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Abstract. Recognizing fine-grained categories (e.g., dog species) relies on part
localization and fine-grained feature learning. However, these classification
methods use fine labels and ignore the structural information between different
classes. In contrast, we take into account the structural information and use it to
improve fine-grained visual classification performance. In this paper, we pro-
pose a novel coarse label representation and the corresponding cost function.
The new coarse label representation idea comes from the category representation
in the multi-label classification. This kind of coarse label representation can well
express the structural information embedded in the class hierarchy, and the
coarse labels are only obtained from suffix names of different category names, or
given in advance like CIFAR100 dataset. A new cost function is proposed to
guide the fine label convergence with the constraint of coarse labels, so we can
make full use of this kind of coarse label supervised information to improve
fine-grained visual classification. Our method can be generalized to any fine-
tuning task; it does not increase the size of the original model; and adds no
overhead to the training time. We conduct comprehensive experiments and
show that using coarse label constraint improves major fine-grained classifica-
tion datasets.

Keywords: Fine-grained classification � Multi-label learning
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1 Introduction

Fine-grained Visual categorization (FGVC) aims to distinguish very similar categories,
such as species of birds [1, 2], dogs [3] and flowers [4], or models of vehicles [5].
These tasks are different from conventional image classification [6] in that they require
expert level knowledge to find subtle differences. FGVC has a wide range of appli-
cations in many fields, such as image captioning, image generation, and machine
teaching [7].

Most of the prior work in FGVC has focused on handling the variations in pose,
lighting, viewpoint using part localization techniques [8, 9], attention mechanism [10–
12], fine-grained feature extractors [7], and by adding training dataset with noisy data
from web [13]. We observed that prior work in FGVC pays much attention to part
localization or neural network architecture, and the supervised information used
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includes fine labels, bounding box. We call them flat classification because they use
fine label as supervised information and the fine labels do not take into account the
structural information embedded in the class hierarchy.

The common taxonomy is hierarchical and structural. We take bird classification as
an example, there are order, family, genus and species under the bird class, and the bird
species are the specific bird label. In a fine-grained visual classification task, we need to
distinguish different species of birds, not the corresponding family and genus. This
makes me think about two questions. Firstly, can we use the biological taxonomy to
promote fine-grained classification; secondly, how to realize it.

This paper answers the above two questions from a very basic point of view. We
have created a new coarse label representation and the corresponding cost function to
take advantage of this kind of coarse label supervised information. Coarse label rep-
resentation method draws on multi-label classification [14, 15]. This coarse label can
represent the structural relationship between categories, including the parent-child
relationship between coarse label and fine label, parallel relationships between different
fine labels that belongs to a same coarse label. The new cost function can make use of
structural relationship between coarse labels and fine labels, using coarse label
supervised information to constrain the error of fine label classification to a smaller
interval and improving classification accuracy. Through our new label representation
and cost function, we can improve any existing network and achieve 1%–7%
improvement on the existing network. It does not change the size of original model and
adds no overhead to the training time.

Our main contribution can be summarized as follows:

• We create a new coarse label representation that can well express the structural
information embedded in the class hierarchy.

• We propose a new cost function to take advantage of this kind of coarse label
supervised information.

• We conduct comprehensive experiments on four datasets (CUB Birds [1], Stanford
Dogs [3], NABirds [2], CIFAR100), and achieve 1%–7% improvement on major
fine-grained classification datasets.

The rest of the paper is organized as follows. Section 2 describes the related work.
Section 3 introduces the proposed method. Section 4 introduces the datasets and net-
works. Section 5 provides the results and analysis, followed by the conclusion in Sect. 6.

2 Related Work

2.1 Fine-Grained Visual Classification

The research on fine-grained visual classification (FGVC) relies on part localization and
discriminative feature learning. The most difference between FGVC task and conven-
tional classification task is that there are subtle differences between fine-grained cate-
gories. For example, it may be the wings of birds are different in color. We use local
information of the image to assist in classification, such as by extra processing of the
bird’s head and torso, to improve the overall classification performance [8–12, 16, 17].
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Using discriminative feature extractors is also crucial for FGVC. Due to the success
of convolutional neural network in conventional image classification, we can fine tune
the model that pre-trained on conventional image datasets. Moreover, a bilinear
structure [18, 19] is proposed to compute the pairwise feature interactions, and a
boosted Deep Convolutional Neural Networks [20] is proposed to combine the merits
of boosting and modern neural networks. These prior work can also be potentially
combined with our method for future work.

2.2 Transfer Learning

Conventional Neural Networks trained on ImageNet [6] have been widely used for
transfer learning [7]. The pre-trained network can be used as a feature extractor, or fine-
tuned with the whole network. Compared with conventional image classification, the
fine-grained classification datasets are much smaller. Additionally for fine-grained
wildlife data collection, some species are harder to photograph, resulting in long-tails
data distribution. Recently, some works using large noisy web data [13] to fine tune the
network or use large fine-grained datasets [21] to fine tune the small dataset, and they
have got incredible results.

2.3 Multi-label Learning

Multi-label learning [14] studies the problem where each example is represented by a
single instance while associated with a set of labels simultaneously, whereas traditional
multi-class learning studies the problem where each example is represented by a single
instance while associated with a single labels. In a way, multi-class learning can be
seen as a special case of multi-label learning. There are two main differences between
our approach and multi-label learning. First, in multi-label classification, each
dimension of the category vector represents whether the category appears. Assuming
that there are N categories, a category representation of a multi-label category has 2N

possibilities. We use the representation rule of the multi-label category to represent the
coarse label, but the amount of all coarse labels are smaller than N. Second, in multi-
label learning, the output of a network is a multi-label vector; our method uses coarse
labels as a kind of supervised information, and the final output is a single fine label.

3 Method

We create a novel coarse label representation that can well express the structural
information embedded in the class hierarchy. Moreover, a new cost function is pro-
posed to take advantage of this kind of coarse label supervised information.
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3.1 Coarse Label Representation

The concept of coarse label is opposite to fine label. For an instance, a fine label
represents the specific category it belongs to, and a coarse label is often an abstract
label of several similar fine labels. We usually use extra label to describe the coarse
label of an instance. This will bring extra overhead on the storage, and it is difficult to
make the coarse and fine labels merge with each other during training.

CIFAR-100 dataset provides us with fine label and coarse label for each category.
CIFAR100 has 100 classes containing 600 images each. The 100 classes in the CIFAR-
100 are grouped into 20 super classes. Each image comes with a “fine” label (the class
to which it belongs) and a “coarse” label (the superclass to which it belongs). For
example, a super class called fish has 5 subcategories: aquarium fish, flatfish, ray, shark
and trout. In this case, we use extra labels “fish” to represent coarse labels. Table 1
shows examples of CIFAR-100 fine labels and corresponding coarse labels.

In multi-label learning, we use a category vector to represent an instance. Multi-
label learning studies the problem where each example is represented by a single
instance while associated with a set of labels simultaneously. Let’s assume that there
are a total of N categories, the position i of a multi-label vector is 1, indicating that the
class i belongs to this instance. A N-dimensional multi-label vector that represent an
instance looks like this:

0; 0; 1; 0; 0. . .1; 0; 0; 1; 0; 0½ � ð1Þ

In conventional fine-grained visual classification, an instance is associated with a
single label. Let’s assume that there are a total of N categories, the position i of a multi-
class vector is 1, indicating that the class i belongs to this instance. A N-dimensional
multi-class vector that represent an instance looks like this:

0; 0; 0. . . 0; 1; 0; 0; 0; 0½ � ð2Þ

Each fine label has only one corresponding coarse label, while each coarse label has
at least one fine label. We assume that there are a total of N fine labels. For a coarse
label, we assume that there are n fine labels corresponding to the coarse label. The
n fine labels are a1, a2 … an, respectively. We use a multi-label vector to represent a
fine-grained label while the position i of the vector is 1 indicating that it belongs to the

Table 1. Example labels of CIFAR100 classes.

Super classes Fine classes

Aquatic mammals beaver, dolphin, otter, seal, whale
Fish aquarium fish, flatfish, ray, shark, trout
Flowers orchids, poppies, roses, sunflowers, tulips
Food containers bottles, bowls, cans, cups, plates
Fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
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class i. And the final coarse label can be a union of the label vectors of all corre-
sponding fine labels. A N-dimensional coarse label vector that represent an instance
looks like this:

1; 1; 0; 0. . .0; 0; 1; 0; 0½ � ð3Þ

All the N-dimensional fine label vectors corresponding to this coarse label are given
as follows:

1; 0; 0; 0. . .0; 0; 0; 0; 0½ �
0; 1; 0; 0. . .0; 0; 0; 0; 0½ �
. . .
0; 0; 0; 0. . .0; 0; 1; 0; 0½ �

ð4Þ

In taxonomy, the relationship of biological categories are often represented by
parent-child nodes, which require a multi-layer tree structure for storage. The tree
structure can represent many relationships such as parent-child relationship between
categories. But this kind of category information is difficult to be effectively utilized in
machine learning because of the tree structure. In machine learning, the supervised
information is often a simple category tag rather than a complex data structure. Instead,
our proposed coarse label representation approach is able to make use of the structural
relationships between categories. Specifically, our proposed new coarse label repre-
sentation contains the structural information between the fine labels. The structural
information here includes not only the parent-child relationship of the fine labels
corresponding to the coarse label, but also the parallel relationship between fine labels
that belonging to the same coarse label.

3.2 Cost Function

A new cost function is proposed to take advantage of this kind of coarse label
supervised information. This cost function combines sigmoid cross entropy with
softmax cross entropy, which makes good use of coarse labels to improve fine label
classification. The cost function is an important indicator for evaluating the training
effect, and the adjustment of the network parameters minimizes the cost function. In the
training of convolutional neural networks, commonly used cost functions include
softmax cross entropy, sigmoid cross entropy and so on.

For a convolutional neural network with parameters h that produces the conditional
probability distribution phðxÞ over N classes for input image x. For softmax cross
entropy, the ground truth we use is fine label y, a multi-class vector representation, then
we compute softmax cross entropy between conditional probability distribution ph xð Þ
and ground truth y, where

Lsoftmax x; yð Þ ¼ �
XN

i¼1
yi � log phðxÞ½i� ð5Þ
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The sigmoid cross entropy measures the probability error in discrete classification
tasks in which each class is independent and not mutually exclusive. For instance, one
could perform multi-label classification where a picture can contain both a house and a
tree at the same time. For sigmoid cross entropy, the ground truth we use is a coarse
label z, the new proposed coarse label representation, then we compute sigmoid cross
entropy between conditional probability distribution phðxÞ and ground truth z, where

Lsigmoidðx; zÞ ¼
XN

i¼1
max ph xð Þ i½ �; 0ð Þ � ph xð Þ i½ � � zi þ logð1 þ expð�absðph xð Þ i½ �ÞÞÞ

ð6Þ

We formulate the final cost function for an input image x with fine label y and
coarse label z as:

Lfinal ¼ a � Lsoftmaxðx; yÞþ b � Lsigmoidðx; zÞ ð7Þ

The final cost function in (7) consists of two parts, the first part is Lsoftmax and the
second part is Lsigmoid . Obviously, in conventional image classification, we usually use
Lsoftmax as the cost function. We minimize Lsoftmax with fine labels and minimize Lsigmoid
with coarse labels. The coarse label contains the parallel relationships between different
fine labels that belongs to the same coarse label. And in the process of minimizing the
cost function, we use Lsigmoid for making the errors constrained in similar categories and
use Lsoftmax for making the model learn how to correctly classify fine labels.

The parameters (a and b) in (7) are two super parameters which are the controlling
parameter in measuring the effect of Lsoftmax and Lsigmoid on Lfinal. In this study, we
usually set a to 1 and vary b.

4 Experimental Details

We use open-source TensorFlow [22] and Pytorch frameworks to implement and train
all the models on Multiple NVIDIA TITAN X GPUs. We will have a brief introduction
of three fine-grained classification datasets and one standard image classification
dataset used in our paper, we will also briefly introduce the neural network used for fine
tuning in this paper.

4.1 Datasets

Fine-Grained Visual Classification Datasets. We evaluate our method using three
standard Fine-grained Visual Classification (FGVC) datasets.

The Caltech-UCSD Birds (CUB200) dataset has 5,994 training and 5,794 test
images across 200 fine classes of birds. We only observe whether the suffixes of the
category names are the same, and then divide them into 70 super classes. So for
Caltech-UCSD Birds dataset, there are totally 200 fine labels and 70 coarse labels. The
NABirds dataset contains 23,929 training and 24,633 test images across 555 bird
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categories, and we divide them into 156 super classes using the same method. The
Stanford Dogs dataset has 12,000 training and 8,580 test images across 120 classes
(dog breeds), and we divide them into 72 super classes using the same method. Labels
of each dataset are in Table 2.

Standard Image Classification Datasets. We also utilize a standard image classifi-
cation dataset CIFAR-100 for study. The CIFAR-100 dataset has 100 classes con-
taining 600 images each. There are 500 training images and 100 testing images per
class. The 100 classes in the CIFAR-100 are grouped into 20 super classes. Each image
comes with a “fine” label (the class to which it belongs) and a “coarse” label (the
superclass to which it belongs). We use the official division as our division.

4.2 Network Architectures

We fine tune three types of network architecture for fine-grained visual classification
datasets: VGG19 [23], Resnet50 [24] and Inception-V3 [25]. We fine tune VGG19 and
Wide Residual Network [26] for the standard image classification dataset.

VGG. In fine-grained visual classification, VGG is a very common network, including
Bilinear CNN, which uses VGG as feature extractor. VGG uses a deeper network
structure than AlexNet [27], it won the first and second place respectively in the 2014
ILSVRC localization and classification. The VGG network is very deep, usually with
16–19 layers and a convolution kernel size of 3 � 3. We use a 19-layer VGG network.

Residual Network. Residual Network has residual connections that reduce the opti-
mization difficulties and enable the network to be much deeper. We use the ResNet
with 50 layers as representative for Residual Networks in our experiments.

Inception-V3. The Inception module was firstly proposed as GoogleNet that was
designed to be very efficient. Inception module was then further optimized by using
Batch Normalization, residual connections and so on. We use Inception-V3 as repre-
sentative for Inception Networks in our experiments.

Wide Residual Network. Because ResNets is too deep, many residual blocks can
only provide a small amount of information, or only a small number of blocks can learn
important information. The author thinks that ResNet’s main ability comes from the
Residual block, and the depth increase is only an aid. He decreased depth and increased
width of residual networks. The proposed 16-layer Wide Residual Network can be
similar to the 1000-layer ResNet.

Table 2. Labels of each dataset.

Dataset Fine labels Coarse labels Division method

CUB200 [1] 200 70 Same class name suffix
NABirds [2] 555 156 Same class name suffix
Stanford Dogs [3] 120 72 Same class name suffix
CIFAR100 100 20 Official division
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5 Results and Analysis

5.1 Experiments on Fine-Grained Visual Classification Datasets

We first describe our results on three fine-grained visual classification datasets. We fine
tune three network models that pre-trained on the ImageNet. Our experiment is divided
into two steps, the first step is to use only the fine label for fine-tuning, and the second
step we use coarse label to constrain error. In the second step, we set the final loss
parameters a = 1, b = 1, and training epochs is the same as the first step. We observe
that our approach improves performance for any dataset, any pre-trained network. The
results are in Tables 3, 4 and 5.

Taking CUB200 dataset as an example, if VGG19 is used as the pre-trained model,
the accuracy rate is increased by nearly 7 percentage points after using the coarse label
constraint, and 2 percentage points is increased by using ResNet50 or Inception-V3.
The result of VGG19 on the ImageNet is also worse than ResNet50 or Inception-V3,
which indicates that VGG’s feature extraction capability is not as strong as ResNet50
or Inception-V3, and we have greatly improved this by using the coarse label con-
straint. Through the improvement of our method, VGG19 can achieve the same effect
as Resnet50.

In (7), the final loss is composed of a � Lsoftmax and b � Lsigmoid , and parameters a,
b affect the speed ratio of back propagation during training. We usually set a to 1, and
change b. If b is greater than a, then the effect of the sigmoid cross entropy cost
function is greater. In our experiment, we find that the value of b is usually larger than
a, which makes the network get a better result. This will lead to a final increase of
nearly one percentage point. For example, when we use Inception-V3 to fine tune the
CUB200 dataset with coarse label constraint, we set b = 2 and the final result is 0.6%
higher than b = 1. However, how to choose the values of parameters a, b still need to
be manually adjusted. To get a better performance, the parameter values are not the
same while we fine tune different datasets with different models, so we select a = 1,
b = 1 in previous experiments.

5.2 Experiments on Standard Image Classification Dataset

We evaluate the performance of our approach on standard image classification dataset
CIFAR-100 using two convolutional neural networks VGG19 and Wide Residual
Network. CIFAR-100 has 100 fine classes and 20 super classes, with each super class
containing five finer divisions. The results are in Table 6.

Table 3. CUB200 accuracies.

Network Only fine labels With coarse labels as supervision

VGG19 72.80% 79.67%
ResNet50 77.67% 79.31%
Inception-V3 80.64% 81.72%
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As shown in Fig. 1, after the introduction of the constraint mechanism, the test set
accuracy of our network is steadily higher than original Wide Residual Network
(WRN), which indicates that this constraint mechanism does improve performance of
original WRN.

Table 4. NABirds accuracies.

Network Only fine labels With coarse labels as supervision

VGG19 73.54% 75.10%
ResNet50 77.20% 77.93%
Inception-V3 75.29% 78.49%

Table 5. Stanford Dogs accuracies.

Network Only fine labels With coarse labels as supervision

VGG19 76.90% 79.15%
ResNet50 79.61% 80.27%
Inception-V3 77.28% 81.90%

Table 6. CIFAR-100 accuracies.

Network Only fine labels With coarse labels

VGG19 71.95% 73.25%
Wide residual network 80.75% 81.82%
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Fig. 1. Test accuracies after 100 epochs, training CIFAR-100 dataset from scratch, using Wide
Residual Network (WRN) and WRN with coarse label constraint.
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In our experiments, we set the same learning rate and total epoch for original
networks and networks with coarse label constraint. We observe that the accuracy
curve is very consistent. This shows that after the introduction of the constraint
mechanism, there is no variability in the convergence of the network. Moreover, In the
initial training phase, the network with coarse label constraint converges faster and the
accuracy increases faster. We can see that the network with coarse label constraints can
significantly accelerate convergence and promote the convergence of the entire network
in the right direction. Comparison with existing methods in Table 7.

6 Conclusion

In this work, we create a novel coarse label representation that can well express the
structural information embedded in the class hierarchy. And we propose the corre-
sponding cost function that take advantage of this kind of coarse label supervised
information by guiding the fine label convergence with the constraint of coarse labels.
We conduct comprehensive experiments in three fine-grained visual classification
datasets and a standard image classification dataset, experimental results show that our
method can accelerate network convergence and stably improve the original network
performance.

Using coarse label constraint is easy to implement and can be generalized to any
fine-tuning task; it does not increase the size of the original model and adds no
overhead to training time. Therefore, our method should be beneficial to a wide range
of pre-trained CNN models. In the future, we plan to combine our approach with
existing methods to reduce the classification error.
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