
 

 
Abstract—Text-dependent speaker verification (SV) with short 
voice command (SV-SVC) has increasing demand in many 
applications. Different from conventional SV, SV-SVC usually 
uses short fixed voice commands for user-friendly purpose, 
which causes technical challenges compared with conventional 
text-dependent SV using fixed phrases (SV-FP). Research 
results show that the mainstream SV techniques are not able to 
provide good performance for SV-SVC tasks since they suffer 
from strongly lexical-overlapping and short utterance length 
problems. In this paper, we propose to fully explore the acoustic 
features and contextual information of the phonetic units to 
obtain better speaker-utterance related information 
representation for i-vector based SV-SVC systems. Specifically, 
instead of using MFCC only, the frame-based phonetic 
bottleneck (PBN) feature extracted from a phonetic bottleneck 
neural network (PBNN), the stacked phonetic bottleneck (SBN) 
feature, the cascaded feature of PBN and MFCC, the cascaded 
feature of SBN and MFCC (SBNF+MFCC) are extracted for 
developing i-vector based SV-SVC systems. Intensive 
experiments on the benchmark database RSR2015 have been 
conducted to evaluate the performance of our proposed ivector 
SV-SVC systems. It is encouraged that the contextual 
information learnt from stacked PBNN does help and proposed 
ivector SV-SVC system with (SBNF+MFCC) outperforms under 
experimental conditions. 

Keywords-Text-dependent speaker verification, short voice 
command, phonetic bottleneck feature, i-vector 

I.     INTRODUCTION 
Speaker verification (SV) is a binary classification task 

which aims to verifying a person’s identity according to 
his/her voice. Speaker verification can be split into two 
categories: text-dependent and text-independent. In 
text-dependent speaker verification, the predefined speech 
phrases are used in enrollment and test phases. On contrary, 
in text-independent speaker verification, there are no 
limitation of speech phrases used. Research outcomes show 
that the text-dependent speaker verification techniques have 
advanced the text-independent speaker verification 

techniques since additional phonetic information is 
available [1]. Moreover, it is noted that text-dependent 
speaker verification with fixed phrases, short voice 
commands and digits have increasing demands in practical 
speech applications such as keyword spotting, banking 
transactions, and voiceprint authentication systems. For 
text-dependent speaker verification, both person’s identity 
and the content of spoken phrases are verified. Therefore, 
either the speaker identity or the phrase does not match will 
be considered as a non-target trial. As a result, for 
text-dependent speaker verification, three types of 
non-target trials will be considered, terms as IC (Impostor 
pronouncing, Correct lexical content), TW (Target speaker 
pronouncing, Wrong lexical content), and IW (Impostor 
pronouncing, Wrong lexical content), respectively. 

So far, the state-of-the-art SV technique rooted in 
i-vector/PLDA framework [2-3] (denoted as i-vector SV in 
this paper). Latest progress of speaker verification has 
applied Deep Neural Networks (DNNs) to GMM-UBM 
model [4,5] or i-vector model [6]. Essentially, there are two 
approaches in implementing the DNN based speaker 
verification. One is to learn the features frame-by-frame for 
GMM-UBM SV system or i-vector SV system. Another 
approach is implemented in a new perspective where DNN 
is employed to estimate the frame alignment posteriors of 
the phonetic units, which is used to replace the GMM-UBM 
in i-vector model. For the first approach, the DNN is trained 
first in the fame-by-frame classification manner but with 
different conditions, which leads to the phonetic 
discriminative DNN based SV and speaker discriminative 
DNN based SV system, respectively. Specifically, for the 
former, the training pair is speech frame and phoneme (or 
triphone) and the DNN is trained to get the classification 
model between speech frames and their paired phonemes. 
For the latter, the training pair is the speech frame and 
speaker ID, then the DNN is trained for discriminating 
between speakers. At the end, the speaker-related 
information is stored in the hidden layers of the trained 
DNN model, which can be used as the feature vectors in 
some way [4]. Besides, the dimension of the hidden layer 
features is generally high and requires high computational 
cost. To address this problem, the dimension reduction 
techniques [4] or bottleneck layer approach are commonly 
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applied [7]. It is noted that i-vector SV with DNN features 
achieved the state-of-the-arts on public datasets for TD-SV 
using massive training data [6]. Part of reasons for this 
success may be that they fully explore the information of the 
phonetic units. However, we also noted that the predefined 
phrases can be split into phonetic units in sequences and the 
contextual information can be further investigated [8].  

In principle, the SV with short voice commands 
(SV-SVC) is a special case of speaker verification task with 
two constraints: the shorter utterance and lexical 
overlapping. For example, in RSR2015 [1], for SV-SVC 
and SV with fixed phrases tasks, the speech duration ranges 
from 0.1s to 0.5s and ranges from 1s to 2s, respectively. 
Besides, from applications, we can see that the lexical 
content of different short voice commands strongly overlap, 
e.g., “Door open” and “Door close”. Thus, for SV with short 
voice commands, there is less phonetic variation available. 
Fortunately, some research work has shown that i-vector 
model is effective for retaining speaker and lexical content 
in the speech segments to some extent [9]. This is why 
i-vector model for SV with short voice commands is an 
appropriate choice. However, literature shows that the 
state-of-the-art i-vector SV with MFCC feature for SV with 
short voice commands tasks [1] still suffers from the short 
duration and the lexical similarity of the commands. 
Motivated by our previous DNN-based SV work [10] and 
the discussions above, in this paper, we propose to fully 
explore the contextual information of the phonetic units 
together with the MFCC features to improve the 
performance of SV with short voice commands technique 
under i-vector framework. Instead of using MFCC feature 
only, the frame-based phonetic bottleneck feature 
(PBN-feature) extracted from a phonetic bottleneck neural 
networks (PBNN), the stacked bottleneck feature 
(SBN-feature) [11], the cascaded feature of PBN and 
MFCC (PBNF+MFCC), the cascaded feature of SBN and 
MFCC (SBNF+MFCC) are extracted as speech feature 
vector for i-vector SV. To evaluate the impact of different 
feature vectors, intensive experiments are conducted on the 
benchmark database RSR2015. The experimental results 
are evaluated and compared under different conditions, 
such as TW, IC and IW, respectively. Some findings and 
discussions are given accordingly. 

II. I-VECTOR FRAMEWORK 
The i-vector approach [12] was proposed by Dehak and 

received widely investigation in the past decade. 
Essentially, the i-vector approach assumes that most 
relevant speaker information lives in a low-dimensional 
space called total variability space. Each utterance can be 
represented as a fixed-length vector called i-vector in this 
space. In principle, the utterance-dependent GMM 
supervector is represented as 

= +M m Tw                                    (1) 

where m is mean supervector of Universal Background 
Model (UBM), T is a low-rank matrix representing speaker 
and session variability, and the latent variable w is called 
i-vector.  

The i-vector SV consists of three key stages: the 
collection of sufficient statistics (SS), the extraction of 
i-vectors and a PLDA backend. The collection of SS is a 
process where a sequence of feature vectors (e.g. MFCC) 
are represented by the Baum-Welch statistics obtained with 
respect to UBM. These high-dimensional statistics are 
converted into a single low-dimensional feature vector 
called i-vector. After i-vectors are extracted, a PLDA model 
is used to produce verification scores. In conventional 
i-vector SV system, the short-time spectral features (e.g. 
MFCC) are most widely used. Besides, we found that 
MFCCs also have been employed in i-vector SV with short 
voice commands system [1]. In this study, under i-vector SV 
framework, we propose to extract novel features for better 
representing speaker and content discriminative 
information, which is a possible good way to improve the 
performance of SV with short voice commands systems. 
The initiatives lie in two aspects: fully making use of the 
available text content with its sequence information and 
taking advantage of i-vector SV. 
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Figure 1.  Block diagram: (a) baseline i-vector SV-SVC, (b) 
our proposed PBNF-ivector SV-SVC, (c) our proposed 
SBNF-ivector SV-SVC systems 

440-dim
 M

el-
filterbank input

1500 units

1500 units

80 units

3393 units

Input 
layer

Hidden 
layer 1

Hidden 
layer 2

PBN-
feature

Triphone states labeled
output layer

1500 units

Hidden 
layer 4

Bottleneck 
layer

Input to i-vector speaker 
verification system

 

Figure 2  Illustration of PBNN used in this study 

707



 

III. PROPOSED SV-SVC SYSTEM 

A. Overview of the proposed SV-SVC system 

The block diagram of our proposed PBNF-ivector 
SV-SVC and SBNF-ivector SV-SVC systems is illustrated 
in Figure 1. For comparison, the baseline ivector SV with 
short voice commands system is also given. Obviously, 
these SV-SVC systems all consist of three parts: front-end 
feature extraction (modules in red), speaker modeling 
(modules in green) and back-end scoring (modules in blue). 
The difference of three systems lies in the feature extraction 
part. As discussed in Section 2, in this study, our focus is to 
extract more effective features on characterizing the short 
voice command and speaker discriminative information. As 
shown in the red modules in Figure 1, we proposed to fully 
make use of phonetic bottleneck features, stacked 
bottleneck features and spectral-based features including 
MFCC for better representing speech and speaker 
information. The details are described in following 
subsections. 

B. The phonetic bottleneck feature 

The phonetic bottleneck feature (PBN-feature) [7,13-14] 
refers to the feature extracted from a DNN trained for phone 
classification with a bottleneck layer, where the term 
bottleneck implies one of the hidden layers is designed to 
have relatively small number of hidden units (denoted as Nbn 

in this paper) compared to others. Preliminary research [13] 
conducted on speaker identification (SID) shows that SID 
with PBN-features outperforms that with MFCCs under 
UBM/i-vector framework. The experimental results in [14] 
verified the hypothesis that the PBN-features provide 
information to the UBM during unsupervised clustering, 
which enables the UBM align better with phonetic units 
compared to that purely based on acoustic features. 
Essentially, PBN-feature is a low-dimension feature vector 
formed by the outputs of a bottleneck layer, which is a 
possible better representation since phone discriminative 

information learnt by a PBNN has been included. An 
example of PBNN is shown in Figure 2. To our knowledge, 
the effectiveness of PBN-features for i-vector SV with short 
voice commands task is still not clear. One of our research 
motivation in this study is to investigate the effectiveness of 
PBN-features for i-vector SV with short voice commands 
through intensive experiments. 

C. The stacked phonetic bottleneck feature 

It is noted that PBN-features yield a compact 
representation of phonetic related information for each 
frame independently and long-term context is still ignored. 
Therefore, in order to fully explore the contextual 
information in consecutive frames, we consider to extract 
the stacked bottleneck features (SBN-feature) as well which 
has been successfully used in language identification [11] 
and speech synthesis [15]. Studies [15] showed that the 
SBN-feature is able to provide a wide context around the 
current frame by stacking the PBN-features of multiple 
consecutive frames. In principle, SBN-feature is a cascaded 
PBN-feature extracted from a cascaded PBNN (two PBNNs 
are used in this study) and SBN-feature is frame-by-frame 
dependent and contains additional contextual information 
compared to PBN-feature.  

The process of SBN-feature extraction is shown in Figure 
3. It can be seen that from Figure 3, there are two PBNNs 
are cascaded (can be more than two PBNNs) and the 
SBN-feature is obtained at the outputs of the second PBNN 
bottleneck layer. More specifically, the first PBNN is 
designed to generate a stacked PBN-feature by taking 
shifted multi-frames as input. The frame shift size can be 
chosen and is indicated by Nw. The second PBNN just takes 
the stacked PBN-feature as input and to generate the 
SBN-feature. It is noted that, since the SBN-feature is 
generated by using multi-frames, SBN-feature is expected 
to hold much more contextual information than 
PBN-feature at the price of increasing computational cost. 
Luckily, since the PBNNs are used, the dimension of the 
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PBN-features is low and the price paying for obtaining 
SBN-feature with several frames are affordable. 

IV. PERFORMANCE EVALUATION 
In this subsection, we evaluate and compare the 

performance of five SV with short voice commands systems 
developed under i-vector framework which include the 
baseline ivector, PBNF-ivector, SBNF-ivector, 
(PBNF+MFCC)-ivector and (SBNF+MFCC)-ivector 
speaker verification system with short voice command. A 
benchmark dataset RSR2015 [1] is used. 

A. Database and Experiment settings 

Regarding to the RSR2015 dataset, the details are as 
follows: RSR2015 are uttered by 300 speakers (157 
male/143 female) under 9 different sessions. RSR2015 part 
I contains 30 phonetically-balanced sentences. RSR2015 
part II contains 30 short commands while RSR2015 part III 
has 13 random digit trials. In this study, to increase the 
training dataset, a new dev dataset (100 male and 94 female 
speakers) is created by merging the bkg and dev dataset of 
RSR2015. The new bkg dataset combines all 73 utterances 
of 194 speakers. A gender-independent UBM model with 
512 components is trained on the new bkg dataset, which is 
initially trained for 4 iterations of EM using a diagonal 
covariance matrix and then for an additional 4 iterations 
with a full-covariance matrix. A 400-dim i-vector model is 
trained on the new bkg dataset for 5 iterations of EM. A 
gender-dependent PLDA is trained on dev dataset of 
RSR2015 part II. The MFCC-feature in this study refers to 
the 60-dimention feature vector extracted from 25 ms of 
speech frames with 10 ms sliding window, consisting of 19 
MFCCs, log-energy and the first and second derivatives 
MFCCs. An energy-based VAD is used to eliminate 
non-speech frames. Evaluation is performed using the 
female evaluation set of RSR2015 (49 female) defined in 
[1]. We followed the protocol and performance measure in 
terms of Equal Error Rate (EER) and the minimum 
detection cost function (minDCF08) defined in [1]. Our 
i-vector SV-SVC systems have been implemented using the 
toolkit Kaldi [16]. 

B. Experiments and Results 

The training of the PBNN 
As discussed in Section 3.2, to obtain PBN-feature, a PBNN 
is built and trained. This PBNN is trained by using 
100-hours clean speech data from Librispeech [17]. In our 
study, a 6-layer PBNN is configured as shown in Figure 2. 
The input of the PBNN is 440-dim feature vector, consisting 
of 11 frames (5 frame on each side of current frame) where 
40 log mel-filterbank coefficients are extracted from each 
frame. For the BN layer, it is located at the third hidden 
layer with 80 neurons. For other three hidden layers, each 
has 1500 neurons. The output layer has 3393 units 
corresponding to triphone states.  The initialization of the 
PBNN, the fine-tuning, and the learning rate are set by 
following the settings used in [18]. 

Feature extraction 
1) Extraction of PBN-feature: With the trained PBNN, the 
mel-filterbank features of enrollment and testing set are 
passed through the PBNN. The output of bottleneck layer is 
extracted as the phonetic bottleneck feature (PBN-feature).  
2) The cascade feature of PBN-feature and MFCC feature 
(PBNF+MFCC): we form a new 140-dim feature vector by 
appending 60-dim MFCC feature to the 80-dim 
PBN-feature, which is termed as (PBNF+MFCC) in this 
context. 
3) Extraction of SBN-feature: Two PBNNs are stacked as 
shown in Figure 3. The configuration for the first PBNN is 
given in section 3.2. The configuration for the second 
PBNN is same as first PBNN except for the input feature. 
The bottleneck outputs from the first PBNN are sampled at 
times t-5, t and t+5 where the t is the index of the current 
frame. The contextual window size Nw is set to 3 with fixed 
step size 5 (since 5 frames are shifted in the first PBNN). By 
stacking the selected frames, the input feature to the second 
PBNN is 80 5=400. The 80-dim bottleneck output from the 
second PBNN is termed as SBN-feature.  
4) The cascade feature of SBN-feature and MFCC feature 
(SBNF+MFCC): Similarly, instead of using PBN-feature, 
we form a new 140-dim feature vector by appending 60-dim 
MFCC feature to the 80-dim SBN-feature (SBNF+MFCC). 

Table 1. Equal Error Rate (EER(%)) and minDCF08 Performance Comparison (the female evaluation set of RSR2015 partII for three 
types of non-target trials). 

Systems Feature 
(subscript:dimensionality) 

TW IW IC 
EER(%) minDCF08 EER(%) minDCF08 EER(%) minDCF08

i-vector  MFCC60 1.749 1.0481 0.295 0.1368 4.560 1.9690 
PBNF-ivector  PBN80 1.51 0.9819 0.261 0.1191 4.917 2.1391 
SBNF-ivector  SBN80  0.886  0.6107 0.182  0.1026 7.312 3.2779 

(PBNF+MFCC)-ivector PBN80+MFCC60 0.704 0.4598 0.0625 0.0372 3.418 1.5659 
(SBNF+MFCC)-ivector SBN80+MFCC60 0.352 0.2140 0.0341 0.0196 3.384 1.5630 
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Experiment 1: Performance comparisons 
First of all, this experiment is conducted to evaluate the 

performance of the five i-vector SV-SVC systems. To make 
it clearly, let’s make the following definitions for different 
SV with short voice commands systems evaluated. The 
“i-vector” refers to the baseline i-vector SV with short voice 
commands system by using 60-dim MFCC feature as input 
of the system. The PBNF-ivector, SBNF-ivector, 
(PBNF+MFCC)-ivector and (SBNF+MFCC)-ivector 
indicate four i-vector SV with short voice commands 
systems using PBN-feature, SBN-feature, (PBNF+MFCC) 
feature and (SBNF+MFCC) feature, respectively. 
Experimental settings are given in Section 4.1. The 
experimental results are given in Table 1. From Table 1, we 
can see that, for TW and IW trails, PBN-feature and 
SBN-feature do helps to improve the performance of SV 
with short voice commands systems and 
(SBNF+MFCC)-ivector outperforms other four systems. 
These results confirm that the adverse impact of 
content-mismatch can be eliminated by PBN-feature or 
SBN-feature which provides phonetic discriminative 
capability. However, for IC trials, SBNF-ivector works 
worst among all. To our understanding, PBN-feature or 
SBN-feature are not necessarily speaker discriminative and 
there is a possibility that the speaker-related information is 
lost to some extent in the training of PBNNs. Therefore, it is 
not surprising that the performance of SBNF-ivector is 
inferior to that of i-vector and PBNF-ivector. It is 
encouraged to see that (SBNF+MFCC)-ivector obtains the 
best result for IC trail. Overall, (SBNF+MFCC)-ivector 
performs best under the experimental conditions. Based on 
the results in Table 1, we may conclude that MFCC and 
SBN-feature have good complementary property for SV 
with short voice commands task. 

Experiment 2: (SBNF+MFCC)-ivector performance 
versus number of bottleneck neurons  

As shown in Table 1, (SBNF+MFCC)-ivector achieves 
the best results under experimental conditions. In this 
experiment we investigate the impact of Nbn on the 
performance of the (SBNF+MFCC)-ivector. Experimental 
conditions are the same as those in Experiment 1 except Nbn 

varying from 40 to 100 at the interval of 20. Results are 
given in Figure 4. From Figure 4, it is clear to see that the 
system with 80 bottleneck neurons gives the best 
performance for TW and IW trials, and gives second best 
performance for IC trial. As the Nbn varies from 40 to 100, 
the standard deviation of EER for TW, IW and IC are 0.037, 
0.0098 and 0.29 respectively. This finding shows that Nbn 
has larger impact on IC trials but small impact on TW trial 
and much small impact on IW trials. 

Experiment 3 Effects of different contextual window size 

This experiment evaluates the impact of Nw on the 
performance of the (SBNF+MFCC)-ivector for three 
different trails. Here, Nbn is 80 for two PBNNs and other 
experimental settings are the same as those in Experiment 1 
except Nw varies from 3 to 9 in the step of 2. Figure 5 plots 
EER results versus different Nw. From Figure 5, we can see 
that the EER drops as Nw increases for TW trial, which 
indicates SBN-features does help to improve the 
performance of SV-SVC due to its content mismatch 
detection ability. However, for IC trial, EER increases as Nw 

increases. This finding suggests that the SBN-features from 
more frames may lead to loss of the speaker discriminative 
information. Besides, for IW trial, the best result is obtained 
when Nw equals 5. As the Nw varies from 3 to 9, the standard 
deviation of EER for TW, IW and IC are 0.046, 0.0049 and 
0.37 respectively. This result reflects that Nw has larger 
impact on IC trials, but small impact on TW trial and much 
small impact on IW trials. 

V. CONCLUSIONS 
Text-dependent speaker verification with short voice 

commands faces technical challenges due to two practical 
constraints of lexical overlapping and short utterance length. 
Inspired by the success of bottleneck features in 
text-dependent speaker verification using fixed phrases (e.g. 
part I of RSR2015 database), this paper makes an effort to 
utilize the information provided by the phonetic bottleneck 
features (PBN-feature) as well as the stacked PBN-feature 
(SBN-feature) together with MFCC features for i-vector SV 
with short voice commands systems. Intensive experiments 
have been conducted to evaluate and compare the 
performance of our proposed SV with short voice 

                  
Figure 4: EER (%) of (SBNF+MFCC)-ivector versus Nbn                      Figure 5: EER (%) of (SBNF+MFCC)-ivector versus Nw  
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commands systems for TW, IW and IC non-target trials. On 
RSR2015 dataset, with a small training dataset, we observe 
that PBN-features and SBN-features provide content 
discriminative information and help to improve the 
performance of SV with short voice commands systems. 
The cascade feature (SBNF+MFCC) outperforms all other 
i-vector SV with short voice commands systems since it 
benefits from the content discriminative and speaker 
discriminative information. Performances of different 
stacked phonetic DNNs configurations (namely number of 
hidden units in bottleneck layer and size of contextual 
windows) are compared in the (SBNF+MFCC) ivector SV 
with short voice commands. From our findings, 80 
bottleneck neurons would be a good choice. Besides, wider 
contextual window does not necessarily decrease EER 
under IW and IC trials. Future work we will investigate the 
impact of noise on the EER of (SBNF+MFCC)-ivector for 
SV with short voice commands tasks.  
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