error, enhancing the
representation ability of the kernel dictionary. Moreover, we
constrain the sum of weights to be 1 with each weight non-
negative. Note that, MKCR with single kernel can degener-
ate to KCRC [8, 16]. In fact, learning multiple kernels for
KCRC shares the similar philosophy with dictionary learn-
ing [17–20]. They both aim to enhance the representation
ability of dictionaries. Dictionary learning uses a direct ap-
proach to learn a representation bases, while MKCR utilizes
a different insight by learning multiple kernels.

2. PRELIMINARIES

Let D denote a class-specific dictionary that contains k-class
training samples, i.e., D={D1,D2, · · · ,Dk}∈Rm×n where
n=

∑k
j=1 nj (nj is the sample number of the jth class) and m

is the feature dimension. The sub-dictionary corresponding
to the ith class is denoted by Di={du(i)−ni+1, · · · ,du(i)} in
which u(i)=

∑i
j=1 nj and dj is the jth training samples in

D. CRC represents the query sample y by solving x in the
following generic model:

x̂ = argmin
x

(
∥y −Dx∥qq + µ∥x∥pp

)
(1)

where µ is the regularization parameter and p, q∈{1, 2}. The
combinations of p, q give different instantiations. For exam-
ple, SRC is under the condition of p=1, q∈{1, 2}.

After defining the nonlinear mapping y∈Rm 7→ϕ(y)∈F
and kernel K(v′,v′′)=⟨ϕ(v′),ϕ(v′′)⟩=ϕ(v′)Tϕ(v′′), we
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consider the dimensionality reduction in the kernel space by
assuming the projection is a linear combination of images
in F and further formulate the original model into the kernel
CRC (KCRC) model [7]:

x̂ = argmin
x

(
∥ΨTK(D,y)−ΨTGx∥qq + µ∥x∥pp

)
(2)

where K(D,y)=[K(d1,y), · · · ,K(dn,y)]
T and G (Gij =

K(di,dj)) is the kernel Gram matrix. Note that, Ψ is used
to perform dimensionality reduction [7] in kernel space, and
G=ΦTΦ in which Φ={ϕ(d1), · · · ,ϕ(dn)}. From the
above model, two specific algorithms have been developed.
With p=2, q=2, x can be solved by the least square algo-
rithm at low computational cost. For more robustness, we
can set p=2, q=1 and solve it with the augmented Lagrange
multiplier (ALM) [21, 22]. Detailed algorithms refer to [7].

3. MULTI-KERNEL COLLABORATIVE
REPRESENTATION

3.1. MKCR Model

Suppose we have a set of base kernel functions {Ku}Uu=1, the
multiple kernel function K is defined by

K(v′,v′′) =
U∑

u=1

αuKu(v
′,v′′), αu ≥ 0 (3)

where α=[α1, α2, · · · , αU ]
T is the weighting vector for mul-

tiple kernels, and v′,v′′ denote two samples respectively. The
multi-kernel gram matrix G can also be represented by base
kernel gram matrices {Gu}Uu=1, written as follows:

G =

U∑
u=1

αuGu, αu ≥ 0. (4)

To learn the optimal multiple kernels for KCRC, we need
to feed a batch of input samples denoted by Y . The collab-
orative representation of Y ={y1,y2, · · · ,yh} is defined as
X={x1,x2, · · · ,xh}. After putting both Eq. (3) and Eq.
(4) into the KCRC model and adding constraints for multiple
kernels, we can derive the MKCR model:

⟨X̂, α̂⟩ =argmin
X,α

(∥∥ΨT
U∑

u=1

αuKu(D,Y )−

ΨT
U∑

u=1

αuGuX
∥∥2
F

)

s.t.

{
∀i, ∥xi∥pp ≤ ϵ∑U

u=1 αu = 1, αu ≥ 0

(5)

in which Ku(D,Y )={Ku(D,y1), · · · ,Ku(D,yh)} and ϵ
is a constant. Similar to CRC and KCRC, both p and q can

be set as 1 or 2 for different instantiations. we use l1 norm to
constrain the kernel weighting coefficients in order to assign
more weights to kernels that can represent the input samples
better. Following the conventional settings in MKL, the sum
of the kernel weighting coefficients is equal to 1 and all of
them are non-negative. Note that, the selection of Ψ has been
discussed in [23]. However, we find no major performance
advantages of using complex methods to construct Ψ in ex-
periments (except for the speed and memory consumption),
so we simply use the identity matrix as Ψ in the paper to re-
tain the intuitive interpretation.

The optimization model in Eq. (5) aims to find a set of
weights for multiple kernels that can best represent the input
samples, or in other word, minimize the representation error.

3.2. Optimization

Because it is difficult to directly optimize the MKCR model,
we alternatively optimize X and α with an iterative, two-step
strategy. At each iteration, one of X and α is optimized while
the other is fixed. Iterations are repeated until convergence or
a maximum number of iterations is reached. Specific training
algorithm refers to Algorithm 1.

On optimizing X . By fixing α in Eq. (5), we can write
the optimization in Eq. (5) as

X̂ = argmin
X

(∥∥ΨT
U∑

u=1

αuKu(D,Y )−

ΨT
U∑

u=1

αuGuX
∥∥2
F

)
s.t.∀i, ∥xi∥pp ≤ ϵ

. (6)

Since X is the combination of each representation coeffi-
cients xi(1≥i≥h), we can separately optimize xi and even-
tually combine them into X . Using the Lagrange duality, we
can further rewrite Eq. (6) as an equivalent optimization:

x̂i = argmin
xi

(∥∥ΨT
U∑

u=1

αuKu(D,yi)−

ΨT
U∑

u=1

αuGuxi

∥∥2
2

)
+ µ∥xi∥pp

(7)

where µ is the regularization parameter. It can be learned
from standard optimization theory that Eq. (6) and are e-
quivalent if ϵ and µ obey some special relationship [24]. Eq.
(7) becomes the standard KCRC model. When p=1, the op-
timization problem is identical to SRC [1]. When p=2, it
has an efficient closed-form solution via the regularized least
square algorithm [5]:

x̂i =
(
GTΨΨTG+ µ · I

)−1
GTΨΨTK(D,yi) (8)

in which K(D,yi)=
∑U

u=1 αuKu(D,yi), and I denotes an
identical matrix.
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On optimizing α. After fixing the representation coeffi-
cients X , the optimization in Eq. (5) becomes

α̂ = argmin
α

(∥∥ΨT
U∑

u=1

αuKu(D,Y )−

ΨT
U∑

u=1

αuGuX
∥∥2
F

)
s.t.

U∑
u=1

αu = 1, αu ≥ 0

. (9)

Since Ψ, Ku(D,Y ) and Gu are given a prior, Eq. (9) can
be therefore transformed to a standard constrained quadratic
program [25], which is proven to be convex. We first rewrite
the optimization to a concise form:

α̂ = argmin
α

(∥∥ U∑
u=1

αueu
∥∥2
F

)
s.t.

U∑
u=1

αu = 1, αu ≥ 0

(10)
where eu is a matrix equal to ΨTKu(D,Y ) − ΨTGuX .
Then we stack each column of eu into one column, turning it
to a column vector ẽu. Defining Ẽ = {ẽ1, ẽ2, · · · , ẽU}, we
can transform Eq.(10) to an equivalent one:

α̂ = argmin
α

∥∥Ẽα
∥∥2
2

s.t. C ·α = 1, αu ≥ 0 (11)

where C=[1, 1, · · · , 1]∈R1×U . It is clear that Eq. (11) is a
constrained quadratic program problem, which can be solved
by various standard convex optimization solvers [26].

Initialization. While we first optimize X , we uniform-
ly initialize the weights for multiple kernels. Specifically, we
initialize α with [ 1U , 1

U , · · · , 1
U ]T . Detailed parameter selec-

tion is elaborated in experiments.

Algorithm 1 Training Procedure of MKCR.

Input: Ψ,Ku
U
u=1,α

(0)=[ 1U , 1
U , · · · , 1

U ]T , µ, p, r, i=0
Output: α

1: Optimization of X
2: α←α(i).
3: Use Eq. (7) to optimize xj(1≤j≤h) with α(i) fixed.
4: If p=1, the optimization can be solved by various l1

solvers, e.g. basis pursuit [27], FISTA [28], ALM [22]. If
p=2, the optimization has a closed-form solution shown
in Eq. (8).

5: Obtain the representation X .
6: Optimization of α
7: Transform the problem into a constrained quadratic pro-

gram and use Eq. (11) to optimize α with X fixed.
8: i← i+ 1.
9: α(i)←α.

10: If i>r, output α; Else, go to Step 1.

3.3. Classification Strategy

After learning the weights for multiple kernels, we perform
the classification strategy which is similar to KCRC [7]. Be-
cause the weights α for multiple kernels are already obtained,

both the combination of multiple kernels and the multi-kernel
Gram matrix can be determined. Therefore, the classification
can be performed by the model in Eq. (2). Following sim-
ilar settings to dictionary learning [17–20], both Y and D
in the MKCR model comes from the training samples. After
learning multiple kernels, we still adopt the original dictio-
nary samples as the D in Eq. (2) in classification.

Specifically, if we set p=1, q∈{1, 2}, the optimization
in Eq. (2) becomes exactly SRC except that the dictio-
nary is ΨT

∑U
u=1 Gu instead of D and the query sample is

ΨT
∑U

u=1 Ku(D,y) instead of y. So in such circumstance,
the procedure of classification is identical to SRC. If we set
p=2, q=2, Eq. (2) can be efficiently solved by regularized
least square algorithm [5]. The closed-form solution for the
representation coefficients is

x̂ =
(
GTΨΨTG+ µ · I

)−1
GTΨΨTK(D,y) (12)

where K(D,y)=
∑U

u=1 αuKu(D,y) and G=
∑U

u=1 Gu.
The label of the query sample y is given by

identity(y) = arg minj{rj} (13)

where rj= 1
∥x̂j∥2

(
∥δj{ΨTK(D,y)}− δj{ΨTG}δj{x̂}∥2

)
.

δj{ · } denotes the function that removes the elements in a
vector or matrix that are not related to the samples of the jth
class in D. If we set p=2, q=1, the optimization becomes

x̂ =argmin
x

(
∥e∥1 + µ∥x∥22

)
s.t. ΨTK(D,y) = ΨTGx+ e

(14)

where e=ΨTK(D,y)−ΨTGx. It is actually a constrained
convex optimization that can be solved by ALM [21,22]. De-
tailed algorithms of classification strategy are similar to [7].

3.4. Kernel Selection

The selection of kernels for MKCR can take insights from
MKL [9–11, 13–15], since they share the same purpose to
learn an optimal set of kernels. We briefly present a few ex-
amples for the selections of kernels.

Naive Combination. Naive combination refers to a sim-
ple multiple kernel combination that selects some widely
used kernels, e.g. linear kernel, Log kernel, Gaussian kernel,
Laplacian kernel, polynomial kernel, Perceptron kernel.

Discriminative Combination. Discriminative combina-
tion uses a set of discriminative kernels. It can be a unified k-
ernel Ku(v

′,v′′) = exp(−d2u(v′,v′)/σ2) with different dis-
criminative dissimilarity measures [11, 16].

Multi-Scale Combination. Multi-Scale combination
[14] usually adopts Gaussian radial basis function (RBF) as
the base kernel K(v′,v′′) = exp(−γ∥v′ − v′∥2). Then it
varies the parameter γ of the base kernel to construct the
multi-scale multiple kernels. The other base kernels can be
constructed to multi-scale kernels following this procedure.

23



4. EXPERIMENTS AND RESULTS

4.1. Convergence Evaluation

The convergence of MKCR is evaluated in this experiment.
We test three types of multiple kernel combinations. For naive
combination, we use linear kernel, Gaussian kernel, Lapla-
cian kernel, Perceptron kernel and Log kernel. Except for
linear kernel, we use three different parameter for the other
kernels, so it is totally 13 kernels. For discriminative combi-
nation, we adopt the same kernel combination as [11]. These
discriminative kernels include GB-Dist, GB, SIFT-Dist, SIFT-
SPM, SS-Dist, SS-SPM, C2-SWP, C2-ML, PHOG and GIST.
The specific kernel construction can refer to [11]. For multi-
scale combination, we use the Gaussian kernels with γ rang-
ing from 0.1 to 1.5 with 0.1 step. It is totally 15 kernels. We
use MNIST data set [29] where 500 input samples, 500 dic-
tionary atoms and 1000 testing samples are used. From the
results in Fig. 1, we can see the MKCR model can be con-
verged in a reasonable iteration times. When MKCR model
converges, its performance is better than the initial state.
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Fig. 1. (a) Example of convergence of multi-scale MKCR. (b) Example of
convergence of naive MKCR. (c) Example of convergence of discriminative
MKCR. (d) Classification accuracy v.s. iteration times in MNIST.

4.2. Experiments on Public Data sets

4.2.1. Experimental Settings

We apply MKCR to image classification tasks and evaluate
its performance on Caltech101 data set [30] and 15 scene cat-
egories data set [31]. We use the same features as in [32]
for clear comparison. For the Caltech1001 data set, we first
extract SIFT descriptors from patches that are sampled via a
grid and then extract the spatial pyramid feature based on the
SIFT features. Finally, PCA is used to reduce the dimension
to 3,000. For the 15 scene category data set, we compute the
spatial pyramid feature via a four-level spatial pyramid and a
SIFT-descriptor codebook. Similarly, PCA is used to reduce

the dimension to 3,000. For KCRC, we use the Gaussian RBF
kernel with γ = 0.5 as kernel function. The settings for D-
KSVD and LC-KSVD follow [19, 20]. µ is 0.001 × n/700
(n is the size of the dictionary). We evaluate the three multi-
kernel combinations using the same setup as Section 4.1.

4.2.2. Caltech101 Data Set

The Caltech101 data set contains 9,144 images from 102
classes (101 objects and 1 background class). We train on
5, 10, 15, 20, 25 samples per category and test on the rest.
For MKCR, we use 5 more samples per category to learn the
multiple kernels when the dictionary size is 510, 1020, 1530,
2040 and 2550. Note that, the discriminative MKCR in fact
uses different features from the other approaches in the com-
parison, because its kernels are a unified representation of
multiple features [11]. To show the gain from learning mul-
tiple kernels, we use three baselines (all weights of multiple
kernels are equal, namely α is pre-defined instead of learned)
for comparison. Baseline1 refers to KCRC with the multi-
scale multi-kernels, Baseline2 for the naive multi-kernels and
Baseline3 for the discriminative multi-kernels. Experiments
show MKCR performs best.
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Fig. 2. Classification accuracy v.s. training samples per category. (a) MKCR
and the other competitive algorithms. (b) MKCR and the baselines.

4.2.3. 15 Scene Categories Data Set

15 Scene Categories Data set contains 15 natural scene cate-
gories. Following the same experimental settings as [32], we
randomly select 100 images per category for training and the
rest for testing. For MKCR, we randomly use 30 images per
category as the dictionary, and the remaining 70 images per
category for learning multiple kernels.

Table 1. Classification accuracy (%) on 15 scene categories data set.
Method Accuracy Method Accuracy

LC-KSVD [20] 92.94 D-KSVD [19] 89.16
KCRC [7] 97.21 Multi-Scale MKCR 97.78

Naive MKCR 98.00 Discriminative MKCR 98.15

5. CONCLUDING REMARKS

This paper proposes a novel multi-kernel collaborative rep-
resentation approach for image classification. We generalize
the KCRC model and learn the weights of multiple kernels
for KCRC. To the best of our knowledge, such multi-kernel
framework in SRC or CRC is first proposed. Experiments
show MKCR achieves the state-of-the-art performance.
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