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Abstract. We propose a network for unconstrained scene activity detection
called STMP to provide a deep learning method that can encode effective multi-
level spatiotemporal information simultaneously and perform accurate temporal
activity localization and recognition. Aiming at encoding meaningful spatial
information to generate high-quality activity proposals in a fixed temporal scale,
a spatial feature hierarchy is introduced in this approach. Meanwhile, to deal
with various time scale activities, temporal feature hierarchy is proposed to
represent activities of different temporal scales. The core component in STMP is
STFH, which is a unified network implemented Spatial and Temporal Feature
Hierarchy. On each level of STFH, an activity proposal detector is trained to
detect activities in inherent temporal scale, which allows our STMP to make the
full use of multi-level spatiotemporal information. Most importantly, STMP is a
simple, fast and end-to-end trainable model due to its pure and unified frame-
work. We evaluate STMP on two challenging activity detection datasets, and we
achieve state-of-the-art results on THUMOS’14 (about 9.3% absolute
improvement over the previous state-of-the-art approach R-C3D [1]) and obtains
comparable results on ActivityNetl.3.
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1 Introduction

Activity detection is a very challenging task, because it not only requires precise
activity localization but also accurate classification in untrimmed videos. Current state-
of-the-art activity detection approaches can be roughly divided into three categories:
(1) Regression-based approaches. Inspired by the great success of Faster R-CNN [2]
and YOLO [3] in object detection, most existing wonderful works, such as R-C3D [1]
and SSAD [4], regarding activity detection as a regression problem. These methods
usually contain three stages: C3D [5] as the backbone network for extracting features,
following by a region proposal network for generating activity proposals, and finally a
classifier is used for labeling. (2) 2D CNN based methods. These approaches usually
consist of several parts, and these parts are solved independently. Take the most
successful framework for example, SSN [6] contains three separate parts, including
frame-level actionness score generation, proposals generation [7] and action classifi-
cation. (3) Encoding temporal information with LSTM, such as SST [8].
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In this paragraph, we will make a brief analysis of advantages and disadvantages of
the above methods. Regression-based approaches are end-to-end trainable frameworks.
However, these methods lose spatial information and are not suitable for multi-scale
activity scenarios (activities with various temporal durations). Because they down
sample the spatial resolution to 1 x 1 and detect activity instances in a fixed temporal
resolution. 2D CNN based approaches learn deep and effective representation of spatial
information by utilizing hand-crafted features [8, 9] or deep features (e.g. VGG [10]
and ResNet [11]). Unfortunately, these approaches are the framework of multi-stages
and learned separately on image/video classification tasks. Such off-the-shelf repre-
sentations may not be optimal for detecting activities in diverse video domains. From
the results of existing experiments, 2D CNN based methods usually achieves better
performance, owing to its good representation of spatial information.

Based on the above analysis, we propose a fast, end-to-end trainable network,
named Spatial Temporal Multi-level Proposal Network (STMP). In our approach, a
spatiotemporal feature hierarchy network is introduced to extract multi-level spa-
tiotemporal features. For multi-level spatiotemporal features, a multi-level activity
proposal detector network is designed to handle different temporal scale activities.

We summarize our contributions as follows:

(1) To learn the effective representation of spatial information, Spatial Multi-level
Proposal (SMP) network with spatial feature hierarchy and multi-level proposal
detector is introduced.

(2) To deal with various time scale activities, we add a temporal feature hierarchy in
SMP, which is called STMP. This capacitate our model to represent multi-level
spatiotemporal information simultaneously.

(3) Our STMP model achieves the state-of-the-art results on THUMOS’14 and
obtains comparable results on ActivityNetl.3.

2 Related Work

2.1 Action Recognition

Action recognition is a core computer vision task that has been studied for decades. Just
as image classification network can be used in object detection, action recognition
models can be used in activity detection for feature extraction. Before the breakthrough
of deep learning, Improved Dense Trajectories (iDT) [9] achieves remarkable perfor-
mance by using SIFT and optical flow to eliminate the influence of camera motion.
Later, two-stream network [12, 13] is proposed to learn both spatial and temporal
features with single frame and stacked optical flows using 2D CNN [10, 11]. Although
these methods achieve higher accuracy, they are extremely time-consuming and dif-
ficult to transform to end-to-end activity detection frameworks. Other approaches try to
capture spatiotemporal information directly from raw video frames with 3D convolu-
tion, e.g. C3D and P3D [14]. These methods are very efficient and can be trained end-
to-end. Therefore, we adopt C3D as our backbone network.
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2.2 Object Detection

Object detection is a major breakthrough of deep learning in computer visions. There
are two mainstream methods. Faster R-CNN [2] and its variants are typically “detection
by classification” framework, which can be categorized as proposal-based methods.
Proposal-free methods like SSD [15] make the most of multi-level spatial information
in order to detect different scale objects. Compared to SSD, Faster R-CNN achieves
better performance due to its high quality proposals.

The consensus of all these methods is to detect objects via regression, owing to the
prior knowledge that each type of object has their own size and aspect ratio. This is also
the maximum commonality with temporal activity detection. Each type of activity
usually has its own duration, for example, drinking water usually lasts 10 s, rather than
10 min or more. This prior knowledge allows us to detect activities through the
methods of object detection.

2.3 Temporal Activity Detection

This task needs to locate when and which type of activity happens in untrimmed
diverse videos. Typical datasets such as THUMOS’14 [16] and ActivityNet [17]
including thousands untrimmed videos and tens thousands of activity instances with
various duration scales.

RNN and its variants are widely used in temporal activity detection [18-21].
Although these methods are successfully used in natural language processing, e.g.
machine translation, they are not applicable to activity detection because they do not
maintain long-term memory in practice [19]. Furthermore, textual information is reg-
ular and predictable, which is completely different with video temporal information.

Aside from approaches related to RNN, many researches adopt “detection by
classification” framework. For example, S-CNN [22] separates the whole work into
three stages: candidate segment generation, action classification and temporal boundary
refinement. SSN [6] is also a multi-stage framework, containing frame-level actionness
scores generation, candidate segments generation and action recognition. These dis-
crete frameworks are often very difficult to train. Recently, an end-to-end trainable
network named R-C3D [1] was proposed. It is a representative approach to detect
activity via Faster R-CNN framework. Similar to R-C3D, we adopt Faster R-CNN
framework and generate activity proposals from multi-level spatiotemporal feature
maps. Compared with R-C3D, our model not only can encode effective spatiotemporal
information, but also has better robustness for different temporal scale activities.

3 Our Approach

In this section, we will elaborate on our Spatial Temporal Multi-level Proposal (STMP)
network. The framework of our approach is shown in Fig. 1, consisting of four com-
ponents: a shared 3D ConvNet feature extractor as backbone network, spatiotemporal
feature hierarchy network, multi-level proposal detector and classification network.
More details of each component are shown as following.
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Fig. 1. Our STMP architecture. The C3D ConvNet is the backbone network and is used to
extract spatiotemporal features from raw video frames. The spatiotemporal feature hierarchy is
created for extracting hierarchical spatiotemporal features. On each level of the spatiotemporal
feature hierarchy, an activity proposal detector is learned to detect candidate activity segments in
a fixed temporal scale. These candidate segments are stacked and fed into a shared activity
classification subnet, which outputs activity categories and refines temporal boundaries.

3.1 Backbone Network

We adopt the convla to conv5b layers from C3D ConvNet as backbone network for
extracting spatiotemporal features. The input of 3D ConvNet is a sequence of RGB

video frames with dimension R¥>*2*#*W The output is the feature maps Ceonsp €
R312%%16%% (512 is the channel dimension), which is the shared input to spatiotemporal

feature hierarchy and classification subnet. The number of input frames L can be
arbitrary and is only limited by GPU memory. Typically, the height (H) and width
(W) of the video frames are taken as 112.

Training: We pre-train the C3D network [5] on UCF101 [23].

3.2 Spatiotemporal Feature Hierarchy

In the unconstrained environment, activities in videos have various temporal scales.
Besides, because of the movement of camera or object, the interest object in video often
present different scales with time. Nevertheless, current mainstream solutions (e.g. [1,
6]) completely ignore these two facts. R-C3D down-samples spatial resolutions to 1x1,
and utilizes a fixed temporal length feature for activity detection. SSN connects small
basins into proposal regions by watershed algorithm.

In contrast, we introduce a network called Spatiotemporal Feature Hierarchy
(STFH) that can encode multi-level spatiotemporal information simultaneously. As
shown in Fig. 1, STFH takes conv5b feature maps as input, and outputs four hier-
archical spatiotemporal feature maps. The spatial resolution of conv5b feature maps
in the C3D ConNet is 7 x 7, and the temporal stride is 8. To learn hierarchical spatial
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features, we add three branches with spatial feature maps size of 5 x 5, 3 x 3 and
1 x 1. Meanwhile, in order to detect activities of longer durations, we add three
branches with temporal strides of 16, 32 and 64. Thus, there are 4 levels of the

L
spatiotemporal feature hierarchy, each feature map Cgy, € R256XL1XS“', L, € {8, 16,

32,64}, 8, €{7x7,5%x53x%x3,1x1}.

€mm K anchor segments
= 1
cls Iayer\ ’7‘99 layer s

256 X Hg X W;
L I
L .
H; v Spatiotemporal :
=k feature map
W

s

L
256xL—le5><Ws

Fig. 2. A proposal detector consists of two ConvNet with kernel of size 1 x H; x W; and filters
of 2k; (one for classification, the other for regression).

3.3 Multi-level Proposal Detector

Inspired by SSD [15], a proposal detector is learned to generate high quality activity
proposals for each level of spatiotemporal feature hierarchy. Similar to the RPN of
Faster R-CNN, the anchor segments are pre-defined multi-scale windows centered at
L/L; uniformly distributed temporal locations. Whereby L; € {8, 16,32, 64}, indicates
4 level temporal scales. Each temporal location specifies K;(I € {1, 2, 3, 4}) anchor

segments. Thus, the total number of pre-defined anchor segments is Z?: Ko L%

As illustrated in Fig. 2, the 256 x H, x W; feature at each temporal location in Cgy,
is fed into two sibling fully-connected layers: a segment-regression layer (reg) and a
segment-classification (cls). Because the fully-connected layers are shared across all
temporal locations, each proposal detector is naturally implemented with two sibling
1 x Hy x W; convolutional layers. The first convolution layer is used to predict pro-
posal score (background or activity), the second is used to predict a relative offset
{d¢i, 0I;} to the center location and the length of each anchor segment
{C,‘7 li}7 i€ {1,2, N .,Kl}.

Training: Each level of spatiotemporal feature hierarchy and its corresponding pro-
posal detector are considered an activity proposal network (APN). Typically, for
training each APN, we assign a binary class label (of being an object or not) to each
anchor segment. We assign an anchor segment with a positive label if it has the highest
Temporal Intersection-over-Union (tloU) for a given ground-truth activity or it has a
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tloU higher than 0.7 with any ground-truth activity. If the anchor segment has tloU
overlap lower than 0.3 with all ground-truth activities, given a negative label. We
sample balanced batches with a positive/negative ratio of 1:1.

3.4 Activity Classification Network

Our STMP is a typical “detection by classification” network. Therefore, ACN have two
main jobs: (1) Selecting high quality activity proposals generated from every feature
map and getting fixed-size features for each proposal. (2) Activity classification and
temporal boundaries refinement. For the first job, similar to the object detection [2], we
employ a greedy Non-Maximum Suppression (NMS) strategy to eliminate highly
overlapping and low confidence proposals from each proposal detector (the NMS
threshold is set as 0.7). Then, we stack all the proposals (after NMS) from every
proposal detector and employ a highly NMS thresh (such as 0.9 or 0.999). After that,
following the standard practice in activity detection, a 3D Rol pooling layer is used to
extract the fixed-size volume features for each variable-length proposal from the shared

. Ly HyW . . .
convolution features Cepnysp € R312*#*16%%. For the second job, we design two simple
full-connected layers.

Training: Similar to APN, we need to assign activity labels to each proposal for
training the classifier. Our tloU thresh is set to 0.5, that means we assign an anchor
segment with an activity (positive) label if it has the highest tloU for a given ground-
truth activity or it has a tloU higher than 0.5 with any ground-truth activity. If the
anchor segment has tloU overlap lower than 0.5 with all ground-truth activities, given a
background (negative) label. We sample balanced batches with an activity/background
ratio of 1:3. And, the batch size is set to 64.

3.5 Loss Function

For each activity proposal network (there are 4 APN), softmax loss is used for clas-
sification (activity or not), and smooth L1 loss is used for regression. Specifically, our
loss function for an APN is defined as:

1 . 1 . «
L({a,}, {li}) = ]V_ZZI Lcls(a,-, al) +AN Zi al'Lreg (tiv li) (1)
cls reg

Here, i is the index of an anchor segment in a batch and a; is the predicted
probability of anchor segment i being an activity. The ground-truth label a} is 1 if the

anchor segment is positive, and is O if the anchor segment is negative. #; = {5?,-, 52}

is the predicted relative offset to anchor segments. 7 = {dc;, dl;} is the coordinate
transformation of ground-truth segments to anchor segments. A is the loss trade-off
parameter. By default, we set A =5, and thus both cls and reg terms are roughly
equally weighted.
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Above is the single loss for a subnet. In our approach, there are 4 sub activity
proposal network (APN) and one activity classification network (ACN). Thus, our joint
loss function for a video is defined as:

Loss= > pl({au}, {m}) )

Where K is the number of subnets (here is 5). y, balances the importance of models
at different branch, here is set to 1 for each 7.

4 Experiments and Analysis

For studying the influence of multi-level spatial information on detection, we add an
experiment (SMP) with temporal stride of each layer in STFH as 8. SMP denotes
Spatial Multi-level Proposal network. We evaluate SMP and STMP on two challenging
activity detection datasets: THUMOS’14 [16] and ActivityNetl.3 [17]. For both
datasets, Average Precision (AP) and mean AP (mAP) are adopt for evaluation. More
details are introduced from the following aspects: (1) implementation details of two
experiments. (2) Experimental settings and evaluation on these public benchmarks.

4.1 Implementation Details

Experiments Settings. Table 1 shows the APN architecture (Spatiotemporal Feature
Hierarchy and Multi-level Proposal Detector) of SMP and STMP. Here, each term of
STFH and MPD denote the kernel size and filters of the convolutional layer.

Table 1. APNs architecture of SMP and STMP

# Layer name Output size STFH MPD
Conv5b S512xL/8x7x17 1x7x7,2k
SMP | APN_convl x|256 xL/8 x5 x5 |1x1x1,256|1x5 x5,2k
3 x3x3,256

APN_conv2_x 256 x L/8 x 3 x3 |3x3x3,256|1x3x 3,2k
APN_conv3_x 256 x L/8 x 1 x 1 |3x3x3,256|1x1x1,2k
STMP | APN_convl_x 256 x L/16 x 5 x 5|1 x 1 x1,256|1 x 5 x 5,2k
3 x 3 x 3,256
APN_conv2_x | 256 x L/32 x3 x 3|3 x3x3,256|1 x 3 x 3,2k
APN_conv3_x [256 x L/64 x 1 x 1|3 x3x3,256|1 x 1 x 1,2k

Training Setup. We create a video buffer of 512 frames for THUMOS’14 and 768
frames for ActivityNetl.3, each frame in a video is resized to 172 X
128 (width x height) pixels, and we randomly crop regions of 112 x 112 from each
frame. These buffers of frames act as input, and are generated by a sliding window.
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Hyper-parameters. The weights of the filters of ACN and APNs are initialized by
randomly drawing from a zero-mean Gaussian distribution with standard deviation
0.01. Biases are set to 0.1. All other layers are initialized from C3D model pre-trained
on UCF-101. SGD algorithm with a momentum of 0.9 and a weight decay of 5 x 10~*
was adopted to train our model. Most importantly, we divided the whole network into
two parts: backbone network and the rest (APNs and ACN), and take turns training the
two parts alternately. The learning rate is initially set to 10~* and then reduced by a
factor of 10 after every 80k.

4.2 Experiments on THUMOS 14

THUMOS’ 14 is a widely used benchmark. The training set is the UCF-101 [23] dataset
including 13320 trimmed videos of 101 categories while the validation and the test sets
contain 200 and 213 untrimmed videos. In our experiments, all 200 videos are used as
the training set and the results are reported on 213 test videos.

Experiments Setup. Since the GPU memory is limited, we create a video buffer of
512 frames and sample the frames at 25 fps to fit it in the GPU memory. As shown in
Table 2, the number of anchor segments K in each level of STFH chosen for SMP
(STMP) is 26 (7) with scale range 1:56 (1:7, 3:8, 4:8, 4:8). At 25 fps, the anchor
segments of SMP (STMP) correspond to segments of duration between 0.64 and
17.92 s ([0.32, 2.24), [1.92, 5.12), [5.12, 10.24), [10.24, 17.92)).

Table 2. Anchor segments settings on THUMOS’14 for SMP and STMP.

Layer name SMP STMP
Strides | Anchor Strides | Anchor Temporal
segments scale segments scale | scale ranges
Conv5b 8 1:56 8 1:7 8-56
APN_convl_x |8 1:56 16 3:8 48-128
APN_conv2_x |8 1:56 32 4:8 128-256
APN_conv3_x 8 1:56 64 4:8 256-512

Results. In Table 3, we present a superior activity detection performance of our SMP
and STMP with existing state-of-the-art approaches. Our SMP (STMP) model shows
about 8.4% (9.3%) absolute improvement @mAP 0.5 over R-C3D model, which
clearly confirm that our model can encode effective spatiotemporal information
simultaneously. Moreover, in Table 4, we present the Average Precision (AP) for each
class in THUMOS’14 at tloU threshold 0.5. Our STMP outperforms all the methods in
most classes and achieves significant improvement (by more than 10% absolute AP
over the R-C3D) for activities e.g. Crick Bowling, High Jump, Long Jump and Vol-
leyball Spiking, which indicates the robustness of our model to multi-scale activities.
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4.3 Experiments on ActivityNet

ActivityNet [17] is a recently released large-scale activity detection benchmark. We use
the latest release (1.3) which has 10024, 4029 and 5044 videos containing 200 different
types of activities in the training, validation and test respectively. Compared to
THUMOS’14, ActivityNetl.3 is a large-scale dataset with longer activity instances and
more classes.

Experimental Setup. Considering the long duration of activity instances of Activ-
ityNetl.3, we create a video buffer of 768 frames and sample the frames at 3 fps to fit
the GPU memory. The duration of the buffer is approximately 256 s covering 99.99%
training activities. Similar to THUMOS 14, Table 5 shows the anchor segments set-
tings on ActivityNetl.3.

Table 3. Activity detection results on THUMOS’ 14 test dataset (in percentage), measured by
the mean average precision (mAP) of different tloU thresholds o.

Method o

0.1 |02 |03 (04 |05
Oneata et al. [24] | 36.6 |33.6|27.0/20.8 | 14.4
Richard et al. [25] | 39.7 | 35.7|30.0|23.2|15.2
Yeung et al. [20] |48.9(44.0|36.0|264 | 17.1
Yuan et al. [21] | 51.4|42.6|33.6|26.1|18.8

S-CNN [22] 47.7|43.5/36.3(28.7 19.0
CDC [26] - = |40.1/294 233
SSAD [4] 50.147.8 43.035.0 24.6
TCN [27] - - |- [333/256
R-C3D [1] 545/51.5 44.8/35.6 289
SSN [6] 66.0|59.4/51.941.0 29.8
SMP (ours) 60.4 | 58.855.748.7 37.3
STMP (ours) 62.5 60.8]56.9 50.5 38.2

Results. The comparison results between our SMP/STMP and other state-of-the-art
methods [1, 19, 28, 29] published recently are shown in Table 6. Our SMP and STMP
model achieve a significant improvement (about 2.8% and 3.5% absolute improvement
in the average mAP of tloU thresholds from 0.5:0.05:0.95) over R-C3D [1], which
demonstrates the effectiveness of our method. Our STMP shows inferior performance
over MSN [19], which using a deeper two-stream (RGB and optical flow) network.
However, C3D is a simple 3D ConvNet, only uses low resolution RGB information. In
Table 7, we compare detection speed of our model with R-C3D and two other state-of-
the-art methods. S-CNN is similar to MSN and uses two-stream network to extract
features. Despite the comparable results on ActivityNetl.3, our model is dozens of
times faster than other framework (about 16x faster than S-CNN and 7x faster than
DAP), which demonstrates the great potential of our model in future applications.
Furthermore, our backbone network is relatively independent and can be replaced by
other action recognition networks, e.g. I3D or P3D.
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Table 4. Per-class AP at tloU threshold o = 0.5 on THUMOS’14 test dataset (in percentage)

[24] | [20] |[21] | R-C3D | SMP (ours) | STMP (ours)
Baseball pitch 8.6|14.6|14.9 26.1 16.8 25.7
Basketball dunk 1.0 6.3[20.1/540 |56.1 55.3
Billiards 26| 94| 76| 83 |20.6 23.9
Clean and Jerk 13.3]42.8/24.8/279 |355 30.4
CIiff diving 17.7]15.6 127.5(49.2 |52.2 57.1
Crick bowling 9.5/10.8|15.7/30.6 |42.2 44.9
Cricket shot 26| 3.5[/13.8/109 |21.0 21.0
Diving 46/10.8/17.6/26.2 |28.1 294
Frisbee catch 1.2/10.4]15.3|20.1 19.6 21.3
Golf swing 22.6|138/182 16.1 |184 153
Hammer throw 34.7(289/19.1432 459 51.8
High jump 17.6(33.3/20.0{30.9 463 48.8
Javelin throw 22.0/20.4|18.2/47.0 |63.9 66.7
Long jump 47.6(39.0 34.8|574 |72.8 74.8
Pole vault 19.6|16.3|32.142.7 |48.2 44.2
Shotput 11.9(16.6 12.119.4 |34.0 35.1
Soccer penalty 87| 83[19.2/15.8 324 25.2
Tennis swing 30| 56[193]166 [234 23.9
Throw discus 36.2(29.5(24.4{29.2 449 42.3
Volleyball spiking | 1.4| 5.2 4.6 5.6 23.7 25.6
mAP@0.5 14.4117.1/19.0/289 |37.3 38.2

Table 5. Anchor segments settings on ActivityNetl.3 for SMP and STMP

Layer name SMP STMP
Strides Anchor segments Strides Anchor segments Temporal scale
scale scale ranges
Conv5b 8 1:64 8 1:16 8-128
APN_convl_x 8 1:64 16 8:12 128-192
APN_conv2_x 8 1:64 32 6:8 192-256
APN_conv3_x 8 1:64 64 4:8 256-512

Table 6. Activity detection results on ActivityNetl.3 validation dataset. The performance are
measured by mean average precision (mAP) at different tloU thresholds o and the average mAP
of tloU thresholds from 0.5:0.05:0.95.

Method ol
0.5 ]0.75 |0.95| Average

UPC [28] 225 |- - -
R-C3D [1] 26.45|11.47|1.69 | 13.3
Wang et al. [29] | 42.48 | 2.88 |0.06 | 14.62
MSN [19] 28.67 |17.78 | 2.88 | 17.68
SMP (ours) 27.30|14.70 | 1.45 | 15.10
STMP (ours) 34.23113.96|2.40 | 16.88
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Table 7. Activity detection speed during inference.

Methods FPS
S-CNN [22] 60
DAP [30] 134.1
R-C3D (Titan X Pascal) 1030
SMP (ours on Titan X Pascal) |719
STMP (ours on Titan X Pascal) 972

5 Conclusion

In this paper, we propose a spatial temporal multi-level proposal (STMP) network for
activity detection. We evaluate our approach on two benchmark datasets: THUMOS 14
and ActivityNetl.3. Experimental results demonstrate that STMP outperforms other
approaches in terms of detection and computation on THUMOS’14. However, our
method is superior to R-C3D on ActivityNetl.3, but inferior to MSN because C3D and
3D Rol pooling cannot encode long-term spatiotemporal information. Our future
research will focus on developing a better video representation network for improving
the performance of detecting on large multi-scale activities.
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