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Abstract—Environmental Sound Classification (ESC) plays a 

vital role in the field of machine auditory scene. Recently, the 
Highway Network CNN model has achieved the state-of-art 
results via solving the vanishing-gradient problem of much 
deeper CNN. However, carefully analyzing the Highway Network 
model shows that the Highway Network model lacks ability to 
maximize information flow between layers, which is essentially 
benefits the discriminative representation of acoustic events. 
Besides, the Highway Network model size is larger than 20MB 
for ESC task, which is still large for mobile applications. 
Regarding to these two issues, in this study, we propose a novel 
Densely Connected Highway Convolutional Network (DCH-Net) 
model for ESC task. Specifically, a densely highway module is 
developed which is able to ensure the maximum information flow 
between layers by connecting all layers directly with each other. 
Besides, to reduce the model size, a global average pooling layer 
is designed which replaces the traditional fully connection layers 
and the parameters of the model is greatly reduced. 
Experimental results show that our DCH-Net ESC model 
achieves accuracy of 69% and 90% on ESC50 and ESC10 dataset 
respectively, which is 2% and 10% higher than that of Highway 
Network based Highway networks ESC model. Meanwhile our 
model size is only 2MB. 

Keywords—Convolution Neural Network; Environmental 
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I. INTRODUCTION  

Convolutional neural networks (CNNs) have achieved 
many state-of-art results in environmental sound classification 
(ESC) tasks [1, 2, 3]. In the last few years, there are plenty of 
improvements on CNN-based models. Specifically, very deep 
CNNs like VGG have shown impressive results [4] since 
hierarchical convolution max-pooling layers have the ability to 
extract very abstract high-level features. 

As CNNs become increasingly deep, a new research 
problem emerges: its gradient is easy to be vanished during the 
training process. To solve the gradient vanishing problem, 
some variants of deep neural networks have been proposed. 
For example, Highway Networks [5,6] have been proposed to 
alleviate the vanishing gradient problem through bypassing 
signal from earlier layer to the later via identity connections. 
This identity connections allows better information and 
gradient flow. FractalNets [17] randomly drop layers during 
training to reduce the depth of network. For ESC task, 
Boddapati [17] proposed a 22 layer GoogleNet, a specifically 

designed highway network. He has evaluated the model on 
ESC-50 and ESC-10 datasets, respectively. Experimental 
results show that GoogleNet model performs much better than 
traditional VGG model. It is noted that these approaches share 
a common characteristic: short paths are created for feature 
information and gradient flow. 

Although Highway Network proposed above is effective to 
alleviate the vanishing gradient problem, but it cannot ensure 
the maximum information flow between layers. Therefore, for 
the purpose of doing that, we decide to seek for new methods. 
In image classification task, Huang [7] proposed a densely 
connected highway neural networks to maximize information 
flow between layers. In his design, instead of only connecting 
two layers of a network, he selects to connect all layers directly 
with each other. Thus, this architecture has largely increased 
the flow of information and gradients throughout the network. 
Meanwhile, a possible effect of this dense connectivity pattern 
is that it would not relearn redundant feature maps which leads 
to much less redundant parameters.  

Carefully examining the sound event classification task, we 
find that sound of a specific acoustic event may be produced by 
a wide variety of sources, which is much more transformative 
than human speech, it is expected that the increasing of flowing 
of feature information is essentially benefit the discriminative 
representation of acoustic events. Based on this assumption, in 
this paper, we design to use the densely connected highway 
neural networks for the sound event classification task. 
Considering that a relatively small model is needed in mobile 
devices. Traditionally, environmental sounds have weak 
absolute locality in the time-frequency spectrogram [8]. Hence, 
it may be inferred that the spatial information extracted in high-
level feature maps does not contribute much to the final 
classification accuracy. Therefore, we try to reduce the model 
size through reducing the dimension of these spectrograms. A 
global average pooling layer has been proposed in NIN model 
[9] to substitute all traditional fully connected layers. The main 
principle behind the idea is that global average pooling layer 
only remains the statistical feature in feature maps. Thus, by 
applying global average pooling to substitute all fully 
connected layers in convolution networks, only the global 
features of sound event are retained. 



II. THE PROPOSED METHOD 

In this section, we present the scheme of the proposed 
Densely Connected Highway Convolution Neural Network 
(DCH-Net), whose architecture is shown in Figure. 1. 

 

Figure 1 Architecture of the proposed Densely Connected 
Highway Convolution Neural Network (DCH-Net) 

As shown in Figure 1, following our design in [7], DCH-
Net adopts two channel input structure which takes the log-mel 
acoustic feature and delta acoustic feature as input, respectively. 
The log mel feature represents the static characteristic of sound 
event while the delta feature represents the dynamic 
characteristic of sound event. For the Convolution Layer (green 

block), 16 filters with the size of 3×3 are used. It is clear that 
DCH-Net mainly consists of three Densely Connected 
Highway Modules (DCHMs). For each DCHM, there are 7 
convolution layers (marked as convolution layer 1 to 7).  In our 
design, the filter size is of (3×3) for all filters for its simplicity. 
But the number of filters used in each convolution layer is 
different which is determined by the formula 4+N×12. It is 
noted here N is the index number of the convolution layer. As 
shown in Figure 1, taking the convolution layer 3 as one 
example, N is set to 3. In this case, the number of filters used in 
the convolution layer 3 is 40. The details of designing DCHM 
is given in Sect. 2A. Besides, from Figure 1, we can see that, 
after each DCHM, a convolution layer with 1×1 filter size and 
the number of convolution filters is set as the same as that of 
the previous convolution layer and a max-pooling layer with 
2×2 pooling size have been designed. The 1×1 convolution 
filter is used to increase the ability of non-linear fitting of the 
network and the max-pooling layer is used to extract more 
abstract high-level features. At last, aiming at reducing 
parameters, a global average pooling is used to substitute the 
traditional fully connected layers and a softmax classifier is 
adopted to produce the classification results.  

It is noted that, in Highway networks [7], ReLU activation 
function usually has been used. However, it is well known that 
ReLU maps the negative input to zero which would cause the 
loss of negative feature information of sound events. In our 
DCH-Net, Swish activation function [19] is used to substitute 
ReLU activation function since Swish activation function uses 
a non-linear function to compress all negative input which 
partially remains the negative features. 

A. The Densely Connected Highway Module 

Traditionally, in highway module, the output of a proceeding 
layer is connected to the output of a previous layer by using 
bypassing path. This bypassing path not only alleviates the 
vanishing-gradient problem, but also enables the feature 
information flow between layers. Making use of this structure, 
aiming at maximizing the feature information flow, Densely 
Connected Highway Module (DCHM) is designed which is 
essentially an extension of the traditional highway module. To 
better understand the structures of the Highway module and 
DCHM, the comparison of them is presented in Figure 2. To 
make things clear, for the convolution layer l, its input feature 
and output feature are denoted as xl-1 and yl , respectively.  

As shown in Figure 2(a), there are only three bypassing 
paths in highway module. Every bypassing is used to add the 
input feature of each convolution layer to its output feature. 
The sum result of each layer can be calculated as follows: 

xl-2=yl-2+xl-3, xl-1=yl-1+xl-2, 

xl=yl+xl-1 = yl+yl-1+ yl-2+xl-3   (1) 

From Figure 2(b), we can see that DCHM uses the 
bypassing paths to transmit the input feature of one 
convolution layer to all convolution layers followed it. As a 
result, for the convolution layer l, the resulting input feature of 
next convolution layer is calculated as follows: 



 
Figure 2 Structure comparison of Highway Module and 

DCHM 

xl-2=[yl-2，xl-3], xl-1=[yl-1, xl-2, xl-3], 

                  xl=[yl, xl-1, xl-2, xl-3]             (2) 
where the symbol [.] represents the concatenation operation. 
Compared (2) with (1), we can see that DCHM concatenates 
features while Highway module adds features, It is also clear 
that the dimension of feature maps generated by DCHM is 
higher than that of the Highway module. In addition, since the 
DCHM concatenates the input feature of all previous layers 
together, feature maps generated by DCHM would contain 
much more feature information than that of the Highway 
module. Figure 3 gives the comparison of high level features 
extracted by highway module and DCHM. The dots are 
obtained by T-SNE projection of the feature vectors obtained 
at the output of the last hidden layer by the highway module 
and DCHM, respectively. For illustration purpose, Figure 3 
plots the feature vectors generated by the DCHM and the 
highway module, respectively. It is easily seen that features 
extracted by the DCHM is much more discriminative than that 
of the Highway module. These results indirectly demonstrate 
the high-level feature extraction capability using the 
concatenated features from the bypassing paths.   

 

Figure 3 the illustration of high-level features of two classes 
extracted by highway module and DCHM 

B. The Global Average Pooling 

As shown in Figure 1, in our design, the global averaging 
pooling is adopted. The main purpose is to further reduce the 
model size since the model size of highway network is still 
large, which is not suitable when the computation ability is 
limited. Carefully analyzing shows that the large model size 

mainly is due to its fully connected layers in the Highway 
networks. It is a common practice to use the global average 
pooling layer to replace the fully connection layers. In this 
section, we describe the global average pooling through a 
comparison of using fully connected layer in DCH-Net or 
global average pooling in DCH-Net. Figure 4 (a) shows the 
structure of a fully connected layers used in the DCH-Net. For 
explicit explanation, following parameters are defined: Na is 
the number of feature map generated by the highway module. 
For each feature map, the length is defined as T and the width 
is defined as R. Additionally, for the fully connected layer 
FCL1 and FCL2 in DCH-Net, the number of neurons is 
defined as Nfc, and the number of neurons in the output layer is 
defined as No. 

From Figure 4(a), we could see that the Na feature maps 
with T×R size generated by the DCHM is transformed into a 1-
dimensional vector. Then this vector is input into FCL1 
directly. In addition, the second fully connected layer FCL2 is 
followed by the first fully connected layer FCL1. Finally, an 
output layer is followed by the two fully connected layers. As a 
result, the parameter size A1 between the HM and output layer 
in Figure 4(a) can be calculated as 

 A1 = (1×T×R×Na×Nfc+Nfc )+(Nfc×Nfc+Nfc)+(Nfc×No+Nfc) (3) 

In order to reduce parameter size A1, we propose a global 
average pooling layer to substitute all fully connected layers, 
which is demonstrated in Figure. 4(b).   

 
Figure 4 (a) two fully connected layers used in the DCH-Net 

model; (b) a GAP layer used in our proposed DCH-Net model. 

As shown in Figure. 4 (b), a global average pooling layer 
(GAP) is followed by the Highway Module (HM) and the 
output layer is directly followed after the global average 
pooling layer (GAP). Specifically, the GAP makes an average 
pooling operation for each feature map generated from HM, 
which described in detail in Figure. 5.  

In Figure. 5, the output of GAP is denoted as bi which is 
the average value of each feature aix in the i-th feature map. 
This design is triggered by the experimental findings where, 
for environmental sounds, there is weak absolute locality in 
the time-frequency spectrogram. Therefore, using more spatial 
high-level feature map would have less benefit on improving 
the final classification accuracy. Therefore, based on this 
observation, the global average pooling calculates the statistic 
values of features and thus renders more abstract spatial 
feature maps. As shown in Figure. 4 (b), the parameter size A2 



between the HM and output layer in Figure 4(b) is calculated 
by eqn. (4): 

 
Figure 5. Illustration of the Global Average Pooling (GAP) 

Operation (aij represents the j-th value in the i-th feature map, 
bi represents the value of the i-th neuron in the GAP Layer).  

A2 = (1×1×Na×No) +Na                    (4) 

Comparing (3) with (4), we could easily find that A2 is 
much smaller than A1. 

To validate the effectiveness of using GAP instead of fully 
connected layers, we intuitively compare the feature 
distribution of one ESC task by the T-SNE visualization tool. 
The results are presented in Figure. 6. It is clear to see that the 
feature distributions with GAP or without GAP are changed 
slightly, which may give a similar discriminability for 
environmental sound classification task. 

 

Figure 6.  Illustration of features maps output by the output 
layer with and without the global average pooling operation. 

Ⅲ.  EXPERIMENTS AND RESULTS 

To our knowledge, this is a first try for developing DCH-
Net-ESC system for ESC task. Therefore, conducting 
performance evaluation is one of our main tasks in this work. 
In the following, the details of datasets used in experiments are 
introduced firstly. Then, the experimental settings are given in 
subsection B. Finally, we evaluate the performance of our 
DCH-Net-ESC system. 

A. Datasets 

We use two datasets (ESC50 and ESC10) to evaluate our 
proposed DCH-Net. Detail information about these two 
datasets are described in Table I. 

TABLE I. BASIC INFORMATION OF DATASETS 
Datasets Classes Train/Test Duration 
ESC50 50 80%/20% 2.8 hours 
ESC10 10 80%/20% 0.6 hours 

As shown in Table I, The ESC50 dataset consists 50 classes 
of sound event. All sounds in ESC50 is about environmental 
sound event， e.g., birds singing, dog barking, raining and so 
on. The ESC10 dataset contains all about human behavior 
sounds. It is noticeable that both the ESC50 and ESC10 are 
recorded in real environment. For both datasets, we choose 
80% of audios for training and 20% of audios for testing.  

B. Performance Comparison  

For the purpose of evaluating the performance of our 
system, we use several basic ESC systems as our baseline, 
which are list as follows: 

1) KNN-ESC: MFCC feature with KNN classifier [15] 

2) SVM-ESC: MFCC feature with SVM classifier [15] 

3) RamdomForest-ESC: MFCC feature with 
RamdomForest classifier [15] 

4) multi-kernelSVM-ESC: MFCC feature with different 
kernel SVM classifiers fused together [16] 

5) MFCC-AlexNet-ESC: MFCC feature with AlexNet 
classifier [17] 

6) MFCC-GoogleNet-ESC: MFCC feature with 
GoogleNet classifier [17] 

7) Spectrograms-CRNN-ESC: STFT Spectrograms 
feature with GoogleNet classifier [17] 

8) PiczakCNN-ESC: log mel-spectrum and delta-
spectrum feature with 7-layer CNN classifier [10] 

9) auDeepRNN-ESC: MFCC feature with Deep RNN 
classifier [18] 

10) Mel-Spectrogram-CLNN-ESC: log Mel-Spectrogram 
feature with CLNN classifier [14] 

11) Mel-Spectrogram-MCLNN-ESC: log Mel-
Spectrogram feature with MCLNN classifier [14] 

12) Spectrograms-AlexNet-ESC: STFT Spectrograms 
feature with AlexNet classifier [17] 

13) Spectrograms-GoogleNet-ESC: STFT Spectrograms 
feature with GoogleNet classifier [17] 

14) Our Proposed DCH-Net-ESC: log Mel-Spectrogram 
feature with DCH-Net classifier 

For our DCH-Net, SGD algorithm is used for model 
training and the cross-entropy is used as the loss function. The 
experimental results are shown in Table Ⅱ. 

TABLE Ⅱ. PERFORMANCE COMPARISON OF DIFFERENT ESC SYSTEMS 

ESC system ESC10 ESC50 Model 
Size 

KNN-ESC [15] 66.7% 32.2% - 
SVM-ESC [15] 67.5% 39.6% - 
RamdomForest-ESC [15] 72.7% 44.3% - 
multikernelSVM-ESC [16] - 62.2% - 
MFCC-AlexNet-ESC [17] 73.0% 44.9% 60M 
MFCC-GoogleNet-ESC [17] 75.9% 49.1% 20M 
Spectrograms-CRNN-ESC [17] - 60.3%  
PiczakCNN-ESC [10] 80.3% 64.5% 105M 
auDeepRNN-ESC [18] 82.7% 64.3% - 
Mel-Spectrogram-CLNN-ESC [14] 77.5% - - 
Mel-Spectrogram-MCLNN-ESC [14] 85.5% - - 
Spectrograms-AlexNet-ESC [17] 78.4% 63.2% 60M 
Spectrograms- GoogleNet-ESC [17] 78.7% 67.8% 20M 
Our Proposed DCH-Net-ESC 90% 69.0% 2M 

From Table Ⅱ, we can see that, compared with KNN, SVM, 
RamdomForest and multikernelSVM, the CNN-based ESC 
method achieve much better accuracy. The reason is that 
features extracted by the deep learning-based model is more 
discriminative than handcrafted features. Compared with 
AlexNet, CRNN, PiczarkCNN, CLNN and MCLNN, 
GoogleNet achieves much better accuracy on ESC50, which 



demonstrates that after alleviating the vanishing-gradient 
problem, Highway networks has better ability for high level 
feature extraction than that of the shallow CNNs. Compared 
with GoogleNet-ESC, our proposed DCH-Net gets the state-of-
art results on both ESC10 and ESC50, which demonstrates that 
our designed DCMH has even better capability of extracting 
discriminative high-level features by maximizing information 
flowing using concatenation bypass information. Besides, with 
the GPA, it is encouraging to see that our DCH-Net has only 
about 2M model size which is much smaller than that of other 
models.  

CONCLUSIONS 

 In this paper, we proposed a Densely Connected 
Convolution Neural Network (DCH-Net) for environmental 
sound classification task. In DCH-Net, a densely connected 
highway module is designed to improve network’s ability of 
high level feature extraction. On the other hand, the global 
average pooling layer is used to substitute all fully connected 
layer for reducing network’s parameters. Experiments show 
that our proposed DCH-Net ESC system achieves the state-of-
art classification accuracy and much smaller model size on 
ESC10 and ESC50 compared to other state-of-the-art ESC 
methods. Obviously, the model size of Highway networks is 
about 20M, which is 10 times larger than our model meanwhile 
its classification accuracy is 2%-10% worse than our proposed 
model. Our future research would focus on improving 
classification accuracy of the lightweight convolutional neural 
network-based ESC system.  
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