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ABSTRACT

Vehicle license plate (VLP) super-resolution (SR) is of great demand in in-
telligent traffic systems. Super-Resolution for extremely low-resolution VLP
remains challenging and the state-of-the-art SR methods hardly provide sat-
isfying results for low-resolution (LR) VLPs. In this study, from a new per-
spective, we develop an effective solution to achieve the super-resolution of
the extremely LR VLP images, by using the semantic information of the char-
acters. Specifically, we firstly exploit the pervasive sparse prior for the char-
acter recognition in LR condition for VLPs. Then the semantic information
extracted from the sparse representation-based classification (SRC) results is
employed to alleviate the illness of the SR problem. To maximize the benefit
brought by the semantic information from SRC, we employ sparse-coding
based super-resolution (SCSR) method to upscale VLP images. In the end,
an exponential soft labeling method is designed to reduce the possible bias in-
troduced by character classification. Extensive experiments on the self-built
Chinese VLP dataset (VLP100) and public UFPR-ALPR dataset validate the
feasibility and effectiveness of our proposed VLP-SR system.

Index Terms— Super-resolution, vehicle license plate, character recog-
nition, sparse coding, semantic information

1. INTRODUCTION

Super-resolution for vehicle license plates (VLP-SR) is an active research
area since it is helpful to identify the target vehicles from the low-resolution
(LR) images or videos. VLP-SR plays a vital role in parking lot management,
traffic surveillance, finding the stolen vehicles, and so on.

Image super-resolution (SR) is also a hot topic in computer vision, which
aims to enhance the image resolution and recover lost high-frequency infor-
mation for better visual perception. Essentially, SR is an ill-posed problem
since there exist countless high resolution (HR) images corresponding to a L-
R input image. Numerous solutions have been proposed to address this issue.
Based on the number of input LR images, SR can be roughly categorized into
two types: multi-frame fusion based SR and single image SR (SISR). They
both have been redesigned for tackling the VLP-SR problem [1, 2, 3, 4, 5],
and achieved improvements in terms of the objective index such as mean
square error (MSE), peak signal noise ratio (PSNR), and structural similarity
(SSIM).

However, it is noted that, for the VLP-SR problem, the emphasis on
the aforementioned objective index does not necessarily leading to promis-
ing performance on the later VLP recognition. For example, existing SR and
VLP-SR methods may work well for enhancing the VLPs marked by blue in
Fig. 1, but most of them fail in enhancing the VLPs marked by red rectangle
in Fig. 1. Actually, the characters of VLPs in red are barely recognizable.
From the view of visual perception, the high practical demand lies in how to
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Fig. 1. Example illustration of vehicle license plates obtained by a video
camera in the real scenario. The VLPs marked by red rectangle are in the
extremely LR condition which are nearly unrecognizable. The VLPs marked
by blue rectangle contain intact semantic information although it is unclear.

recognize the VLPs marked by red in Fig. 1. Therefore, for such application-
s, VLP-SR is heavily associated with the identification of the VLPs, which
expect the SR-VLP method to produce reliable high resolution (HR) result
from an extremely low resolution condition, where the characters of VLPs
are barely recognizable. Generally, previous VLP processing systems tend
to treat the recognition and SR of the VLPs as two independent procedures
[2, 4]. In this work, we unify these two procedures as one, maximize the
utilization of semantic priors produced by recognition, and remedy the final
SR effects by balancing the bias of priors and the visual performance.

To address the VLP-SR in the extreme LR condition, we present a nov-
el VLP-SR pipeline by exploiting sparsity and semantics in the VLPs. This
work is motivated by the research on semantic super-resolution [6]. By intro-
ducing the semantic information to the SR problem, the performance of the
original SR methods can be boosted. In this study, the semantic information
refers to image segments with corresponding categorical labels. Compared
with the natural images, the semantic information in VLPs is more distinc-
tive, since they are merely the limited combination of the English letters and
digits.

Specifically, our proposed VLP-SR system exploits the pervasive sparse
prior to conduct the character recognition task in LR condition for the VLPs,
then uses the semantic information extracted from the sparse representation
based classification (SRC) results to alleviate the illness of the SR problem,
leading to the clearer SR results. In order to maximize the benefit brought by
the semantic information from SRC, we employ sparse-coding based super-
resolution (SCSR) method to upscale VLP images. Moreover, since the char-
acter classifiers always have bias, the semantic information provided by clas-
sifiers will cause potential faults to VLP-SR. To handle such problem, we also
design an exponential soft labeling method to reduce such negative influence
on SR performance. Finally, to validate the effectiveness of our method, we
test our system along with several generic SR methods and redesigned ones
on a self-built dataset VLP100 and a public car license dataset UFPR-ALPR.

The remainder of the paper is organized as follows. Section 2 describes
the pipeline and the algorithms of our proposed VLP-SR system, and section
3 gives detailed experiments and the corresponding analysis. Finally, section
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4 concludes the paper.

2. SEMANTIC SUPER-RESOLUTION FOR VLP

Our proposed VLP-SR method aims to exploit the semantics of the VLP
to help improve the SR performance. The main task of the VLP-SR is to
enhance the visibility of the VLP for improving the recognition of the VLP.
With the aforementioned semantics existing in the VLPs, the illness of the
SR problem is reduced in the following two ways:

1) The resolution enhancement is directly applied to the semantic object
(in this study, the semantic object refers to the image patch of a VLP char-
acter) instead of some generic low-level parts (e.g. texture, edges or some
other patterns). Thus, the number of potential HR estimations of the given
LR images is limited.

2) The aim of the VLP-SR is to help recognize the VLPs, hence VLP-
SR should only focus on the information beneficial to the later categorization
task. Meanwhile, for the character recognition, only edges matter while the
possible texture could be just viewed as stain and the color contains nothing
about character recognition. Under this circumstance, without the burden of
recovering the texture and some missing color information, the illness of the
VLP-SR problem is further alleviated.

Specifically, we employ a discriminative model to infer the semantics
of each VLP character in the LR condition, then incorporate the deduced
semantics into the later SR task.

Character 

Segmentation

VLP Super-

resolution

Character 

Stitching

The input LR 

VLP
The HR VLP

Fig. 2. The pipeline of the proposed VLP-SR method. Above: the processing
modules of VLP-SR; below: a real example processed by VLP-SR.

2.1. The pipeline of the proposed method

The pipeline of our VLP-SR system is given in Fig. 2. There are three
modules: module 1: LR character segmentation, which divides the VLP im-
age into six sub-images, and each sub-image contains a character; module 2:
VLP-SR on the LR character; module 3: HR character stitching, which put
the SR character sub-images into a complete HR VLP image. Specifically,
module 1 adopts the algorithm proposed in [7], while in module 3, the simple
and direct stitching is employed. In the following subsections, the details of
our proposed VLP-SR will be discussed.

2.2. The problem formulation of VLP-SR

The scheme of our proposed VLP-SR is summarized as: given a segmented
LR character x (in column vector form, x ∈ Rp), its semantic label c(x) is
determined by a classifier f . Accordingly, the corresponding HR character y
is estimated by

y = g(x, c(x)) (1)
where g is a super-resolution method and y ∈ Rq . Here q > p, and to
address the VLP-SR in the extreme LR conditionin, in this study q � p.

According to the aforementioned problem formulation, the key to VLP-
SR is to design a robust classifier f and a proper super-resolution method
g. More importantly, f and g should be coordinated properly for boosting
the SR performance and reducing the negative effects introduced by the bias
of f . In this paper, we employ the sparse representation classification (SRC)
[8, 9] to act as f and the sparse coding based SR (SCSR) [10] as g, since SRC
works well when given the limited training data [8, 9], and SCSR can exploit
the semantic information provided by SRC smoothly as they both utilize the
sparsity in image patches.

2.3. The LR-HR semantic dictionary pair constitution

Dictionary learning or constitution is a vital part of the example-based [11,
12, 13] or sparse coding based [8, 9] SR methods. As our g is SCSR, we also
need to build our own LR-HR dictionary pair for the VLPs. Let hji (h

j
i ∈

Rq) denote the ith HR image of the jth character. Then let Dj
h denote

the HR dictionary formed by the HR images of the jth character, where
Dj
h = [hj1,h

j
2, ...,h

j
T ] and the subscript h stands for HR. Correspondingly,

the LR dictionary of the jth character consists of the counterpart LR images
of the jth character, where Dj

l = [lj1, l
j
2, ..., l

j
T ] and the subscript l stands

for LR. Besides, lji is the down-sampled version of hji , which is expressed
as: lji = Shji , where lji ∈ R

p and S ∈ Rp×q is the down-sampling
operator.

2.4. The VLP-SCSSR algorithm

After getting the character sequence xi (i = 1, 2, ..., N ) from the LR VLPs,
we need to acquire the semantic label of each character first. Specifically,
with the trained dictionaries Dj

l (j = 1, 2, ...,K), the classification scheme
is given as:

Solving the sparse solution of xi over Dj
l :

w∗j = argmin
wj
‖xi −Dj

lwj‖
2
2 s.t. ‖wj‖1 < t (2)

where t is the preset parameter indicating the sparsity of wj .
With wj , the residual of xi over each dictionary is easily computed as:

rj = ‖xi −Dj
lw
∗
j ‖2 (3)

Then, the semantic label of each character xi can be determined based
on rj (j = 1, 2, ...,K). Actually, there are two approaches to design such
semantic label:

1) Let c(xi) be the hard label, meaning c(xi) is a discrete number, or a
vector where 1 represents the target category and 0 for the rest; 2) Let c(xi)
be the soft label, meaning c(xi) is a vector where each element stands for
the confidence to which xi belongs.

For the first approach, c(xi) is computed by finding the minimal resid-
ual as:

c(xi) = arg min
1≤j≤K

rj (4)

While for the second approach, the c(xi) is computed by our definition
as:

c(xi) =
1

Z
[e−αr1 , e−αr2 , ..., e−αrK ] (5)

where α is a positive constant and Z =
∑K
i=1 e

−αri is the normalization
factor. Note that the smaller the residual, the higher the possibility that xi
belongs to the jth character. Actually, we argue that the soft label will re-
duce the potential faults introduced by the bias of the SRC, since the soft
label acts as the weighted sum or the ensemble method, which preserves
the possibility of the semantics of xi, and helps increase the representation
ability of the SCSR. In the following, we will demonstrate how the soft la-
bel works. Assume ∃rt1 = rt2 = ... = rtM = min1≤j≤K rj and
min({rj}1≤j≤K −{rti}1≤i≤M ) > rt1 , then it can be demonstrated that

lim
α→+∞

1

Z
e−αrti =

1

M
where 1 ≤ i ≤M (6)

lim
α→+∞

1

Z
e−αrj = 0 where j 6= ti and 1 ≤ j ≤ K (7)

where M ≤ K (M,K and tM are all constant). When M = 1, it is clear
that the soft label reduces to the hard label as only one dimension of c(xi) is
set to 1 and the remaining are 0.

In SCSR, the sparse representation of the LR patch is considered to be
consistent with that of the corresponding HR patch over the joint-trained LR-
HR dictionary pair, indicating that if x = Sy then

w∗l = argminwl ‖x−Dlwl‖22 s.t. ‖wl‖1 < t

w∗h = argminwh ‖y −Dhwh‖22 s.t. ‖wh‖1 < t

w∗l u w∗h

(8)

With the formulation of the SCSR, it is clear that the HR estimation ŷi

of xi is computed as:

ŷi = g(xi, c(xi)) with {Dj
h}j=1,2,...,K (9)

where g is the SCSR in our context.
According to different approaches for determining c(xi), ŷi can be

computed in the following two different manners:
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(a) (b)

Fig. 3. Examples of VLP100 (above) and UFPR-ALPR (below) dataset. (a)
The VLP images; (b) the segmented character images.

1) if c(xi) is hard label, then:

ŷi = D
c(xi)
h w∗

c(xi)
(10)

2) if c(xi) is soft label, then:

ŷi =

K∑
j=1

c(xi)jD
j
hw
∗
j (11)

where c(xi)j = 1
Z
e−αrj .

3. EXPERIMENTS AND RESULTS

3.1. Datasets

We conduct experiments on two VLP datasets, including a self-built Chinese
vehicle license plate dataset (VLP100) and the UFPR-ALPR dataset [14],
examples are given in Fig. 3. The VLP100 is composed of 100 Chinese
VLP images took from the real-world scenarios and with the annotations of
their identifications (e.g. “A-635G7”, where Chinese characters are omitted).
Besides, the UFPR-ALPR dataset is a public large-scale dataset of Brazilian
VLPs, containing 4500 images from different types of vehicles (e.g. cars,
motorcycles, buses, trucks, among others) with complex backgrounds and
lighting conditions.

For these two VLP datasets, we firstly extract two corresponding seg-
mented character datasets from them based on Module 1 in Section 2.1. The
segmented character dataset of VLP100 contains 34 different characters, in-
cluding 24 English letters (‘O’ and ‘I’ are omitted since they are missing from
Chinese VLPs) and 10 digits. Each type of the character has 280 RGB im-
ages with 48 × 24 resolution. Similarly, the segmented character dataset of
UFPR-ALPR consists of 26 English letters and 10 digits. However, since the
images from UFPR-ALPR are acquired with different portable devices (e.g.
GoPro Hero4 Silver and iPhone 7 Plus) and affected by vehicle motion, their
quality is worse than that in VLP100. We randomly select 300 RGB images
from UFPR-ALPR and resized them to 11 × 7 resolutions for each type of
the character.

Then, we preprocess these two VLPs datasets for uniform input. For
VLP100, we have 100 cropped and aligned RGB Chinese VLP images with
size of around 48 × 144. They are all taken from the entrance of a parking
lot, which are degraded by the disturbance brought by the illumination and
environmental noise (see Fig.3). For UFPR-ALPR, 150 VLPs are randomly
chosen, cropped, aligned, and resized to 11× 49.

In our experiments, since color exerts no influence on the character
recognition, we convert all colorful VLPs and character images into gray
ones, and they are normalized subsequently.

The semantic dictionary pair is formed by the segmented character data
using the approach described in Section 2.3. Since we intend to enhance
the visibility of the VLP in the extremely low resolution, the down-sampling
factor is set to 8 for VLP100 and 2 for UFPR-ALPR, meaning we prepare to
upscale the VLP character images from the resolution of 6× 3.

3.2. Performance Evaluation

In this subsection, some benchmark classification algorithms on the VLP
character images are evaluated in the LR condition (6 × 3). Then, VLP-SR
experiments have been conducted to show the effectiveness of our proposed
VLP-SR method.

Table 1. The classification results on the LR characters of VLP100 and
UFPR-ALPR

KNN CRC SRC MLP SVM
Err of VLP100 4.41% 13.92% 2.16% 4.34% 3.82%

Err of UFPR-ALPR 2.13% 20.18% 0.08% 8.14% 12.78%

3.2.1. The character recognition in the extremely low resolution

The experimental results support of using SRC as f are given. We evaluate
the performance of different types of classification algorithms in LR VLP
character recognition by using the aforementioned two segmented character
datasets. Two types of classification methods are used, including: 1) non-
parametric methods: K-nearest-neighbors (KNN) [15], sparse representation
based classification (SRC) [8, 9], and collaborative representation based clas-
sification (CRC) [16]; 2) parametric methods: multiple layered perceptron
(MLP) [15] and support vector machine (SVM) [15]. All the used charac-
ter images are down-sampled to the size of 6 × 3 for both VLP100 and the
UFPR-ALPR. For each type of character, 90% (250 for VLP100 and 270 for
UFPR-ALPR) images are randomly selected for training, and the remaining
data (30 for both VLP100 and UFPR-ALPR) are for testing.

The classification results on VLP100 and UFPR-ALPR are shown in
Table 1. Note that SRC achieves the highest accuracy among all classification
methods on both two datasets. Specifically, it achieves 97.84% on VLP100
and 99.92% on UFPR-ALPR, which outperforms the second place method
(SVM for VLP100 and KNN for UFPR-ALPR) by around 2% accuracy. It
is worth mentioning that 2% higher accuracy suggests SRC is 9.7% higher
accuracy than KNN in the license plate recognition task of 7 characters (SRC:
94.5% = 99.92%7, KNN: 85.82% = 96.18%7).

3.2.2. Super-resolution for VLPs in the extremely low resolution

Here, the SR performance of our proposed system and other baseline al-
gorithms are given. The baseline algorithms include: Bicubic interpola-
tion, SCSR [10], Neighborhood embedding (NE) [13], SR convolutional
neural network (SRCNN) [17, 18], very deep residual network for SR (VD-
SR) [19], and semantic super-resolution based on neighborhood embedding
(SSR-NE), whose g are NE based SR algorithm while f is still SRC. SC-
SR, NE, SRCNN, and VDSR are used to show the necessity of incorporating
the semantic information into the VLP-SR problem, while SSR-NE is used
to show the advantages about maintaining the consistence between f and
g. For popular deep learning based SR methods, besides SRCNN and VD-
SR, we are also aware of various effective SR approaches proposed recently
[20, 21, 22, 23, 24]. Almost all of them produce better SR visual effects than
SRCNN and VDSR. However, since they are all generic deep learning based
algorithms, their VLP SR performance can be expected just like SRCNN and
VDSR. Limited training data and image size cannot support the full utiliza-
tion of the huge model capacity and large receptive field provided by these
deep models. The following experiments will verify this argument.

For SRCNN and VDSR, the networks are initialized by the models pro-
vided in the source code, and further fine-tuned by 60 training HR VLPs
and their corresponding LR ones; for SCSR and NE, such 60 HR-LR VLP
pairs are also used for additional training. All the remaining configurations
of the compared methods are the same as described in their work. For our
proposed VLP-SCSSR, only the semantic dictionary pair mentioned in Sec-
tion 3.1 is used for training. Additionally, both modes of hard and soft labels
are evaluated, and they are named as VLP-SCSSR(h) and VLP-SCSSR(s) for
convenience, respectively. In VLP-SCSSR(s), α is set to 80.

SR results on VLP100. The input 100 LR VLP images are generated
from the VLP dataset described in Section 3.1. Each one of them is down-
sampled at 8 times, which is common in real traffic surveillance applications.

Fig. 4 gives three examples on the SR performance of the methods dis-
cussed above. The 1st image shows the SR results of a clear LR VLP image.
It is noted that SCSR, NE, A+, SRCNN, and VDSR nearly describe the rough
shape of each character, where ‘A’, ‘S’, and ‘1’ can be visually recognized
while ‘Y’ and ‘7’ are difficult to infer. In the SSR framework, SSR+NE,
VLP-SCSSR(h), and VLP-SCSSR(s) all yield surprisingly visual appealing
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 4. Super-resolution results of 3 random images of VLP100. For each result, (a) is the original HR image, (b)-(j) are SR results provided by bicubic
interpolation, NE, SCSR, A+, SRCNN, VDSR, SSR+NE, VLP-SCSSR(h), and VLP-SCSSR(s), respectively.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5. Super-resolution results of 10 random images of UFPR-ALPR. For each result, (a) is the original HR image, (b)-(h) are SR results provided by bicubic
interpolation, NE, SCSR, SRCNN, SSR+NE, VLP-SCSSR(h), and VLP-SCSSR(s), respectively.

results. Moreover, SSR+NE has more artifacts than VLP-SCSSR(h) and
VLP-SCSSR(s), especially on ‘A’, ‘1’, and ‘Y’. Meanwhile, VLP-SCSSR(h)
and VLP-SCSSR(s) have some blurry effects on ‘S’.

For the 2nd image, compared with the 3th image, its illumination is
poor, in which SCSR, NE, A+, SRCNN, and VDSR give quite blurry re-
sults. The compared methods cannot provide any meaningful results. Un-
der such circumstance, SSR+NE, VLP-SCSSR(h), and VLP-SCSSR(s) still
offer clearly recognizable results. Besides, since VLP-SCSSR(h) and VLP-
SCSSR(s) both share the same sparsity prior and consistence in f and g, in
which the illumination problem is treated as noise, their SR results have bet-
ter contrast compared with SSR+NE. Also, note that VLP-SCSSR(s) (Fig. 4
the 3th image) produces more blurry result compared with VLP-SCSSR(h).
Some characters from VLP-SCSSR(s) are obviously the combination of more
than two types of characters, such as the second character ‘K’. The estima-
tion offered by VLP-SCSSR(s) of ‘K’ is combined by ‘K’ and ‘W’. From the
perspective of human visibility, such blurry combination of character can be
annoying. However, on the other side, it alleviates the negative effects in-
troduced by the bias of f . More importantly, SSR+NE and VLP-SCSSR(h)
both give clear but semantic wrong estimations as ‘FWU556’. In this case, as
VLP-SCSSR(s) exploits the confidence of each potential character candidate,
its result gives us an opportunity to realize the possibility of the HR ground
truth, helping us make a correct decision.

SR results on UFPR-ALPR. Fig. 5 shows the SR performance of
the Bicubic interpolation, NE, SCSR, SRCNN, SSR+NE and our proposed
method VLP-SCSSR(h) and VLP-SCSSR(s). These 10 example images are
randomly selected from the UFPR-ALPR testing set. Each of the LR image
has a resolution of 6× 3 and its corresponding HR image has a resolution of
11× 7.

From the 1st, 2nd and 3th image, we can see that, compared to the
results of Bicubic interpolation, SCSR and SRCNN, our method provides
clearer SR results. Furthermore, from the 4th to 9th images, we can see that
Bicubic interpolation and SRCNN produce blurry results, which are difficult
to recognized visually. Additionally, although NE and SCSR generate clear
SR results, they give the wrong predict. For example, in the 5th image, NE
confuses ‘4’ with ‘G’ and ‘6’ with ‘4’, while SCSR confuses ‘4’ with ‘C’.
In the 6th image, NE confuses ‘A’ with ‘4’, while in the 7th image, NE
confuses ‘8’ with ‘3’. Meanwhile, compared with SCSR and NE, SSR+NE
and VLP-SCSSR provide better SR results on similar characters with the
semantic information. In the 5th image, the ‘4’ is upscaled to ‘C’ by SCSR,

while VLP-SCSSR provides a correct convincing result as ‘4’. Moreover,
the qualitative comparisons between SSR+NE and VLP-SCSSR validate the
necessity of using semantic information and the importance of maintaining
the consistence between f and g again.

Considering the input VLPs are in quite low resolution and hard to be
recognized, pixel-wise measurements like PSNR or others are not good quan-
titative evaluation metrics for our desired SR performance. Nevertheless, we
give the PSNR values of all used methods and systems for reference in Table
2. Note VLP-SCSSR(h) and VLP-SCSSR(s) only give higher PSNR than
SRCNN, and yield much lower PSNR than traditional Bicubic interpolation
and SCSR. However, from the perspective of visual qualitative comparison
(Fig. 5), VLP-SCSSR produces the clearest VLPs with recognizable charac-
ters.

Table 2. Average PSNR on UFRP-ALPR

Bicubic SCSR NE SRCNN SSR+NE VLP-
SCSSR(h)

VLP-
SCSSR(s)

PSNR (dB) 18.06 20.57 19.02 14.40 19.13 15.0 14.72

4. THE CONCLUDING REMARKS AND FUTURE WORK

We have presented a sparse-coding based super-resolution system with se-
mantic priors for the VLP-SR problem in the extreme LR condition. The
unified recognition and SR framework can boost SR effects significantly.
Additionally, a soft-labeling method has been developed for producing more
convincing SR results. Experiments on our self-built VLP and public UFPR-
ALPR datasets show that with our proposed SR system, the original visually
unrecognizable VLPs can be clearly displayed.

In the future, we will explore how to seamlessly convert such a system
into an end-to-end learning model through neural networks, and explore how
to regularize it for improving robustness and dealing with challenging cases.
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