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Abstract—We present a novel two stages signal strength d-
ifference (TS-SSD) localization algorithm in this letter. A new
model using TS-SSD technique is derived to eliminate the
effects of path loss exponent and unknown transmit power.
And a total least squares (TLS) solution is given to estimate
the distances between anchor and target nodes. Then a low-
rank matrix completion framework is established to estimate the
distances among all the unknown target nodes. After obtaining all
distance measurements, a simple but robust approach based on
Semidefinite Programming (SDP) relaxation is applied to estimate
the location of target nodes. Compared with some existing
algorithms, the proposed approach has three-fold merits: firstly,
it locates multiple targets using less anchor nodes simultaneously;
secondly, it shows more robustness to path model error and
noise level; thirdly, it has higher localization accuracy than some
existing methods. Simulation results illustrate the superiority of
our proposed algorithm.

Index Terms—Localization; two stages signal strength differ-
ence (TS-SSD); matrix completion; SDP;

I. INTRODUCTION

Localization is one of the essential modules of many mobile

wireless applications [1, 2]. Because Received Signal Strength

(RSS) measurement can be easily obtained on most off-the-

shelf equipments, such as WiFi- or ZigBee compatible devices,

a majority of previous localization approaches with RSS as a

metric for location determination are proposed in the past two

decades.

The accuracy of some existing RSS-based localization al-

gorithms depends highly on the knowledge of relevant pa-

rameters, including transmit power, path loss exponent, and

noise level [1–3]. Unfortunately, securing these parameters

accurately in unknown environment is time intensive. As a

consequence, two kinds of methods are presented to overcome

the drawback. One tries to estimate the unknown node loca-

tions directly without knowing the path loss exponent [4, 5].

The performance of these methods is good in high SNR case,

but they cannot estimate multiple targets simultaneously. The

other is fingerprinting based method which does not need

to estimate the nuisance parameters [6]. It can improve the

accuracy of localization to some extent, but the fingerprinting

database building process is a time consuming job. Signal

strength difference (SSD) technique is a good way to mitigate

the effect of unknown transmit power [7] and it improves

the performance of localization greatly but it still belongs to

fingerprinting based localization framework.

Instead of estimating the target locations from the noisy

RSS measurements directly, we recover the distance matrix

among all nodes from noisy RSS measurements firstly, and

the locations of target nodes are estimate from the recovered

distance matrix using SDP framework. The main steps of our

proposed algorithm are as follows:

a) derive a new model from the conventional path loss model

using two stages SSD approach;

b) a TLS solution is used to calculate the distances between

anchor nodes and target nodes;

c) estimate the distances among all target nodes using low-

rank matrix completion method;

d) target locations are estimated from the distance matrix

among all nodes using SDP relaxation.

Compared with some existing methods, such as multidimen-

sional scaling (MDS) method [8], and distributed weighted-

multidimensional scaling (dwMDS) method [9]. the merits of

our method are threefold: firstly, it locates multiple targets

using less anchor nodes simultaneously; secondly, it shows

more robustness to path model error and noise level; thirdly,

it has higher localization accuracy than some existing methods.

A. The proposed algorithm

B. RSS measurements model and distance matrix

Given M (M ≥ 3) anchor nodes (We suppose that at least

three of M can communicate with each other) in a wireless

localization system with locations O = [o1,o2, · · · ,oM ], and

N target nodes whose locations X = [x1,x2, · · · ,xN ] are to

be determined.

Let di,j = ‖xi − xj‖2 denote the distance between target

nodes i and j, dk,j = ‖ok − xj‖2 denote the distance between

anchor node k and target node j, and dk,l = ‖ok − ol‖2
denote the distance between anchor nodes k and l, where ‖·‖2
denotes the �2-norm. The nonnegative and symmetric distance

matrix among all nodes with zero diagonal can be expressed

as

D =

[
Daa Dat

Dta Dtt

]
, (1)

where Daa = (d
2

i,j), Dat = DT
ta = (d2j,k), and Dtt = (d2k,l).
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Suppose that Pi,j and P0 are the RSS measurements (mea-

sured at anchor node i) at an arbitrary distance di,j and a

close-in reference distance d0 from the node j, respectively.

From the log-normal shadowing model [1], we have

Pi,j = P0 − 10βlog10
di,j
d0

+ ni, (2)

where β denotes the path loss exponent, ni is empirically

modeled as a lognormal random variable with zero mean

and variance σ2
i . The problem of localization using RSS

measurements is to estimate the locations of target nodes

X from Pi,j . Obviously, if we can estimate D from the

noisy RSS measurements, the location of target nodes can be

estimated by SDP technique.

C. The estimates of Dat and Dta using two stages SSD (TS-
SSD) method

If we neglect the noise elements in (2), we have

P̂i,j = P0 − 10βlog10
di,j
d0

. (3)

Let Pm,i be the RSS between the mth and ith (i =
1, 2, · · · ,M, i �= m) anchor nodes, and Pm,j be the RSS

between the mth anchor and the jth (j = 1, 2, · · · , N ) target

node. Take the mth anchor node as the reference node, we

compute the signal strength difference by subtracting Pm,j

from Pm,i, yields

Pm,i − Pm,j = −10β log

dm,i
dm,j

10 . (4)

Usually, β can be assumed a constant in a short period

of observation time [4]. Hence, we can compute the signal

strength difference for the second time,

Pm,m+1 − Pm,j

Pm,k − Pm,j

=
log10dm,m+1 − log10dm,j

log10dm,k − log10dm,j

, (5)

where k = 1, 2, · · · ,M (k �= m, k �= m + 1) is a subset of

i. If m = M , we set m + 1 = 1. Let zm,i = log
dm,i

10 and

zm,j = log
dm,j

10 , respectively, (5) can be rewritten as(
Pm,m+1 − Pm,k

)
zm,j =

(
Pm,m+1 − Pm,j

)
zm,k

− (
Pm,k − Pm,j

)
zm,m+1. (6)

Denoting the N × 1 distance vector zm =
[zm,1, zm,2, · · · , zm,N ]

T
, (6) can be reformulated as

Amzm = bm, (7)

where Am ∈ RQ×N (Q = (M − 2)×N ) is given by Am =
diag (a1,a2, · · · ,aN ) and all the aj = 1Pm,m+1 − pm are

the same vector with dimension (M − 2) × 1. The Q × 1
measurement vector bm = [b1, b2, · · · , bN ]

T
and its jth ele-

ment bj =
(
Pm,m+1 − Pm,j

)
zm − (pm − 1Pm,j) zm,m+1,

where 1 is an (M − 2) × 1 all ones vector , zm =
[zm,1, · · · , zm,k, · · · , zm,M ]

T
, k �= m,m + 1, and pm =[

Pm,1, · · · , Pm,k, · · · , Pm,M

]T
, k �= m,m + 1. Observing

Am is an over-determined matrix, (7) has a least squares (LS)

solution. However, the new model is derived under noise free

environment, errors exist on both sides of (7). To obtain a

more robust solution, we consider

(Am +Em) zm = bm + em, (8)

where Em and em are error matrix and error vector of Am

and bm, respectively. Obviously, (8) can be rewritten as

(Fm +Gm)dm = 0, (9)

where Fm = [−bm,Am] is an extended matrix, Gm =
[−em,Em] is a disturbance matrix, and dm = [1, zm]

T
is

a (N + 1)× 1 vector to be determined.

Let singular value decomposition (SVD) of Fm be Fm =
UΣV H , with U and V be the left and right singular

vectors, respectively. And Σ is a Q× (N + 1) matrix whose

elements are zero except possibly along its main diagonal.

These nonnegative diagonal elements are ordered such that

σ1 ≥ σ2 ≥ · · · ≥ σN+1. And the right singular vec-

tor which corresponds to these singular values is V =
[v1,v2, · · · ,vN+1] and its (N+1)th element can be expressed

as vN+1 = [v (1, N + 1) , v (2, N + 1) , · · · , v (M,N + 1)]
T

.

The TLS solution of (9) can be given by the singular vector

which corresponds to the smallest singular value σN+1

ẑTLS
m =

1

v (1, N + 1)
[v (2, N + 1)] . (10)

Note that if the number of the smallest singular value is more

than one, the approximate TLS solution can be found using

some modified smoothing techniques [10], which shows more

robustness than the conventional LS solution.

Once ẑm is obtained, the distances can be given by d̂m =
10ẑ

TLS
m and we can build a distance matrix Dat. The matrix

Dta is given by Dta = DT
at .

D. The estimate of Dtt using low-rank matrix completion

After obtaining Dat and Dta, Dtt is the rest part of D to be

determined. Supposing Ω denotes the set of all entries of Daa,

Dat and Dta. The distance matrix recovering problem in (1)

can be considered as a low-rank matrix completion (LRMC)

problem [11]. It has been proven that the rank of matrix D
is 4 for 2D geometry localization case and it has a low-rank

property. And Dtt can be fixed by Dtt = DtaD
†
aaDat, where

D†
aa denotes pseudoinverse of Daa. The solver performs well

with noiseless D and exactly known Dat which are impossible

in practice.

The LRMC problem in (1) can be solved by formulat-

ing the problem into a rank minimization problem [11–13].

Unfortunately, it is non-convex and NP-hard. Candes [11]

creatively showed that the rank minimization problem can be

approximately solved by its convex relaxation problem

minimize ‖D̂‖∗
subject to D̂(i, j) = D(i, j), (i, j) ∈ Ω, (11)

where ‖·‖∗ represents the Nuclear norm and the number of Ω
obeys

m ≥ 2r (M +N)− r2, (12)
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where r is the rank of D and D̂ is the estimate of D. The

minimum value of M with respect to N should satisfy (12).

Note that D is not a positive semidefinite (PSD) matrix , we

can not use LRMC method to recover Dtt directly. Inspired

by the Lemma 1 in [13], we can construct a PSD matrix by

the interior point method as[
Y D̂

D̂T Z

]
≥ 0. (13)

Then the rank minimization problem in (11) can be equiva-

lently reformulated as

minimize δ

subject to Tr (Y ) + Tr (Z) ≤ 2δ[
Y D̂

D̂T Z

]
≥ 0

D̂(i, j) = D(i, j), (i, j) ∈ Ω, (14)

where δ is a tolerance variable, Y ∈ R
(M+N)×(M+N) and

Z ∈ R
(M+N)×(M+N) are the slack matrices, Tr (·) denotes

the trace operator.

Furthermore, considering that D is a symmetric matrix, the

problem in (14) can be simplified as

minimize δ

subject to Tr (Q) ≤ δ[
Y D̂

D̂T Y

]
≥ 0

D̂(i, j) = D(i, j), (i, j) ∈ Ω. (15)

Obviously, it is a semidefinite program problem which can

be efficiently solved by CVX [14]. D̂ can be estimated by

the modified interior method above and Dtt is given by

D̂ (M + 1 : M +N,N + 1 : M +N).

E. The estimate of target locations using SDP relaxation

From the geometry relationship, we have

‖xi − xj‖22 = d̂
2

i,j

‖ok − xj‖22 = d̂2k,j

}
, (16)

where i, j = 1, 2, · · · , N and k = 1, 2, · · · ,M . Assuming a

symmetric matric H , and H =X̂T X̂ , (16) can be rewritten

as

eTi,jHei,j = d̂
2

i,j

(ok; ej)
T

(
Id X̂

X̂T H

)
(ok; ej) = d̂2k,j

⎫⎪⎬
⎪⎭ , (17)

where ei,j is a vector with 1 at the ith position,−1 at the jth

position and zero everywhere else. ej is the vector of all zeros

except an -1 at the jth position.

The SDP method is to relax H =X̂T X̂ to H �X̂T X̂ ,

and H �X̂T X̂ indicates that H − X̂T X̂ � 0. Fazel in

[13] proves that the condition H − X̂T X̂ � 0 is equivalent

to W =

(
Id X̂

X̂T H

)
≥ 0. And the matrix W can be
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Fig. 1. Estimated error of Dat using TS-SSD and conventional methods
versus different SNRs and β.

computed by reformulating the problem in (17) as a standard

SDP program as follows,

minimize δ1 + δ2

subject to ‖xi − xj‖22 − d̂
2

i,j ≤ δ1,

‖xj − ok‖22 − d̂2j,k ≤ δ2,

W � 0. (18)

The location estimates of target nodes X̂ can be easily

obtained from above optimization problem.

II. NUMERICAL RESULTS

Firstly, we investigate the computing accuracy of the Dat.

Consider a 2-D geometry of M = 4 anchors with known coor-

dinates at (−20, 20), (20, 20), (20,−20), (−20,−20), while

the unknown positions of three target nodes are (7.5, 7.5),
(3, 7), (15, 15). We generate the noisy RSSI values Pi,j using

(2) with β = 2.5, d0 = 1m and the noise variance, σ2
ni

,

is assigned with SNR = −10 log10 σ
2
ni

. In the conventional

method [4], the element of D̂at is calculated by d̂i,j =

d0 · 10
(P0+ni−Pi,j)

10β , while TS-SSD estimates D̂at using (10).

The estimated error is calculated by Error =
∥∥∥D̂at −Dat

∥∥∥2
F

.

The errors of the conventional method and our method versus

different β and SNRs are shown in Fig. 1. Here SNR=20

dB and 0 dB cases are considered and β varies from 2

to 4. From the figure, we find that TS-SSD method shows

more robustness when β and SNRs change because it obtains

D̂at using two stages differences technique and TLS solution.

Secondly, we consider three methods for fixing Dtt, namely,

Singular Value Thresholding (SVT) [12], exact completion

solver (ECS) [11], and our proposed method. The recovered

errors were reported in Fig. 2. Among them, ECS is a closed

form solution, which is derived in noiseless case. And it is

very sensitive to noise level. SVT is an iterative solution for

handling the case with noised Dtt. And the performance of
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Fig. 2. The recovered error of Dtt versus different SNRs using three different
recovery methods.

TABLE I
THE AVERAGE RUN TIME OF DIFFERENT METHODS.

Methods The proposed method dwMDS classical MDS

Run time (s) 0.5366 0.5193 0.0049

SVT is constrained by several parameters, including step size,

number of iterations to achieve convergence, etc. So it has

heavy computational burden with low accuracy. The results

show that the performance of our proposed method is superior

with respect to the other techniques in all listed SNR cases.

Thirdly, the cumulative distribution functions (CDF) of

different localization methods, including our proposed SDP

method, classical MDS [8], and dwMDS [9], are shown in

Fig. 3. We consider that these methods in two cases: D
is full recovered and it is not partial recovered. All results

are obtained by averaging over 200 independent trials with

SNR = 0 dB. It is worth observing that our method obtains

better performance in the same noise level and it shows more

robust than others as the value of SNR decreases. Therefore,

our proposed method has good performance in accuracy and

robustness.

All simulations were run on a Window 7 desktop computer

with a 2.66 GHz Intel Core-i5 Quadcore CPU and 4 GB of

RAM. The average run time of these methods are listed in

Table I. We find that the complexity of our method is close

to that of dwMDS and both of them are higher than classical

MDS.

III. CONCLUSION

We address a TS-SSD localization algorithm using SDP

relaxation. Based on the conventional path loss model , we

derive a new linear model using twice difference techniques. A

TLS solution and a modified interior point method are used to

estimate the unknown distance matrix. Based on the estimated

distance matrix, a localization approach using SDP relaxation
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Fig. 3. Cumulative distribution function (CDF) versus localization errors of
different methods (SNR = 0 dB).

is derived to obtain the position estimation of target nodes.

The proposed method outperforms some existing methods in

robustness, model error, and noise level. The simulation results

verify the superiority of our proposed method.
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