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ABSTRACT

We present a locality preserving K-SVD (LP-KSVD) algo-
rithm for joint dictionary and classifier learning, and further
incorporate kernel into our framework. In LP-KSVD, we
construct a locality preserving term based on the relations
between input samples and dictionary atoms, and introduce
the locality via nearest neighborhood to enforce the locality
of representation. Motivated by the fact that locality-related
methods works better in a more discriminative and separable
space, we map the original feature space to the kernel space,
where samples of different classes become more separable.
Experimental results show the proposed approach has strong
discrimination power and is comparable or outperforms some
state-of-the-art approaches on public databases.

Index Terms— Discriminative Dictionary Learning, Lo-
cality Preserving K-SVD, Kernel Space.

1. INTRODUCTION

Sparse coding has served an important role in a wide variety
of vision problems, ranging from image restoration [1], image
denoising [2] to image classification [3], etc. The technique
linearly represents a query image y by a few atoms from a
dictionaryD, i.e., y=Dx or y≈Dx, where x is sparse coef-
ficients. In image classification, one classifies a query based
on the sparse codes. Thus, the discrimination power of the
dictionary is of considerable importance. Wright et al. [3]
employ the entire set of training samples as the dictionary
and achieve promising results on face recognition. However,
the method is time-consuming, since it needs to solve the l1
minimization problem, which reduces its scalability for large
scale databases. Alternatively, some off-the-shelf bases (e.g.
Fourier, wavelets) can also be used as dictionaries [4], yet
these dictionaries might not be the optimal choices in cer-
tain tasks like image classification or face recognition. Learn-
ing the desired dictionary from training samples has been re-
ported to bring additional performance gain to classification
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Fig. 1. Intuitive comparison among D-KSVD, LC-KSVD and LP-KSVD.
The selected atoms for representation are highlighted.

tasks [5–11]. Dictionary learning methods boosts the perfor-
mance from perspective of coding coefficients, dictionary, or
both. Group sparse coding [9,10] regularizes the coding coef-
ficients to be similar within the same class. Graph-regularized
sparse coding [11] combines geometrical information into
coding coefficients and dictionary in order to preserve the lo-
cal manifold structure. Moreover, dictionaries with labels are
learned to exploit the class-specific representation residual for
classification [3,7,8]. For instance, [8] learns a structured dic-
tionary via Fisher criteria and enforce coding coefficients to
have small within-class scatter but big between-class scatter.

Of great interest is a series of recently proposed dictionary
learning approaches [5, 6, 12] via K-SVD algorithm [13]. S-
ince K-SVD algorithm focuses on the representation power
without considering the discrimination power, [12] proposes
to jointly learn a classifier based on coding coefficients for
classification tasks. Pham et al. [12] combine the classifica-
tion error of the linear classifier, the representation error of
data as well as the regularization terms into the objective func-
tion, minimizing it by iteratively updating the variables while
preserving the sparsity. However, this approach involves mul-
tiple additional optimizations, which is inefficient and easy to
be trapped into local minima. To address this, discriminative
K-SVD (D-KSVD) [5] eliminates the representation error ter-
m of unlabeled data and formulates the objective function into
the K-SVD framework. In order to further enhance the dis-
crimination power of the learned dictionary, label consisten-
t K-SVD (LC-KSVD) [6] constructs a label consistent term
and applies similar method to formulate the optimization into
the K-SVD framework. The label consistent term supervises
each class has similar sparse codes, exhibiting discrimination.

Inspired by recent progress obtained via enforcing local-
ity [14, 15], we propose the locality preserving K-SVD (LP-
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Fig. 2. Comparison between LP-KSVD in original space and LP-KSVD in
kernel space. For LP-KSVD, the label information (label) in dictionary is not
necessarily a prior. We show the label just to imply the hidden unsupervised
label consistency when applying LP-KSVD in kernel space.

KSVD) approach in which dictionary and classifier are joint-
ly learned similar to [5, 6]. Specifically, we first construct a
penalty term that enforces the representation by local dictio-
nary atoms similar to the input sample and penalises the rep-
resentation by nonlocal (dissimilar) atoms. The classification
error term, representation error term and locality penalty term
are then jointly optimized by the K-SVD algorithm. An intu-
itive comparison among D-KSVD, LC-KSVD and LP-KSVD
is provided in Fig. 1. We can see that the locality-preserving
term could keep the relationship between input samples and
dictionary atoms in dictionary learning, making the nearby
samples (usually with the same label) represented by similar
dictionary atoms. In fact, Laplacian sparse coding [16] also
uses the local information to construct graph Laplacian for
feature quantization. It preserves the consistence in sparse
representation of similar local features with graph Laplacian
and apply one-vs-all SVM as classifier, while we enforce
locality into coding coefficients and dictionary as suggested
in [14] and jointly optimize a classifier via K-SVD.

The label consistent term in LC-KSVD serves a similar
role to the classification error term. They both penalize the
dictionary representation from classes different from the in-
put class. On the other hand, different from classification
error, the locality preserving term incorporates the neighbor-
hood information into dictionary and coding coefficients, thus
retaining more crucial information. We believe the locality p-
reserving term is endowed with more discriminative power
than label consistent term. The representation obtained via
the proposed dictionary learning can be further enhanced by
exploiting the nonlinear structure within the data [17]. [18]
also shows the benefit of representation power from kernel
dictionaries in classification tasks. Moreover, the same ben-
efit is reported in [19, 20]. Different from [18], however, we
specifically aim at the image classification by jointly learning
the optimal linear classifier and simultaneously taking local-
ity into consideration. Further, mapping the original feature
space into kernel space implies more separable representation
between different classes can be achieved as Fig. 2 illustrates,
since the locality preserving term is imposed in kernel space.

2. PRELIMINARIES

Given an input image set matrix Y ={y1,y2, · · · ,yk}∈
Rn×k in which each column vector yi represents a n-

dimensional input sample, we let D={d1,d1, · · · ,dm}∈
Rn×m be the dictionary that is composed of m training sam-
ples, and X={x1,x2, · · · ,xk}∈Rm×k be the coefficien-
t matrix where each column is a sparse code for an input
sample. Learning a dictionary to sparsely represent Y can
be accomplished by solving the minimization problem:

⟨D,X⟩ = arg min
D,X
∥Y −DX∥22 s.t. ∀i, ∥xi∥0 ≤ c (1)

where ∥Y − DX∥22 denotes the representation error, and c
is a sparsity constraint parameter which enforces each sparse
code should have fewer than c nonzero values. This objective
function is exactly what K-SVD algorithm optimizes with,
and it emphasizes more on representation power instead of
discrimination power. Therefore, [5,6] jointly learn a classifi-
er at the same time and combine the classification error in the
objective function. Towards this end, a classifier g(x,W ) is
constructed with parameter matrix W ∈ R×m. An optimal
classifier should satisfy

W = argmin
W

∑
i

L
{
li, g(xi,W )

}
+ λ∥W ∥2F (2)

where L is the classification loss function that is usually de-
fined as logistic loss function or quadratic loss function, li
is the label of yi, and λ is a regularization parameter. Com-
bining Eq.(1) and Eq.(2) can jointly learn the dictionary and
classifier as in [5, 6, 12] by defining objective function:

⟨D,W ,X⟩ = arg min
D,W ,X

∥Y −DX∥22 +
∑
i

L
{
li, g(xi,W )

}
+ λ∥W ∥2F

s.t. ∀i, ∥xi∥0 ≤ c

. (3)

When using the l2 norm as the loss function, the case be-
comes [12] without the unlabeled data therein, and it is exact-
ly the same case in D-KSVD [5]. For LC-KSVD [6], it further
enforces a label consistent term into the objective function,
making the coding coefficients concentrate on its own class.

3. KERNEL DICTIONARY AND CLASSIFIER
LEARNING VIA LOCALITY PRESERVING K-SVD

3.1. Locality Preserving K-SVD

As suggested in locality-constrained linear coding (LLC) [14]
and local coordinate coding (LCC) [15], locality plays a sig-
nificant role in classification. We therefore incorporate local-
ity preserving constraint into the objective function:

⟨D,W ,T ,X⟩ = arg min
D,W ,T ,X

∥Y −DX∥22 + α∥H −WX∥22
+ β∥P − TX∥22 + λ∥W ∥2F

s.t. ∀i, ∥xi∥0 ≤ c

(4)



where α, β are scaling parameters that control the contribu-
tion of classification error term and locality preserving ter-
m respectively, and ∥Y − DX∥22 and ∥H − WX∥22 are
representation error term and classification error term respec-
tively. H={h1,h2, · · · ,hk}∈Rv×k denotes the class labels
of the input images Y . Each column of H is a label vec-
tor, formulated as hi={0, 0, · · · , 1, · · · , 0, 0} in which 1 in-
dicates the positive label in the according category. W de-
notes a set of parameters for a linear classifier. Most im-
portantly, locality preserving term ∥P − TX∥22 is added to
penalize the representation which is not locally concentrat-
ed. To design P , we first calculate the qi nearest neighbors
of each input image yi in dictionary, and then use ω(q,yi)
to denote the positions of these q nearest neighbors in dic-
tionary, where nonzero elements stand for the positions of
nearest neighbors in dictionary. For example, in ω(q,yi)=
{1, 0, · · · , 0, 1, 0, · · · , 1, 1}T , 1 represents the positions of n-
earest neighbors. Therefore, we constuct the matrix P via

P =
{
ω(q,y1), ω(q,y2), · · · , ω(q,yk)

}
. (5)

Consider an example that D has 4 samples from 2 cat-
egories, each category with 2 samples. Given Y of 4 in-
put samples, 2-nearest neighbors of y1,y2,y3 and y4 are
(d1,d3), (d1,d2), (d3,d4) and (d2,d4) respectively. Then
P is constructed as

P =


1 1 0 0

0 1 0 1

1 0 1 0

0 0 1 1

 . (6)

However, the desired D is not given in the first place, so we
optimize a D with the locality preserving term removed and
use it to initialize P . P contains all the locality information
for the input samples, which is essential to preserve locali-
ty. T is a linear transformation matrix, which transforms the
original sparse codes x to be more locally concentrated. Par-
ticularly, we construct the locality term in a similar form to the
classification error so as to conveniently formulate the objec-
tive function for K-SVD algorithm. Furthermore, we believe
the representation codes should still be sparse since locality
must lead to sparsity but not necessary vice versa.

In order to apply the K-SVD algorithm to efficiently find
the optimal solution, we drop the regularization term and fur-
ther reformulate the objective function in Eq.(4) as

⟨D,W ,T ,X⟩ = arg min
D,W ,T ,X∥∥∥∥∥∥∥


Y

α
1
2H

β
1
2P

−


D

α
1
2W

β
1
2T

X
∥∥∥∥∥∥∥
2

2

s.t. ∀i, ∥xi∥0 ≤ c

(7)

which is the generalized form optimized in [13]. We can di-
rectly use the K-SVD algorithm to solve the problem.

3.2. Objective Function

As formulated in Eq.(4), the objective function for dictionary
learning contains four penalty terms, which are the represen-
tation error ∥Y −DX∥22, classification error ∥H −WX∥22,
locality preserving term ∥P − TX∥22 and parameter regular-
izer ∥W ∥2F respectively.

Representation error: It is a fundamental constraint in
sparse coding, which is used to keep the estimation close to
the input sample in order to keep the representation power.

Classification error: As the main contribution to the dis-
crimination power, this constraint penalize misclassifications.
It makes sparse codes more discriminative and also learns a
linear classifier for classification in a supervised way, avoid-
ing to use dictionary classifier [3], since K-SVD algorithm
may disable such classifier.

Locality preserving term: Motivated by the fact that the
samples in the same class usually have similar local dictio-
nary atoms, we construct this term to preserve the locality of
representation and bring more discrimination power. The dis-
tance metric used to find neighbors of input samples is flexi-
ble, but we use simple l1 distance in experiments. The direct
intuition of locality preserving term is that the sparse codes
become locally concentrated after a linear invertible transfor-
mation. In fact, the locality information is preserved within s-
parse codes via such constraint. We letXN=TX and further
rewriteDN=DT−1,WN=WT−1. Thus the penalty terms
become ∥Y −DNXN∥22, ∥H−WNXN∥22 and ∥P−XN∥22
respectively. From this formulation, we can clearly see the
representation error and classification error stay the same for-
m as in Eq.(4), while the locality preserving term make the
sparse codes represented by local atoms.

3.3. Learning in Kernel Space

We can easily generalize a linear classifier into a nonlinear
one via kernel function [21, 22], enhancing the discrimina-
tion power of the original linear classifier. To this end, we
use kernel function to create a nonlinear mapping mechanism
y∈R 7→ϕ(y)∈H where H is a unique associated reproduc-
ing kernel Hilbert space (RKHS). We map every sample into
higher dimensional kernel space via transformation ϕ and use
the kernel function K(y′,y′′)=ϕ(y′)Tϕ(y′′), where y′,y′′

are different samples and ϕ denotes the implicit nonlinear
mapping associated with the kernel function K(y′,y′′). The
kernel dictionary is written as

ϕ(D) =
{
ϕ(d1), ϕ(d2), · · · , ϕ(dm)

}
∈ Rs×m (8)

where s is the dimension of the kernel space that is much larg-
er than the dimension of the original feature space. Similarly,
the input image set Y is kernelized to ϕ(Y ). Thus, the repre-
sentation error term is rewritten as ∥ϕ(Y )− ϕ(D)X∥.

However, the high dimensional kernel space may lead to
high computational complexity, so we will perform dimen-



sionality reduction in kernel space, similar to [19,20]. Specif-
ically, the projection matrix R∈Rs×u(u<s) is constructed
following the similar approach in KPCA [22]. Combining
the projection matrixR, we derive the new representation er-
ror term ∥RTϕ(Y )−RTϕ(D)X∥. Further, we assume that
each column vector in R is a linear combination of samples
in kernel space, and decomposeR as

R =
{
R1, · · · ,Rs

}
= ϕ(D) ·Ψ

=
{
ϕ(d1), · · · , ϕ(dm)

}
·
{
ψ1, · · · ,ψu

} (9)

in which ψi is a m-dimensional column vector that is al-
so linear projection coefficients of columns in ϕ(D), satis-
fying Ri=ϕ(D) ·ψi. Moreover, Ψ is also called pseudo-
transformation matrix [19]. Putting Eq.(9) into the represen-
tation error, we can derive ∥ΨTK(D,Y )−ΨTGX∥ where

K(D,Y ) =
{
K(D,y1), · · · ,K(D,yk)

}
=


K(d1,y1) · · · K(d1,yk)

...
. . .

...
K(dm,y1) · · · K(dm,yk)


, (10)

and G (Gij=K(di,di)), also equal to ϕ(D)T ·ϕ(D). Par-
ticularly, G is defined as the kernel gram matrix that should
be symmetric and positive semi-definite based on Mercer’s
theorem. Since G and K(D,Y ) are known as a prior, di-
mensionality reduction now focuses on finding Ψ instead of
R. Various methods to find Ψ are provided in [23] 1 . There-
fore, the kernel dictionary learning can be formulated as

⟨G,W ,T ,X⟩ = arg min
G,W ,T ,X∥∥∥∥∥∥∥


ΨTK(D,Y )

α
1
2H

β
1
2P

−

ΨTG

α
1
2W

β
1
2T

X
∥∥∥∥∥∥∥
2

2

s.t. ∀i, ∥xi∥0 ≤ c

(11)

from which we can learn a locality-preserving kernel dictio-
nary and a corresponding optimal linear classifier. The dictio-
nary learned this way addresses the desirable locality proper-
ty and is able to adapt to the underlying structure of the input
samples for better representation and classification.

3.4. Optimization

Following the basic protocol in the original K-SVD algorith-
m, we can efficiently find the optimal solution for Eq.(11).
For conciseness, we let Y ′={ΨTK(D,Y ), α

1
2H, β

1
2P }T

andD′={ΨTG, α
1
2W , β

1
2T }T , rewriting Eq.(11) as

⟨D′,X⟩ = arg min
D′,X

∥Y ′ −D′X∥22 s.t. ∀i, ∥xi∥0 ≤ c

(12)
1We find no advantages of using complex method to construct Ψ in our

experiments, so we simply use identity matrix as Ψ in order to retain the
intuitive interpretation.

which is identical to the problem that K-SVD algorithm
solves. K-SVD algorithm updates the dictionary atom by
atom until convergence by solving the following problem:

⟨d′k,xk
T ⟩ = arg min

d′
k,x

k
T

∥Ek − d′kxk
T ∥2F (13)

where xk
T is the kth row in X (xk is the kth column), and

Ek=Y −
∑

j ̸=k(d
′
jx

j
T ). Note that, Ek denotes the error for

all input samples while the kth atom is removed. Then we
discard the zero entries in xk

T and obtain the row vector xk
R.

We also define ER
k to stand for the selection of error column

vectors that correspond to samples that use the atom dk. Thus
Eq.(13) is equivalent to the following minimization:

⟨d′k,xk
R⟩ = arg min

d′
k,x

k
R

∥ER
k − d′kxk

R∥2F . (14)

Singular value decomposition (SVD) can be utilized to
solve Eq.(14). For the error matrix ER

k , SVD decomposes
it to ER

k =UΣV T . According to the decomposition results,
the solution for d′k and the representation coefficients xk

R is
d′k=U(:, 1),xk

R=Σ(1, 1) ·V (:, 1). Then the nonzero entries
in xk

T are replaced by xk
R. The updating is done iteratively

until convergence. The algorithm is given in Algorithm 1.

Algorithm 1 Kernel Dictionary and Classifier Learning via
LP-KSVD

Input: Y ,P (0),H,Ψ,K( · ), α, β, c, r, i=0
Output: Dke(Dke=ΨTG),T ,W

1: Obtain D(0) by constructing the dictionary with training
atoms. It does not matter whether atoms of the same label
are grouped together.

2: Kernelize the dictionary by computing Dke=ΨTG
where G=ϕ(D(0))T ·ϕ(D(0)). In the kernel dictionary,
K-SVD algorithm is used to initializeDke(0).

3: Kernelize the input samples Y via ΨTK(D,Y ).
4: Compute sparse codesX(0) for ΨTK(D,Y ) via Eq.(1)

withDke(0) as dictionary.
5: Initialize T ,W with T (0),W (0) via Eq.(15).
6: Initialize Y ′,D′ which are defined in Eq.(14).
7: Update each column and the corresponding representa-

tion coefficient by iteratively solving Eq.(14) via K-SVD
algorithm.

8: Obtain ΨTG,T ,W via Eq.(16).
9: Let i←i + 1 and use the newly learned dictionary to re-

compute P (i).
10: If i = r, output ΨTG,T ,W ; Else, go to Step 1;

For initialization, we first compute P (0) via the D∗ ob-
tained from Eq(11) with β=0. It is equivalent to removing
the locality preserving term to obtain D∗. Then we use D∗

to computeP (0). ForW (0),T (0), we use multivariate regres-
sion to initialize:

W (0) =H(X(0))T
(
(X(0))(X(0))T + µ1I

)−1

T (0) = P (X(0))T
(
(X(0))(X(0))T + µ1I

)−1
(15)



where H,P are given a prior, µ1, µ2 are two small parame-
ters, and I represents an identical matrix.

Since P is updated iteratively, the stopping criteria needs
to be discussed. We perform a experiment to evaluate the con-
vergence ofP , as shown in Fig 3(a). The recognition rate cor-
responding to P (i) in each iteration is also shown in Fig 3(a).
From Fig. 3(a), we can see the matrix P becomes stable after
approximately 5 times iterations. In fact, we have tested on
multiple database and found out 5 times iterations are enough
for an appropriate P . Moreover, we sum up P from each it-
eration (totally 100 iterations), and obtain PΣ=

∑
iP

(i). We
binarize PΣ and draw it in Fig. 3(b) where black is 0 and
white is 1. It shows that locality preserving term has hidden
label consistent property, since label consistent matrix [6] is
a block-diagonal matrix. LP-KSVD is adaptive to the local
relations between atoms and training samples. Interestingly,
in an ideal scenario that samples of each label are perfectly
separated, LP-KSVD becomes LC-KSVD.

3.5. Classification Strategy

We compute the sparse codes of the query with the learned
kernel dictionary, and then use the linear classifier to get
the label. The original K-SVD algorithm requires D′ to
be normalized column-wise, so W is learned with the un-
normalizedDke=ΨTG={dke1 , · · · ,dkem }, making it impos-
sible to directly use dictionary Dke and classifier parameters
W={w1, · · · ,wm} for classification. We do the following
operations to obtain D̂ke and Ŵ :

D̂ke = {d̂ke1 , · · · , d̂kem } =
{

dke1
∥dke1 ∥2

, · · · , dkem
∥dkem ∥2

}
Ŵ = {ŵ1, · · · , ŵm} =

{
w1

∥dke1 ∥2
, · · · , wm

∥dkem ∥2

} . (16)

The relation between the desired ⟨D̂ker, Ŵ ⟩ and the ob-
tained ⟨Dker,W ⟩ is shown as follows (T̄ ,T are left out):

y ≈Dkex =
∑

xj∥dkej ∥2
dkej
∥dkej ∥2

=
∑

x∗
j d̂

ke
j = D̂kex∗

h ≈Wx =
∑

xj∥dkej ∥2
wj

∥dkej ∥2
=

∑
x∗
j ŵj = Ŵx∗

(17)
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Fig. 3. (a) An example of the convergence of P on extended YaleB database.
(b) Binary Representation of matrix PΣ. This experiment is performed on
extended YaleB database and under the same settings in [6].
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Fig. 4. (a) Classification accuracy on Caltech101 database. (b) Evaluation of
different local bases under varying dictionary size.

where x∗ denotes a new set of sparse codes, y is a query
sample and h is the label vector. We obtain the label by first
coding the query over dictionary D̂ker, and the label of the
query refers to the index of the largest element in h=Ŵx∗.

4. EXPERIMENTS AND RESULTS

This section uses α=4, β=4 and adopts RBF kernel with pa-
rameter 0.5 in all experiments. Note that, The matrix P is
obtained by 5 iterations. α and β are determined by fivefold
cross validation on the training dataset.

4.1. Caltech101 Database

Caltech101 database [24] contains 9144 images from 102
classes with significant variance in shape. We train on 5, 10,
15, 20, 25, 30 samples per category and test on the rest. Dic-
tionary size is set as 510, 1020, 1530, 2040, 2550 and 3060
for 5, 10, 15, 20, 25 and 30 samples per category respective-
ly. Note that, we adopt the spatial pyramid features. The
results are averaged for 10 times and shown in Fig. 4(a). We
also evaluate the classification performance with different lo-
cal bases under varying dictionary size trained in LP-KSVD.
Note that, we use 30 samples per category to train the dictio-
nary. Fig. 4(a) shows the proposed LP-KSVD (kernel) per-
forms well in image classification tasks and surpasses most
competitive approaches. LP-KSVD is 0.3% to 0.4% better
than LC-KSVD in 25 and 30 training samples per catego-
ry. LP-KSVD with kernel outperforms LP-KSVD and LC-
KSVD by approximate 2.5%. Fig. 4(b) shows the proposed
method with 100 local atoms has the best performance, in-
dicating the number of local bases has an optimal range in
which the classification accuracy reaches its best.

4.2. Extended YaleB Database

Extended YaleB database [25] contains 2414 frontal face un-
der different illumination conditions. We randomly select 32
images as training samples, the rest as testing samples, and
adopt the 504 dimensional randomface features. For K-SVD
based algorithms, We use 32 images per person to train a dic-
tionary of size 570. The number of local bases for LP-KSVD



is set as 40. We run the experiment for 10 times and obtain the
average recognition rate in Table 1. The running time2 for dic-
tionary training and query testing is shown in Table 2. We can
see the proposed LP-KSVD outperforms LC-KSVD in kernel
space and other competitive approaches. As for the efficien-
cy of LP-KSVD, the time to classify a query is approximate
0.3ms, which is fast enough for applications.

Table 1. Recognition results (%) on extended YaleB database. For SRC, we
use a dictionary of 570 atoms, same as D-KSVD, LC-KSVD and LP-KSVD.

Method Accuracy Method Accuracy
SRC [3] 81.7 LLC [14] (25 bases) 83.1

D-KSVD [5] 93.5 LLC [14] (50 bases) 89.7
LC-KSVD [6] 95.0 LC-KSVD [6] (kernel) 94.4

LP-KSVD 94.8 LP-KSVD (kernel) 94.9

Table 2. Average dictionary training time and running time for classifying a
testing image on extended YaleB database.

Method Testing Time (ms)
SRC [3] 19.72

LC-KSVD [6] 0.298
LP-KSVD 0.328

LP-KSVD (kernel) 0.536

4.3. 15 Scenes Database

15 scenes categories database [26] contains 200 to 400 images
per category, including kitchen, mountain and store. We ran-
domly select 100 images per category for training and the rest
for testing. The size of learned dictionary is set as 450. Note
that, we adopt the spatial pyramid features. Results are shown
in Table 3. Our proposed method achieves better performance
than SRC, LLC, D-KSVD and LC-KSVD. We can see the k-
ernel indeed boosts the performance for both LC-KSVD and
LP-KSVD. LP-KSVD performs better than LC-KSVD and
LP-KSVD with kernel achieves the best classification accura-
cy in some competitive methods.

Table 3. Classification results (%) on 15 scenes database.

Method Accuracy Method Accuracy
SRC [3] 91.8 LLC [14] (30 bases) 90.1

D-KSVD [5] 89.2 LSC [16] 89.9
LC-KSVD [6] 92.9 LC-KSVD [6] (kernel) 93.5

LP-KSVD 93.4 LP-KSVD (kernel) 94.0

5. CONCLUDING REMARKS

This paper proposes the locality preserving K-SVD algorithm
and elaborates the gain that locality brings especially in kernel
space. Specifically, a locality preserving term is designed to
enforce locality into dictionary and coding coefficients. In or-
der to make locality information more discriminative, we map
the original feature space to the kernel space, making samples
of different classes more separable. LP-KSVD approach in k-
ernel space and its specific algorithm are presented and com-
prehensively discussed. Experimental results validate the su-

2We use a PC with 3.4 GHz dual-core CPU and 16GB RAM. All experi-
ments presented in the paper are performed in this PC.

periority of LP-KSVD in kernel space and also show that our
approach achieves state-of-the-art results on extended YableB
database, Caltech101 database and 15 scenes database.
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