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ABSTRACT 
 
Although significant progresses have been made in object detection 
on common benchmarks (i.e., Pascal VOC), object detection in the 
wild is still challenging due to the serious data inadequacy and 
imbalance. To address this challenge, we construct a cascade 
framework which consists of multiple region proposal networks, 
referred to as C-RPNs. The essence of C-RPNs is adopting multiple 
stages  to mine hard samples and learn better classifiers. Meanwhile, 
a feature chain and a score chain are proposed to help learning more 
discriminative representations for proposals. Moreover, a loss 
function of cascade stages is designed to train cascade classifiers 
through backpropagation. Our newly proposed object detection 
method is evaluated on Pascal VOC and a challenging dataset of 
littoral birds named BSBDV 2017. Our method outperforms 
baseline by an obvious margin, validating its efficacy for detection 
in the wild. 
 

Index Terms— object detection, cascade, hard samples mining, 
region proposal network, wild scenes 

 
1. INTRODUCTION 

 
Object detection is the most fundamental step in visual 
understanding. It aims at identifying and localizing objects of certain 
categories in images. Most of object detection approaches are 
trained and tested on common object detection benchmarks, i.e., 
PASCAL VOC [1] and MS COCO [2]. These benchmarks typically 
assume that objects in images are with good visibility and abundance. 
Obviously, this assumption is usually not satisfied in wild scenes. 

Taking littoral bird images from common benchmarks and wild 
scenes as examples, the former are usually collected with better 
visibility, while the latter are usually collected via monitoring 
cameras with different background and camera distance. Also, the 
littoral birds from wild images might be in a smaller scale with more 
specific appearances. Moreover, different illumination and weather 
conditions may appear in wild scenes. For more intuitive 
observation, several examples focusing on littoral birds are 
illustrated in Fig. 1. Samples from BSBDV 2017 [3] show birds in 
the wild, while samples from PASCAL VOC [1] show birds in 
___________________________ 
      This paper was partially supported by Shenzhen Science & 
Technology Fundamental Research Programs. (No: 
JCYJ20160330095814461), Shenzhen Key Laboratory for 
Intelligent Multimedia and Virtual Reality 
(ZDSYS201703031405467). Special acknowledgements are given 
to Peng Cheng Laboratory for its support. 

 
 

Fig. 1. Sample images: 1) one littoral bird image from BSBDV 2017 
(left upper); 2) 12 images from Pascal VOC (right upper); 3) The 
bird objects drawn from these images (bottom). It is clearly the 
scales and abundances of birds are mismatched. 

 
common benchmarks. The image from BSBDV 2017 is with 
resolution of 4912*3264, in which the heights of birds vary from 80 
to 300 pixels. Images from PASCAL VOC 2007&2012 are with 
average resolution of 400*400, where the heights of birds are from 
150 to 480 pixels. For detection approaches, such a distribution 
mismatch from common benchmarks to practice scenes have been 
observed to lead to a significant performance degradation. 

Although enriching training data could possibly alleviate the 
performance reduction, it is not favored since annotating data is 
expensive. To figure out the crucial elements of performance 
degradation in wild object detection, plenty of experiments have 
been conducted. We list the conclusions as follows: 

1) As mentioned above, because of the smaller size, poor 
shooting conditions and poor abundance of objects in wild scenes, 
classifiers in detection approaches are unable to learn 
discriminative features from ground truth. 

2) In a wild image, the number of negative samples (also called 
background samples) is much larger than that of positive samples 
(As shown in Fig. 1), and most of them are easy samples. Easy 
samples do not contribute useful learning information during 
training while hard samples benefit the convergence and detection 
accuracy. Thus, the overwhelming number of easy samples during 
training leads to moronic classifiers and degenerate models.  
In this work, we aim to improve the precision of object detection in 
the wild. Based on observations above, we propose a cascade 
framework consists of multiple region proposal networks, referred

1744

2019 IEEE International Conference on Multimedia and Expo (ICME)

978-1-5386-9552-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ICME.2019.00300



VGG Conv1-Conv3

(First 7 layers)
C

on
v
4
_
1
-5

1
2

C
on

v
4
_
2
-5

1
2

C
on

v
4
_
3
-5

1
2

C
on

v
5
_
1
-5

1
2

C
on

v
5
_
2
-5

1
2

C
on

v
5
_
3
-5

1
2

C-RPN 1

Batch=
1024

C-RPN 3
Batch=

512 RPN 4
Batch=

256

Rejected
ES?

C-RPN 2

Batch=
768

ES?

ES?

avg_pool
2,2

avg_pool
2,2

RoI_pool FC 

Layers

Flow of RoIs

Softmax

 
Fig. 2. An overall of our proposed C-RPNs model. We adopt VGG16 as backbone network. ES means easy samples. 

to as C-RPNs. While training and testing, C-RPNs are adopted to 
mine hard samples and learn stronger classifiers. Multi-stage 
classifiers at early stages discard most of easy samples so that 
classifiers at latter stages focus on handling harder samples. Also, 
we design a feature chain and a score chain to generate more 
discriminative representations for proposals. Finally, a loss function 
of cascade stages is built to jointly learn cascade classifiers.  

The contributions of this work are summarized as follows: 

� A cascade region proposal networks for object detection in the 
wild was proposed, referred to as C-RPNs. 

� A feature chain and a score chain for C-RPNs were designed to 
further improve classification capacity of multi-stage 
classifiers. 

� A loss function of multiple stages was constructed to jointly 
learn cascade classifiers. 

� Integrating the proposed components into the Faster R-CNN 
model, our resulting model can be trained end-to-end. 
Extensive experiments have been conducted on two 

benchmarks, including PASCAL VOC [1] and BSBDV 2017 [3]. 
Our approach have provided 3.2% mAP and 11% AP gain compared 
with the Faster R-CNN baseline on these two benchmarks 
respectively. The experimental results demonstrate the effectiveness 
of our proposed approach for object detection in the wild. 

2. RELATED WORK 

2.1. Related work on object detection 

We all have witnessed tremendous progresses in object detection 
using convolutional neural networks (CNNs) in recent years. Many 
CNN-based approaches have been proposed to improve 
performance [4-10]. Region-based CNN [4-6] approaches are 
referred as two-stage detectors, which have received great attention 
due to their effectiveness. R-CNN [4] is constrained by a selected 
search region. To reduce the computational complexity of R-CNN, 
Fast R-CNN [5] shared the convolutional feature maps among 
region of interest (RoI) and accelerated spatial pyramid pooling 
using RoI pooling layer. Renetal [6] introduced Region Proposal 
Network (RPN) to generate high-quality region proposals and then 
merged them with Fast R-CNN into a single network, referred to as 

Faster R-CNN. Besides, for faster detection, one-stage detectors 

such as YOLO [10] and SSD [9] are proposed to accomplish 

detection mission without region proposals. 
Research shows that Faster R-CNN achieves a big success in 

object detection and laid the foundation for many follow-up works 
[8, 11-13]. For example, feature pyramid and fusion operations are 
adopted [11, 14] to enhance precision of detection. Deeper [15-17] 
or wider [18, 19] networks also benefit the detection performance. 
Deformable CNN [13] and Receptive Field Block Net [20] enhance 
the convolutional features using deformable convolutional operation 
and Receptive Field Block respectively. In addition, there also exists 
works heading in other considerations to improve the performance 
of object detection. For instance, large batch size [21] provides 
improvement in detection. SIN [22] jointly uses scene context and 
object relationships for promoting detection. Recently, to address 
the imbalanced training samples, OHEM [23] introduced an online 
hard example mining method for CNN based detector. From another 
perspective, focal loss [24] has been proposed to address the extreme 
foreground-background class imbalance problem in object detection, 
achieving the state-of-the-art. 

Although excellent performance has been achieved on several 
benchmark datasets, such as PASCAL VOC [1] and MS COCO [2], 
object detection in the real world still suffers from poor precision. 
Works mentioned above mostly focused on the conventional setting 
and rarely considered the adaptation issues such as data inadequacy 
and imbalance for object detection in the wild.  
 

2.2. Related work on cascade CNN 
 

Cascade is a widely used technique to discard easy samples at early 

stages for learning better classification model. It is noted that, before 

CNNs, hand-crafted features and SVM played the most critical role 

in object detection. Cascade structure has been applied to SVM [25] 

and boosted classifiers [26, 27]. Multi-stage classifiers have been 

proved to be effective in generic object detection [25] and face 

detection [27, 28], although these multiple classifiers are not trained 

jointly. It has been showed that CNNs with cascade structure 

perform effectively on region proposal and classification [29-31] as 

well, in which multiple but separate CNNs were trained. After that, 

Qin [32] proposed a method to jointly train a cascade CNNs.  
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Analyzing of previous works shows that they either cannot be 
aggregated in the state-of-the-art convolutional framework or focus 
on a specific task such as face detection. Thus, confronting with the 
data imbalance and inadequacy problems in the wild, the research 
outcomes are very limited. In this work, we propose C-RPNs to mine 
hard samples and more discriminative features for wild object 
detection. Integrating with Faster R-CNN, our proposed method, to 
the best of our knowledge, is the first cascade model of region 
proposal networks for object detection in the wild. 

3. PROPOSED METHOD 

3.1. Overview of C-RPNs  

In this study, Faster R-CNN has been adopted for our proposed C-
RPNs. Faster R-CNN consists of a shared backbone convolutional 
network, a region proposal network (RPN) and a final classifier 
based on region-of-interest (RoI). For performance comparison 
fairness, VGG16 is taken  as the backbone network [15]. Fig. 2 
shows an overview of our proposed C-RPNs model. Several shared 
bottom convolutional layers are used for extracting convolutional 
features from the image (Conv1-Conv4_1). Then, C-RPNs are 
adopted upon four different convolutional layers, which are 
Conv4_2, Con4_3, Conv5_2 and Conv5_3. Since feature maps from 
Conv5 have the same channels but half size compared with those 
from Conv4, we employ an average pooling with size of 2*2 upon 
Conv4_2 and Conv4_3 to obtain feature maps of same resolutions 
for these four stages.  

At stage 1, the feature map extracted from Conv4_2 are used 

for generating region proposals and obtaining binary classification 
score by a softmax function. This binary classification score 
estimates a sample’s probabilities belonging to background or 
objects. Part of easy samples will be rejected at this stage. At stage 
2, if a proposal has not been rejected at the former stage, then the 
feature map from Conv4_3 for this proposal is used for further 
binary classification. Similar processes are applied at stage 3 and 
stage 4. It is worth to point out that the stage 4 is similar to RPN 
from Faster R-CNN, which achieves not only binary classification 
but also bounding box regression. After these four stages, the 
proposals which have not been rejected are sent to RoI pooling layer 
for final detection. In this study, we set batch of each stage as 1024, 
768, 512 and 256 respectively so that the stage 4 has the same batch 
size with RPN from Faster R-CNN. 

From Fig. 2, it can be seen that C-RPNs takes different 
convolutional features stage-by-stage which enable it obtains 
different semantic information and receptive field. It is also noted 
that, in C-RPNs, the classifiers at shallow stages handle easier 
samples so that the classifiers at deeper stages focus on handling 
more difficult samples. The easy samples rejected by a classifier 
from shallow stage will not participate in the latter stages. With this 
design, abundant samples can be used while only hard samples been 
mined will go for final classification and bounding box regression, 
which benefits to alleviate the data imbalance problem. 

To further enhance the classification capacity, a feature chain 
and a score chain are designed in C-RPNs, which are detailed in 
Section 3.2. In the end, the multi-stage classifications and bounding 
box regressions are learned in an end-to-end manner via a joint loss 
function, details are given in Section 3.3.  

 

3.2. Feature Chain and Score Chain  
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Fig. 3. The proposed feature chain and score chain of C-RPNs 
(VGG16 is taken as the backbone network). 
 
Literature studies show that FPN [11] and DSSD [14] are effective 
for object detection using multiple convolutional layers. In this 
study, in order to capture the variation of features from different 
layers, a feature chain and a score chain at cascade stages are 
designed which are able to make use of features at previous stages 
as the prior knowledge for the features at current stage. 

The implementation of feature chain and score chain is shown 

in Fig. 3. Let’s define the number of stages as  and t is the stage 

index. At stage , we denote the features from convolutional layer as 

 while features for classification as . The feature chain is 
formulated as following: 

 

 (1) 

 

where  and  denotes the Hadamard product and summarized 

point to point, respectively.  and  are hyper parameters 

controlling the weight of features from former stage and present 
convolutional layer to generate fusional features for classification. 
Considering features from present convolutional layer are more 

helpful for classification, we set  as 0.1 and  as 0.9. The fused 

features  are then used for classification.  

At stage , for each proposal not been rejected at the  stage, 

we denote the score from classifier  as  while the output score of 

this stage as . The designed score chain has the following 
formulation. 

 

 (2) 

 
In this implementation, it is clear to see that features and scores 

at current stage make use of those from previous stages which 
enhance the capacity of the classifiers at current stage. 
 

3.3. Cascade Loss Function  
 
In Faster R-CNN, training loss is composed of loss of RPN and Fast 
R-CNN. The former contains a binary classification loss and a 
regression loss while the latter contains a multi-class classification 
loss and a regression loss. In our method, C-RPNs adopts multi-task 
loss of classification and bounding-box regression to jointly 
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optimize the detection. C-RPNs contains four binary classification 
loss and a regression loss. In C-RPNs, the cascade classifiers achieve 

to assign a sample’s probabilities to background and objects. 

 is denoted to express these two class respectively. At 

stages , the set of class scores for a sample is denoted 

by   are scores at stage t for 

background and objects respectively. Another layer at stage 4 

outputs bounding box regression offsets 

 for objects. Our proposed loss function of C-RPNs 

has the following formulation:  
 

  (3) 

  (4) 

 

where  is the loss for classification and  is the loss for 

bounding box regression. For , we use the smoothed  loss [5]. 

For ,  is a parameter that controls the weight of loss from 

cascade classifiers and  evaluates whether the sample is rejected 
in previous stages. 

 

  (5) 

   (6) 

 

Here, we set =1, where  in C-RPNs. Since scores from 
deeper classifiers are more crucial for final classification than those 

from shallow classifiers,  from deeper classifiers has been 

distributed more weight. For , we set the  as a threshold value at 

each stage.  will output 1 if it is true or output 0 if it is 

false. If a sample is rejected in previous stages, it is no longer used 

for training the classifier at current stage. We set  as 0.99. If 
 and , then  is a normal cross entropy loss.  

Since there is no constrain that the rejected samples must be 
background, few easy positive samples might also be rejected at 
early stages during training.  

For the object detection with the proposed model, the final 
training loss is designed to compose the loss of C-RPNs and the loss 
of Fast R-CNN: 

 

  (7) 
 

where  and  both are composed of classification loss 
and regression loss. The former contains four cascade binary 
classification loss while the latter contains a multi-class 
classification loss. With this loss function, multiple classifiers and 
bounding box regressions are learned jointly through 
backpropagation. 
 

4. EXPERIMENTS AND EVALUATIONS 
 
4.1. Experimental setup  
 
4.1.1. Datasets and Evaluation Metrics. 

 
We evaluate our approach on two public object detection datasets, 
including PASCAL VOC 2007 [1] and BSBDV 2017 [3]. For 
evaluation, we use the standard mean average precision (mAP) 
scores with IoU thresholds at 0.5. Pascal VOC involves 20 
categories. VOC 2007 dataset consists of about 5k trainval images 

and 5k test images, while VOC 2012 dataset includes about 11k 
trainval images and 11k test images. Following the protocol in [5], 
we perform training on the union of VOC 2007 trainval and VOC 
2012 trainval. The test is conducted on VOC 2007 test set. The Birds 
Dataset of Shenzhen Bay in Distant View (BSBDV 2017) [3] is a 
great challenging dataset in the wild, consisting of 1,421 trainval 
images and 351 test images. BSBDV2017 contains three kinds of 
image resolutions, which are 2736×1824, 4288×2848 and 
5472×3648 respectively. Size of birds varies greatly from 18×30 to 
1274×632. 

 
4.1.2. Implementation Details. 

 
The Faster R-CNN is taken as our baseline, where all parameters are 
set according to the original publication [6] if not specified. We 
initialize the backbone network using a VGG16 pre-trained model 
on ImageNet [33] while all new layers are initialized by drawing 
weights from a zero-mean Gaussian distribution with standard 
deviation 0.01. For training on VOC 2007 test set, we use a learning 
rate of 0.001 for 80k iterations and 0.0001 for 30k iterations. For 
training on BSBDV2017, we use a learning rate of 0.001 for 50k 
iterations and 0.0001 for 20k iterations. We trained our model in the 
end-to-end manner with Stochastic Gradient Descent (SGD), where 
the momentum is 0.9, and the weight decay is 0.0005. Our program 
is implemented by Tensorflow [34] on a GPU of GeForce GTX 
TITAN X. 

 
4.2. Overall performance  
 
4.2.1. Performance on Pascal VOC benchmark. 

 
We compare our approach with several state-of-the-art approaches 
in this subsection. Results in terms of mean average precision (mAP) 
are shown in Table 1. From Table 1, it can be seen that our model 
achieves the second best performance among all methods, which is 
1.2% lower than that of RON [35] but 3.2% higher than that of 
baseline Faster R-CNN with VGG16. Besides, it is happy to see that 
our method outperforms ION [18] with the same backbone network 
which used features from Conv3_3, Conv4_3 and Conv5_3 to 
leverage context and multi-scale knowledge for object detection. 
From the table, we can see that though C-RPNs is designed aiming 
to improve wild detection with imbalance data, it gets competitive 
performance on common benchmarks. 

 
4.2.2. Performance on BSBDV 2017. 
 
Table 2 shows the comparisons of C-RPNs with state-of-the-arts on 
BSBDV 2017. From Table 2, we can see that our model performs 
best and its average precision (AP) is 3.4% higher than the second 
best (FPN [11]). More specifically, the AP of C-RPNs is 70.3%, 
which obtains 11% performance gain compared with that of Faster 
R-CNN. It is noted that our C-RPNs gets slightly lower mAP than 
that of RON [35] on VOC 2007, but it outperforms RON by a margin 
of 12.3% on BSBDV 2017. Also, C-RPNs is 8.8% and 3.4% higher 
than that of R-FCN [7] and FPN [11] respectively. These results 
demonstrate that our C-RPNs is more competitive in object 
detection in the wild. 

 

4.3. Ablation studies 
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Table 1. Results on PASCAL VOC 2007 test set. 07+12: union of Pascal VOC07 trainval and VOC12 trainval. 
 

Method Trainset mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv 

Fast R-CNN [5] 07+12 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4 
Faster R-CNN [6] 07+12 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6 

SSD500 [9] 07+12 75.1 79.8 79.5 74.5 63.4 51.9 84.9 85.6 87.2 56.6 80.1 70.0 85.4 84.9 80.9 78.2 49.0 78.4 72.4 84.6 75.5 
ION [18] 07+12 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87.0 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4 

RON384++ [35] 07+12 77.6 86.0 82.5 76.9 69.1 59.2 86.2 85.5 87.2 59.9 81.4 73.3 85.9 86.8 82.2 79.6 52.4 78.2 76.0 86.2 78.0 
SIN [22] 07+12 76.0 77.5 80.1 75.0 67.1 62.2 83.2 86.9 88.6 57.7 84.5 70.5 86.6 85.6 77.7 78.3 46.6 77.6 74.7 82.3 77.1 

C-RPNs (ours) 07+12 76.4 78.6 79.5 76.3 66.5 63.2 84.6 87.8 87.8 60.2 83.3 71.7 85.5 86.1 81.4 79.2 49.2 75.2 73.9 83.1 75.7 

 
Table 2. Performance Comparison on BSBDV 2017. 

 

Method Backbone Network AP (%) 

SSD500 [9] VGG16 reduce 42.0 
Faster R-CNN [6] VGG16 59.3 

RON [35] ResNet-101 58.0 
R-FCN [7] ResNet-50 61.5 
FPN [11] ResNet-50 66.9 
SIN [22] VGG16 58.4 

C-RPNs ours  VGG16 70.3  
 

Table 3. The impact of cascade stages (BSBDV 2017) 
 

AP of C-RPNs (%) 69.5 69.9 70.3 

C-RPNs with Stage 4    

C-RPNs with Stage 3    

C-RPNs with Stage 2    

C-RPNs with Stage 1    

 
Table 4. The impact of feature/score chain (BSBDV 2017). 

 

AP of C-RPNs (%) 69.4 70.0 69.8 70.3 

Feature Chain     

Score Chain     

 
To further evaluate the individual effect of components of our C-
RPNs, we analyze the object detection performance affected by the 
cascade stages as well as feature chain and score chain. We use 
BSBDV 2017 in this study. 

 
4.3.1 Effects of cascade stages 

 
Table 3 summarizes the performance of our C-RPNs with different 
number of cascade stages. With stage 3 and stage 4, C-RPNs 
achieves AP of 69.5% which already outperforms the baseline 
Faster R-CNN. Adding stage 2 and stage 1 yields AP of 69.9% and 
70.3% respectively, and it brings 0.4% and 0.4% performance gain 
respectively. These results validate that more cascade stages and 
classifiers in the C-RPNs benefit object detection in the wild.  
 
4.3.2 Effects of feature chain and score chain 

 
Table 4 shows the performance of our C-RPNs with or without 
feature chain and score chain. We set the same parameters for C-
RPNs with previous sections but control the usage of feature chain 
and score chain separately. As shown in Table 4, feature chain is 
found to be effective in C-RPNs, which brings 0.6% performance 
gain. When we adapt score chain but without feature chain, the AP 
is 0.4% higher, which illustrates the efficiency of using score chain  

 
 (a) Faster R-CNNR (b) our C-RPNs 

 
Fig. 4. Detection results of Faster R-CNN (column 1) and our 
proposed C-RPNs (column 2) on BSBDV 2017. 
 
as well. The adjustment boosts the performance by 0.9% while both 
feature chain and score chain are used.  

 
4.4. Qualitative Examples  
 
For visualization purpose, several examples of detection results on 
BSBDV 2017 are given in Fig. 4. The columns from left to right are 
respectively expressed as the results of Faster R-CNN and C-RPNs. 
According to the ground truth, there are 46 and 22 birds in the top 
and bottom images, respectively. Compared with the results 
detected with Faster R-CNN, our method brings 16 and 2 more birds 
detected in two images respectively. Meanwhile, dotted boxes show 
samples are detected with more than one box, three in the left images 
and none in the right images. These results indicate that our method 
is able to generate more precise bounding boxes.  
 

5. CONCLUSION  
 
In this paper, we have constructed a C-RPNs, an effective approach 
for object detection in the wild. The essence of our C-RPNs lies in 
adopting cascade region proposal networks to discard easy samples 
and learn stronger classifiers. Moreover, a feature chain and a score 
chain at multiple stages are proposed to help generating more 
discriminative representations for proposals. Finally, a loss function 
of cascade stages is designed to jointly learn cascade classifiers. 
Extensive experiments have been conducted to evaluate our C-RPNs 
on a common benchmark (Pascal VOC) and a challenging dataset of 
littoral birds (BSBDV 2017). Our C-RPNs outperforms the Faster 
R-CNN baseline by an obvious margin, demonstrating its efficacy. 
for object detection in the wild. 
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