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Abstract—Acoustic feature extraction (AFE) is considered as one 
of the most challenging techniques for speech applications since 
the adverse environment noises always cause significant variation 
on the extracted acoustic features. In this paper, we propose a 
systematical AFE approach which based on stacked denoising 
autoencoder (SDAE) aiming at extracting acoustic features 
automatically. Denoising autoencoder (DAE), which is trained to 
reconstruct a clean “repaired” input from a corrupted version of 
it, works as the basic building block to form SDAE. Besides, the 
training set with clean and noisy speech ensures the SDAE has 
much powerful ability to extract the robust features under 
different noise conditions. Considering the speaker classification 
task using features extracted by the proposed approach for 
evaluation, intensive experiments have been conducted on TIMIT 
and NIST SRE 2004 to show SDAE with 3 hidden layers (3L-
SDAE) gives better performance than shallow layers. The results 
also show that the features extracted by 3L-SDAE performs 
better than MFCC features when SNR is lower than 6dB and act 
more robustly when SNR decreases. What’s more, for different 
types of noises at SNR of 0dB, the accuracy of speaker 
classification using 3L-SDAE features is higher than about 84% 
while MFCC features is lower than 77%. 
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I.  INTRODUCTION  
In traditional realization of speech applications, there are 

several famous and commonly used acoustic features, such as 
MFCC [1], LPCC [2] and PLP [3]. Among them, the most 
widely used acoustic features is Mel-frequency cepstral 
coefficients (MFCC for short), which takes advantage of 
source/filter deconvolution from the cepstral transform and 
perceptually realistic compression of spectra from the Mel 
pitch scale [4]. Obviously, MFCC is a kind of hand-crafted 
feature representations. Researches show that the hand-crafted 
features may not always achieve good performance in practical 
applications due to the complex application scenarios, 
consisting of different types of noises, non-stationary condition 
or different noise levels. Hence, it is desirable that the intrinsic 
acoustic features of the speech can be automatically extracted 
and robust to the noise, especially non-stationary noise. 

Recent researches show that deep neural networks (DNNs) 
have strong modelling ability and have been successfully 
applied in various fields, such as face recognition [6], speech 
enhancement [7] and image classification [8]. Recent insightful 
progress in training deep architecture by Hinton [5] using a 
greedy layer-wise unsupervised learning procedure has 

resurrected the interest of the DNN. Specifically, there are 
three important stages in this strategy: firstly, pre-training one 
layer at a time in a greedy manner; then, using unsupervised 
learning at each layer in order to preserve information from the 
input; finally, fine-tuning the whole network with respect to 
ultimate criterion of interest. It has been reported that, in 
general, training DNN with greedy layer-wise algorithm can 
avoid local minima and gradient diffusion problems effectively. 

Autoencoder is a kind of simple DNN models which aims 
to transform input into output with the least possible amount of 
distortion [9]. Recently, Y. Bengio proposed a new model 
called Denoising AutoEncoder (DAE) which is trained to 
reconstruct a clean “repaired” input from a corrupted version of 
it, and provide a new solution to extract robust features. In 
practical, several DAEs are stacked to form SDAE which is 
trained in an unsupervised bottom-to-up manner, and then a 
supervised learning is conducted to train the top layer and fine-
tune the entire architecture, which has been verified significant 
effect of denoising and successfully applied in noisy image 
classification and recognition [10]. 

Motivated by the key points discussed above, in this paper, 
we focus on developing a robust acoustic feature extraction 
system based on stacked DAE (AFE-SDAE). The unlabeled 
spectrograms are used in SDAE pre-training stage in an 
unsupervised manner, and then the AFE-SDAE system is fine-
tuned with a few labeled spectrograms in a supervised manner. 
The effectiveness of the extracted acoustic features as well as 
its robustness to noise has been evaluated under different SNR 
levels and different noise types. It is encouraged to see that, 
compared to MFCC feature, the acoustic features extracted by 
3L-SDAE are more robust when SNR is lower than 6dB, and 
perform better under different noisy condition at SNR of 0dB.   

The rest of this paper is organized as follows. Sect. II 
introduces the architecture of denoising autoencoder; the 
proposed acoustic feature extraction system is described in 
Sect. III; Sect. IV shows the experimental setup and results; 
Sect. V concludes the paper.  

 
Figure 1. The architecture of denoising autoencoder 
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II. DENOISING AUTOENCODER 
A denoising autoencoder is shown in Fig. 1, which is 

trained to reconstruct a clean “repaired” input from a corrupted 
version of it. This is done by first corrupting the initial input x 
into its corrupted version x' by means of a stochastic mapping 
x'~qD(x'|x). Corrupted input x' is then taken as the input of an 
autoencoder [9] where the desired output is x. As shown in 
Fig.1, a hidden representation will be h'=f (x') and the 
reconstruction is y'=g '(h'). The parameters of the network (� 
and �') will be trained to minimize the average reconstruction 
error over a training set, that is, to make y' as close as possible 
to the uncorrupted input x. Compared to the standard 
autoencoder, the key difference is that y' is now a deterministic 
function of x' rather than x. Obviously, this approach achieves 
a far more flexible mapping than that of standard autoencoder 
and leads to suppress the adverse effect of the noise in feature 
extraction [9, 11]. As the result, the reconstruction error can be 
described as L(y',x)=||y'-x||2 with an affine decoder. 

III. THE PROPOSED AFE-SDAE  SYSTEM 
The proposed AFE-SDAE system is illustrated in Fig. 2. In 

the feature learning stage, the SDAE is pre-trained and fine-
tuned with a collection of spectrograms corresponding to clean 
and noisy speech without label or with label. Specifically, the 
clean and noisy speech is pre-processed into spectrograms, and 
then the unlabeled spectrograms are used in SDAE pre-training 
while the labeled spectrograms are used in SDAE fine-tuning. 
In the feature extraction stage, spectrogram of noisy speech is 
fed to the well-trained SDAE and the output of the SADE is the 
extracted acoustic features. 

A. Pre-processing 
Pre-processing of speech waveform is shown in Fig. 3. The 

step “processing” in Fig. 3 contains sampling of the speech 
waveform, quantization, pre-emphasis and windowing. The 
output of the pre-processing block is a spectrogram of clean or 
noisy speech. Namely, each utterance will be transformed into 
a spectrogram x (x ), where m and n represents frequency 
and frame number respectively. Then the mean normalization 
of x is performed and a normalized spectrogram is denoted as: 

 ( ) /x_valid = x - � �   (1) 

where � is the mean vector and � is the standard deviation. 
x_valid is used as the input of SDAE. 

B. SDAE Pre-training 
The block of SDAE pre-training is illustrated in Fig. 4. 

Specifically, Fig. 4 (a) shows the pre-training process of the 

first layer of SDAE, of which the input is spectrogram 
corresponding to noisy speech. The noisy spectrogram as 
corruption is only used for the initial denoising-training of each 
individual layer. Hence, once the weight matrix W1 
representing the mapping f of the first layer has been learnt, 
the resulting representation of the first layer is applied as the 
input of the second layer of SDAE. The process of pre-training 
the second layer is shown in Fig. 4 (b), in which the training 
algorithm is similar to that of the first layer. The SDAE is 
trained layer-by-layer in an unsupervised greedy fashion. 
Essentially, the pre-training step is to offer good initialization 
parameters for the fine-tuning stage. 

C. SDAE Fine-tuning 
After the pre-training stage, the parameters of all the layers 

of SDAE which denote as W1, W2, �, Wly_num are well pre-
trained. Then the output of the last layer on the top can be used 
as feature representation to a stand-alone classifier. As 
illustrated in Fig. 5, a softmax classifier [12] is added to the top 
of the SDAE in this paper, in which the parameters of all layers 
including classification layer namely W1, W2, �, Wly_num, Wsup 
can then be jointly fine-tuned to minimize the error in 
predicting the supervised target (e.g., speaker class) by 
performing BP algorithm. With the accomplishment of the 
fine-tuning process, the well-trained SDAE is formed and can 
be used to extract acoustic features from spectrogram. 

IV. EXPERIMENTS AND RESULT ANALYSIS 
In this section, we mainly conduct the experiments to 

demonstrate the performance of the proposed AFE-SDAE 
system. Only for the purpose of visualization, we take the 
speaker classification task as an example. 

 
Figure 2. Block diagram of the proposed AFE-SDAE system 

 

Figure 3. Pre-processing of each noisy utterance 

           
(a) Pre-training of the first layer of the SDAE 

 
(b) Pre-training of the second layer of the SDAE 

     Figure 4. Description of SDAE pre-training 
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A. Experiment Setup 
Without loss of generality, the following experiments are 

conducted on the commonly used databases TIMIT and NIST 
SRE 2004 corpus. For simplicity, the subset of TIMIT database 
[13] and the subset of the NIST SRE 2004 corpus have been 
considered. The subset we choose contains 168 speakers with 
10 utterances per speaker and 168 speakers with training 
segment duration of about 5 minutes of a conversation, 
respectively. Besides, in order to verify the robustness of the 
proposed feature learning approach, the additive noises from 
NoiseX-92 database have been used to generate the noisy data 
with different type noises at different SNR levels.  

The proposed AFE-SDAE system consists of more than one 
hidden layer with 150 units in each layer. The optimal number 
of hidden layer is discussed in our experiments. The number of 
epoch for each layer’s pre-training is 50. Learning rate of pre-
training is set to 0.5. We use the minimum mean square error as 
the loss function of fine-tuning. The activation function is 
sigmoid function. The input of SDAE is a 161-dimension 
vectors corresponding to the spectrogram of the utterance 
which is sampled at 8000Hz and segmented by a 20ms 
Hamming window with 10ms overlaps. Meanwhile, the input 
vectors are normalized to zero mean and unit variance. In the 
training phase, the training set which being a collection of 7 
utterances per speaker randomly selected from the database is 
used to train the SDAE model. For speaker classification 
application, we utilize the softmax classifier consisting of 168 
units to classify 168 speakers [13] and the learned acoustic 
feature is viewed as the input of classifier. In the speaker 
classification trails, the rest utterances of each speaker from 
database with combination of noisy types and SNR levels are 
selected to generate the test set. The classification accuracy is 
termed as the performance measure for the proposed learned 
features. The experimental results are averaged over 10 trials. 

B. The Robustness to Noise 
In order to show the denoising ability of the AFE-SDAE on 

speaker classification task, the results of AFE-SAE (SAE is 
short for Stacked Autoencoders) are compared. The difference 
between AFE-SDAE and AFE-SAE lies on whether the input 
is corrupted by noise. The experiment is conducted on the 
subset of TIMIT database under both noise-free and 0dB 
additive random noise conditions. 

The speaker classification accuracy is shown in Table. I. 
The results illustrate that the performance of the acoustic 
features extracted by AFE-SDAE is comparable to that of 
AFE-SAE under noise-free condition. But the performance of 
the acoustic features extracted by AFE-SAE greatly degrades 
in 0dB noise environment, while the one by AFE-SDAE almost 
maintains the performance under noise-free condition. These 
experimental results indirectly show that the AFE-SDAE is 
able to extract the acoustic features robust to noise. 

C. The Impact of the Depth of AFE-SDAE 
As discussed above, AFE-SDAE is a deep network. 

Experiment in this section aims at evaluating the impact of the 
depth of AFE-SDAE on its performance, which means to find 
the optimal number of hidden layers for the specific speaker 

classification task. The dataset used here is the subset of both 
noiseless TIMIT speech and noisy NIST2004 SRE corpus. 
Three network structures are considered: the single-layer, two-
layer and three-layer AFE-SDAE, which are represented as SL-
SDAE, 2L-SDAE and 3L-SDAE for short, respectively. The 
performance of the speaker classification experiment is given 
in Table. II, in which the result shows that the performance on 
different database is slightly different, but we observe the 
similar fact that the classification accuracy gets better with the 
increase of the number of hidden layers. Generally speaking, 
for the speaker classification task, 3L-SDAE gives the best 
result. The reason may be that more hidden layers increase the 
depth of the network which can learn more intrinsical 
information from original speech data. 

D. Performance Comparision with MFCC 
Following the results in Section C, we will further evaluate 

the performance of the SL-SDAE, 2L-SDAE and 3L-SDAE 
under different noisy conditions on speaker classification task, 
where the SNR level varies from 0 to 25dB incremented by 
5dB. As comparison, we take the conventional MFCC feature 
[14] into consideration. The experimental results are presented 
in Fig. 6. It is quite clear to see that the accuracy of speaker 
classification with features extracted by 3L-SDAE is higher 
than that with features extracted by 2L-SDAE and SL-SDAE at 
all SNR level. It also shows that the accuracy of speaker 
classification using the 3L-SDAE features is much higher than 
that using MFCC features when SNR is less than about 6dB 
(refers to low SNR noise condition). However, the case goes 
opposite when SNR goes higher. This further validates that 
MFCC features hold intrinsic characteristics of speech, but it is 
easily corrupted by strong noise. It is also encouraged to see the 
feature extraction capability of the AFE-SDAE under low SNR 

            
   Figure 5. Illustration of two-layer SDAE fine-tuning for classification 

     TABLE .I    COMPARISONS OF ACCURACY OF AFE-SAE AND AFE-SDAE 

Network 
Architecture 

Experiment Condition 
without noise SNR at 0dB noise 

AFE-SAE 87.16% 68.75% 
AFE-SDAE 87.41% 83.86% 

TABLE .II    SPEAKER CLASSIFICATION ACCURACY VS DEPTH 

Database 
Type 

number of hidden layer  
SL-SDAE 2L-SDAE 3L-SDAE 

TIMIT 87.24% 89.72% 91.01% 
NIST 2004 83.75% 85.19% 86.74% 
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condition.  

E. Performance Under Different Types of Noises 
From Section D we know that the acoustic features 

extracted by 3L-SDAE have got the best performance in 
speaker classification tasks, so we further evaluate the 
performance of AFE-SDAE by comparing 3L-SDAE features 
and MFCC on speaker classification task under different types 
of noises at the SNR of 0dB. Other settings are the same as 
Section D. The noises consist of white noise, babble noise, 
buccaneer noise, destruction noise and factory noise taken from 
NoiseX-92. The average accuracy with 10 trials on each group 
was plotted in Fig. 7. From the experimental results, it is clear 
to see that for different types of noises, the average accuracy 
using 3L-SDAE features ranges from about 83% to 86%, while 
that using MFCC features is below about 77%. It tells that the 
acoustic features extracted by 3L-SDAE is quite robust to 
different noise types and outperform MFCC under low SNR 
level conditions, which is a desirable properties for real 
applications since the noise environment is non-stationary and 
unpredictable. 

V. CONCLUSION 
In this paper, a robust acoustic feature extraction approach 

based on stacked denoising autoencoder (AFE-SDAE) has been 
developed and investigated. The training strategy is derived 
following the recent proposed greedy layer-wise training 
algorithm. In training stage, the spectrograms generated from 
the subset of TIMIT and NIST2004 SRE corpus have been 
used to train the proposed AFE-SDAE in both unsupervised 
and supervised manners. In speech applications, the system 
takes spectrogram as input and extracts acoustic features 
automatically. Intensive experimental results have validated 
that the acoustic features extracted by the proposed AFE-
SDAE system performs better and more robust than MFCC 
when SNR decreases less than 6dB. Furthermore, the accuracy 
of speaker classification using the proposed features is higher 
than about 84% (while lower than about 77% for MFCC 
features) under different noise conditions at the SNR of 0dB, 
such as babble noise, buccaneer noise, destroy noise and 
factory noise. The further research will focus on improving the 
performance of AFE-SDAE under different SNR conditions.  
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  Figure 6. speaker classification accuracy using three different features 
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  Figure 7. speaker classification accuracy under different type of noises 
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