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Abstract. In this paper, we propose a new multi-scale recursive dynamic factor 

analysis (MS-RDFA) algorithm for economic index foresting (EIF). The pro-

posed MS-RDFA algorithm first employ empirical mode decomposition (EMD), 

which is a powerful tool for multi-scale analysis and modeling on the non-linear 

and non-stationary signal such as economic index data. Moreover, an efficient 

RDFA algorithm using recursive subspace tracking is adopted to explore the cor-

related nature of the adjacent intervals of the economic index data. The one-step 

prediction of PC scores is modeled as an AR process and can be recursively 

tracked by Kalman filter (KF). The major advantage of the proposed MS-RDFA 

method is its low arithmetic complexity and simple real-time updating, which is 

different from other conventional algorithms. This makes it as an attractive alter-

native to other conventional approaches to EIF on mobile services. The experi-

ments show that the proposed MS-RDFA algorithm has better forecasting results 

than other EIF methods.  

Keywords: Economic Index Forecasting, Empirical Mode Decomposition 

(EMD), Recursive Dynamic Factor Analysis (RDFA). 

1 Introduction 

Economic index including the commodity index and stock price index not only has a 

strong influence in the commodity futures market and the securities market, but also 

provides an early warning signal for macroeconomic regulation. Therefore, economic 

index forecasting (EIF) becomes to be one of the most attractive tasks encountered by 

financial organizations and private investors. And there are a large number of prediction 

models proposed to effectively mitigate the risk and to gain high investment return. 

Thanks to making use of information technology, the research on EIF can change from 

low-frequency data to high-frequency data. For instance, the Hang Seng Index (HIS) 

will be updated every minute which offers many opportunities for more detailed anal-

ysis of market activity. However, such high-frequency time-series data is non-normal-

ity and highly nonlinear [1, 2]. It thus calls for more desired approaches to deal with 

this new challenging task.  
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Different methods for economic forecasting had been proposed due to the increasing 

need on the practical applications such as transaction decision and investment. A tradi-

tional approach is based on autoregressive (AR) model in time series theory [3]. The 

AR model can be specifically solved using the ordinary least squares (LS). Other vari-

ants such as the autoregressive integrated moving average (ARIMA) methods have also 

been used in socket research [4]. For ARIMA, the processing speed is fast and the 

algorithm is easy to implement. However, when it comes to the non-stationary time 

series analysis, the performance may be significantly degraded, which results in large 

prediction error. Recently, support vector machine regression (SVR) has also been 

more envisioned in nonlinear regression estimation [5]. On the other hand, nonlinear 

variability in the data has led to people’s considerable interest in neural networks [6]. 

Besides, hybrid models such as BPNN with genetic algorithm [7] and ANNs with me-

taheuristics [8] are put forward to economic index analysis. Hybrid method has poten-

tially higher accuracy than other single forecasting method, but its arithmetic complex-

ity is very high. 

According to recent research [3, 5, 9], several common behaviors of economic time-

series data are: a) highly non-linear and non-stationary and b) strong correlation be-

tween adjacent values. One of the major challenges of EIF is its non-linearity and non-

stationary characteristics of caused by numerous influence factors, such as economy, 

affecting government, enterprise and investors [10]. This makes the modeling and pre-

diction of the economic time-series data be very difficult. Therefore, multi-scale anal-

ysis methods can be employed to decompose signal into several sub-frequency compo-

nents. In each sub-frequency components, signal will be more stationary and easier to 

be modeled and predicted.  On the other hand, factor analysis (FA) techniques such as 

functional principal component analysis (FPCA) [11] is useful for extracting the corre-

lation between adjacent intervals of the data. Online batch processing is usually desir-

able, where the forecasting is performed by applying the forecasting algorithm to a data 

block making up of consecutive economic samples. Whenever a new data is available, 

the existing data block is appended with the new sample and the earliest sample is dis-

carded. This procedure is repeated for each incoming sample or blocks of samples in 

each update. However, this may also lead to high arithmetic complexity.  

In this paper, we propose a multi-scale recursive dynamic factor analysis (MS-

RDFA) algorithm to cope with the prediction problem and high arithmetic complexity 

incurred by such online real-time estimation. It first employs empirical mode decom-

position (EMD) [12] to decompose the economic time-series data into several intrinsic 

mode functions (IMFs) along with a residue which stands for the trend. EMD is an 

effective approach to obtain instantaneous frequency data from non-stationary and non-

linear data. Moreover, an efficient RDFA algorithm using efficient recursive subspace 

tracking, called the orthonormal projection approximation subspace tracking with rank-

1-modification (OPASTr) [13], to track recursively the major subspace spanned by the 

PCs. Since only the most recent sample is used for the updating, the memory storage 

required is also reduced. The one-step prediction of PC scores is modeled as an AR 

process. By assuming that the innovation is Gaussian distributed, the Kalman filter (KF) 

algorithm [14] can be used to recursively tracked the PC scores. An outline and major 
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contributions are summarized below: a) A new foresting algorithm composed of EMD 

algorithm and RDFA algorithm is proposed. This algorithm reduces memory require-

ment and arithmetic complexity, which is appropriate for practical applications on mo-

bile devices.  b) A novel application of the proposed multi-scale RDFA (MS-RDFA) to 

the economic data such as commodity index and stock price index. Experimental results 

show that the proposed approach can achieve better ahead forecast accuracy than other 

methods. A real-time updating model with higher accuracy on EIF is obtained. 

The following contents are organized as follows: The proposed MS-RDFA algorithm 

is described in section 2. Afterwards, its application to EIF and comparison to existing 

methods are presented in section 3. Finally, conclusions are drawn in section 4.  

2 Proposed MS-RDFA Algorithm 

2.1 Empirical Mode Decomposition 

EMD is an effective multi-scale analysis method [12] which decomposes a signal into 

a sum of oscillatory functions which is called intrinsic mode functions (IMFs). An IMF 

is a function that has only one extreme between zero crossings, along with a mean value 

of zero. The IMFs can be extracted from the time series data set through an iterative 

decomposition process, which is described as follows: 

Step 1: For a time-series signal )(tx , find its upper envelop )(max tv and lower envelope 

)(min tv  by a cubic-spline interpolation of their local maximas and minimas. 

Step 2: Calculate the means of the upper and lower envelops 

2/))()(()( minmax tvtvtm   . 

Step 3: Extract the difference between the data and the mean of the upper and lower 

envelops as )()()( tmtxtd  . 

Step 4: Check whether )(td satisfy one of the following stop criterion: (i) the numbers 

of zero-crossings and extrema of )(td  differs at most by one, or (ii) the predefined 

maximum iteration is reached. If the stop criterion is satisfied, then calculate the residue 

)()()( tdtxtr   and replace )(tx by the residue )(tr .  Otherwise, replace )(tx  by  

)(td  and repeat step 1-3. 

Step 5: Repeat steps 1-4 until the residual becomes a constant, a monotonic function, 

or a function with only one maximum and one minimum from which no more IMF can 

be extracted. 

As a result, the original time-series signal is decomposed as the sum of these IMFs and 

a residual as  
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where M  is the number of IMFs. 

2.2 Functional Principal Component Analysis 

Since the economic index data for adjacent intervals may be correlated, it is advanta-

geous to employ FPCA [11] to explore and capture the correlations. The economic in-

dex data )(nz can be approximated by a linear combination of orthogonal basis func-

tions and their associated coefficients, which are referred to as principal component 

(PC) and PC score respectively. More precisely, suppose we are given the economic 

index data of N  intervals (day or hour), i.e. )(nz  Nn ,,2,1  . The number of sam-

ples in each interval is J. The samples in the n-th interval can be grouped into a vector: 
TnJxJnxJnxn )](,),2)1((),1)1(([)( z . For instance, if the interval is one 

day, then 24J for hourly index data and each vector represents the hourly data for 

the n-th day. The value of J  can be adjusted for other time scales, such as 48J  for 

half-hourly data. )(nz  is usually “centered”, i.e. with its mean removed, before the PC 

functions are computed. Hence, the mean of )(nz , Nn ,,2,1   is first computed and 

is subtracted from each of the measurement vector to form )(nz . In PCA, we wish to 

express the centered economic index vector )(nz : 

1

( ) ( ) ( )
B

m m

m

n t n n


 z p e .    (2) 

where B is an appropriately chosen number of PCs to achieve a sufficiently small ap-

proximation error ( )ne , 
m

p  is the m-th PC, and )(nt
m

 is its associated score for )(nz .  

The batch eigen-decomposition (ED) of the following covariance matrix, 

)()()()( nnnn T

zz
UΛUC 

,
    (3) 

is adopted to update the PCs.  

To perform EIF, AR-based time-series model can be built for each PC score. More 

precisely, one-step ahead forecasting is given as:     

1

( 1) ( ) ( 1) ( ),
B

m m

m

n n t n n


   z μ p  (4) 

where ( )nμ  is the mean vector and ˆ ( 1)mt n  is one-step ahead PC score which should 

be predicted. However, it will require high arithmetic complexity to update the PCs 

using online implementation of ED in equation (3).  This is not appropriate for low-

light devices especially for mobile service.  



5 

2.3 Subspace Tracking 

Motivated by the PAST algorithm in [15], the signal subspace spanned by the major 

PCs )(nBU is tracked recursively instead of computing the entire ED. In the OPASTr 

algorithm [13], the PCs are extracted from the signal subspace tracking.  Given the 

signal subspace )(nW , the covariance matrix )()()()( nnnn T
zz UΛUC   is projected 

onto the signal subspace )(nW to obtain 

),()()()()()()()(

)()()()()()(

nnnnnnnn

nnnnnn

T
B

T
BBB

T

TT
yy
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where )(nΦ is a BB orthogonal transformation satisfying IΦΦ )()( nn T  and  

( ) ( ) ( )B n n nU W Φ .    (6) 

The covariance matrix 
))]()([)( nnEn T

yy
yyC 

 can be recursively updated as 

)()()1()1()( nnnn T

yyyy yyCC  
, (7) 

where 
( ) ( ) ( )Tn n ny W z

, which a projection of )(nz  on the subspace )(nW .  ( )nΦ  

can be recursively computed using the ED of ( )yy nC . Firstly, let the ED of ( 1)yy nC

be ( 1) ( 1) ( 1)T

Bn n n  Φ Λ Φ . The expression in (7) can be rewritten as one rank-one 

modification [16] given by 

,)1()]()()1()1()[1()( TT

Byy
nnnnnn  ΦssΛΦC 

 (8) 

where ( ) ( 1) ( )Tn n n s Φ y .Let the corresponding ED be  

)()()()()()1()1( nnnnnn T

B

T

B
ΦΛΦssΛ  

.    (9) 

The ED of the rank-one update in (9) can be recursively computed using rank-one mod-

ification. Finally, the eigenvectors of ( )yy nC  are given by 

),(
~

)1()( nnn ΦΦΦ 
 

   (10) 

Then, the PC scores 
1 2( ) [ ( ), ( ), ( )]T

Bn t n t n t nt  can be computed recursively as  

( ) ( ) ( ),T

B sn t nt U z  (11) 
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2.4 Kalman Filter for EIF 

Once PCs and PC scores are recursively updated, time-series prediction model can be 

built for each PC score to perform EIF. In this paper, the KF [14] is employed to recur-

sively track the PC score so that the EIF can be computed online in a real-time manner. 

More precisely, for each PC score )(nt
m

, a L-th order AR model will be constructed. 

The solution of the AR model can be obtained by the following the least squares (LS) 

formulation [17],  

},||))1()()((||

||))()()()((||{  min

2
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where T

Lmmmm
iiii )](,),(),([)(

,2,1,
 α  are the AR coefficients and )(iR

m
 is the 

covariances of the loss function )()()()(
1

jitiitie
mj

L

jmm



 . To reduce the vari-

ance of the estimator, we incorporate a regularization term 
2

2
)1()(  ii

mm
αα  into 

(12) where )(i
m

Q are the covariances of the loss function  )()( ii
mm
αε  )1( i

m
α . 

The inverses )(2/1 iR
m

 and )(2/1 i•
m

Q  are used to perform scaling on each variable (whit-

ening) to achieve equal variance of the transformed variables. The regularization term 

requires the estimate to stay close to the previous estimate and hence the variance of 

the estimator will be reduced.  It is shown in [18] that Eqn. (12) can be formulated as 

the following state space model (SSM): 

),()1()( nnn
mmm
εαα 

 (13) 

).()()()( nennnt
mm

T

mm
 αh

 (14) 

Eqn. (13) is the state equation and it describes the evolution of the AR coefficients over 

time, as a function of the previous AR coefficients )(n
m
α  and )(n

m
ε  represents the 

modeling error. Eqn. (14) is the measurement equation which models the current PC 

score )(nt
m

 with previous scores T

mmmm
Lntntntn )](),...,2(),1([)( h , and the 

AR coefficients )(n
m
α  represent the weighting of each previous score  )( int

m
 , 

Li ,2,1 , and )(ne
m

 is the measurement noise. We can see that the state equation 

in (13) and the measurement equations in (14) are equivalent to the regularization term 

and the loss function in (12) respectively. The SSM in (13) and (14) can be recursively 

tracked using the Kalman filter (KF).  Afterwards, the one-step ahead prediction 

)1(ˆ nt
m

 is given by  

),|1()1()1(ˆ nnnnt
m

T

mm
 αh

 
(15) 

From (15), the one-step ahead prediction of the economic index data vector )1(ˆ nz  

can be determined as follows, 
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To perform two-step ahead prediction, one can append the prediction )1(ˆ nt
m

 into 

T

mmmmm
Lntntntntn )]2(,),1(),(),1(ˆ[)2(  h , and then apply the KF again 

to predict )2(ˆ nt
m

 using (15) . This procedure can be repeated for h  times to com-

pute a h -step ahead prediction. 

3 Application to Economic Index Forecasting 

MS-RDFA based EIF consists of three steps: i) Use EMD to decompose the original 

economic time-series data into several IMFs and one residue; ii) Use RDFA algorithm 

in section 2 to extract the predicted results of IMFs and residue; and iii) Combine all 

the prediction results to reconstruct the final result. To verify the effectiveness of the 

proposed MS-RDFA algorithm, two most-widely used economic indices such as Gold-

man Sachs Commodity Index (GSCI) and Hang Seng Index (HSI) are employed for 

EIF experiments. The GSCI index is one of the most famous commodity indices for 

prediction of the economic trend when HSI index is a stock price index to track the 

stock quotes. The prediction error is determined by computing the difference between 

the predictor and the actual value. We employ the Absolute Percentage Error (MAPE) 

to evaluate the performance of the proposed EIF algorithm:  

( ) ( )

( )
1

ˆ1 ( ) ( )
MAPE

( )

k kK

k
k

x n x n

K x n


  . (17) 

Generally, lower MAPE indicates better accuracy of the algorithm. We choose two dif-

ferent time resolutions for them to verify the effectiveness and robustness of the pro-

posed method. For GSCI index, the hourly data of from January 1, 2017 to December 

31, 2017 is used for experiments. The step of ahead prediction is one day, which namely 

one-day ahead prediction. Each valid day has 6 hours for GSCI, hence J=6 and the 

order of AR model is chosen as L=7. The number of PCs is chosen as B=4, which is 

determined by the MDL method in [21]. For HSI Index, five-minute data from Decem-

ber 1 to December 31, 2017 is collected for experiments. Here the step of ahead pre-

diction denotes one hour. Hence, J=12 and the order L=5 is chosen for the one-hour 

ahead prediction. The number of PCs is still chosen as B=4. An initial data block of 

length 10 days and 6 hours is used to initialize the MS-RDFA algorithm for the one-

day ahead prediction and one-hour ahead prediction respectively. After each prediction 

step, the actual data has been obtained and the model should be updated using the most 

recent actual data. This procedure is repeated for onward prediction such that the latest 

actual data is incorporated into the model on each prediction step.  
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Four state-of-arts methods namely RDFA [17], Support Vector Machine Regression 

(SVR) [5], ANN [6] and hybrid model (HM) [7] are employed for comparison.  Now, 

we compared the performance of RDFA, SVR, ANN, and HM algorithms by the quan-

titative measure of MAPE. The comparison of MAPE results are shown in Table 1 and 

Table 2. It can be observed from the Table 1 and Table 2 that the proposed MS-RDFA 

has the best results, whose error has been significantly reduced compared to ANN, SVR 

and HM. Unlike the other algorithms, which generally give larger prediction error when 

the forecasting period increases, we can see that the MS-RDFA and RDFA algorithm 

generally gives consistent forecasting error for 1-4 hours or 5-20 minutes ahead fore-

cast. The better performance of the MS-RDFA and RDFA is partly contributed by the 

consideration of the temporal data structure. Moreover, thanks to the multi-scale de-

composition of the proposed MS-RDFA algorithm, it can achieve lower errors than 

RDFA algorithm. The reason is that the signal in each IMF is more stationary to predict 

and analysis. 

Table 1. Comparison of the forecasting errors, hourly data of GSCI index. 

Index           1 hour                   2 hour                  3 hour                   4 hour 

MS-RDFA 0.1155 0.1185 0.1138 0.1127 

   RDFA 0.1231 0.1271 0.1282 0.1249 

SVR 0.1801 0.2970 0.3421 0.3985 

ANN 0.2269 0.3204 0.4036 0.4725 

HM 0.1821 0.1976 0.2928 0.3491 

Table 2. Comparison of the forecasting errors, five-minute data of HSI index. 

      Index        5 min                  10 min                   15 min                 20 min 

MS-RDFA 0.1856 0.1825 0.1833 0.1857 

RDFA 0.1901 0.1970 0.1921 0.1915 

  SVR 0.2003 0.2572 0.2844 0.3312 

ANN 0.2219 0.2599 0.2988 0.3196 

HM 0.1987 0.2578 0.2889 0.3102 
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4 Conclusion 

A new multi-scale RDFA (MS-RDFA) algorithm has been proposed based on the EMD 

algorithm and RDFA algorithm for economic index forecasting (EIF). Experimental 

results of economic indices such as Goldman Sachs Commodity Index (GSCI) and 

Hang Seng Index (HSI) show that the proposed MS-RFDA can achieve higher daily 

and hourly ahead forecast accuracy and stability than other conventional algorithms. 

Moreover, the low complexity of efficient recursive implementation of the proposed 

MS-RFDA makes it as an attractive alternative to other conventional approaches to EIF 

and other possible applications on mobile services. 
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