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Abstract—Recently, image captioning has aroused great inter-
est in both academic and industrial worlds. Most existing systems
are built upon large-scale datasets consisting of image-sentence
pairs, which, however, are time-consuming to construct. In
addition, even for the most advanced image captioning systems, it
is still difficult to realize deep image understanding. In this work,
we achieve unpaired image captioning by bridging the vision
and the language domains with high-level semantic information.
The motivation stems from the fact that the semantic concepts
with the same modality can be extracted from both images and
descriptions. To further improve the quality of captions generated
by the model, we propose the Semantic Relationship Explorer,
which explores the relationships between semantic concepts for
better understanding of the image. Extensive experiments on
MSCOCO dataset show that we can generate desirable captions
without paired datasets. Furthermore, the proposed approach
boosts five strong baselines under the paired setting, where
the most significant improvement in CIDEr score reaches 8%,
demonstrating that it is effective and generalizes well to a wide
range of models.

Index Terms—vision and language, unpaired training data,
image captioning, deep neural network

I. INTRODUCTION

Image captioning has drawn remarkable attention in both

natural language processing and computer vision. The task,

which combines image understanding and language genera-

tion, is tough yet practical. Above all, it has various kinds of

applications such as human-robot interaction [1], text-based

image retrieval [2] and helping visually impaired people see

[3], among others. The deep neural networks, particularly

those based on the encoder-decoder framework [4]–[11], have

achieved great success in advancing the state-of-the-art.

Despite the impressive achievements of the deep learning

frameworks, they unduly rely on large-scale paired data,

which is not easy to access in the real world. Especially,

when it comes to the Non-English caption systems, image-

caption pairs are labor-intensive to obtain. In recent years,

unsupervised encoder-decoder models have been proposed for

neural machine translation [12]–[14]. Typically, the source

language and the target language are mapped into a common

latent space, where sentences with the same semantic meaning

are well aligned, thus the unsupervised translation can be

carried out . For the task of image captioning, due to the great

disparities between the vision and the language domains, and
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Figure 1: Illustration of our proposed framework. Our frame-

work consists of a Semantic Concept Extractor, a Semantic

Relationship Explorer, a Semantic Relationship Embedding
and an Attention-based Sentence Decoder.

distinct features of the modalities, unsupervised learning is

even more challenging. Although unpaired image-to-sentence

translation has been explored in the literature, the training of

neural models on unpaired datasets has not yet been conducted

at a semantic level.

Recently, there have been a few works [15]–[17] trying

to reduce the dependence of image captioning models on

paired data. [15] proposed a method to generate captions in

a central language (Chinese) and then translate them into

a target language (English), without requirement for image-

caption pairs for the target language. However, a paired

image captioning corpus for the source language and a paired

corpus for translation are still indispensable. [16] connected

the visual and the textual modalities with visual objects (e.g.,

dog, mirror) and an adversarial manner. It achieved unsu-

pervised image captioning without any image-caption pairs.

Nevertheless, their method relied on the recognized visual

objects to decide whether the generated captions are image-

related, which necessitated complex models and schemes to

obtain higher-quality image captions, e.g. image reconstruction

[16], sentence reconstruction [18] and adversarial learning

[19]. Moreover, the visual object based approach does not

consider attributive words (e.g. attributes (small), relations

(standing) and color (white)), which could help improve the

image representation. [17] used the scene graph to bridge
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the gap between the visual and the textual modalities. Since

the scene graph constructed a series of semantic relationship

information, the model achieved good results. However, in

order to construct the semantic relationships, they needed to

use Faster-RCNN [20] as the object detector, MOTIFS [21]

as the relationship detector, and an additional classifier for

attribute identification [11] for generating the image scene

graph. In all, although existing methods for unsupervised

image captioning have made appreciable progress, they are

hard to implement and still far from real world applications.
In this paper, we bridge the gap between images and

captions with semantic concepts, which explicitly represent

high-level information [22]. To solve the challenges posed by

different characteristics between visual and textual modalities,

we propose an approach to explore the relationships between

individual semantic concepts. The proposed framework (Fig-

ure 1) includes a Semantic Concept Extractor, a Semantic
Relationship Explorer, a Semantic Relationship Embedding
and an Attention-based Sentence Decoder. To begin with, our

model extracts relevant semantic concepts from the images

and the captions, respectively, which is the Semantic Concept
Extractor. Then, the Semantic Relationship Explorer, which

consists of an “Attribute” Aggregator, an “Object” Aggrega-
tor and a “Relation” Aggregator, explores effective semantic

relationships among the extracted concepts from three aspects,

i.e., “attribute”, “object” and “relation”. Meanwhile, the Se-
mantic Relationship Embedding can extract principle features

of the semantic relationships from different parts, which

strengthens the expressive ability of relationship features. As

a result, characteristic information of the semantic concepts

is fully exploited and the representation of the image concept

features is getting closer to the textual modality and, as input

to the decoder, adopted effectively to generate meaningful

sentences. Our main contributions are as follows:

• We propose a semantic based framework for unpaired

image captioning. The framework can effectively and

automatically use the semantic information to generate

high quality image captions by bridging the gap between

the vision and the language domains.

• To explore the relationships between individual semantic

concepts, we propose a Semantic Relationship Explorer,

which can extract both coarse-grained and fine-grained

semantic relationships to help the model generate more

accurate and meaningful captions.

• The proposed approach proves to be effective by the

experiments on the MSCOCO image captioning dataset.

We outperforms the latest unpaired image captioning

systems. More encouragingly, our method also makes

improvements of up to 8% in terms of CIDEr score for

paired image captioning model, when equipping it with

our approach.

II. RELATED WORK

A. Image Captioning.
Recently, many neural model systems have been proposed

for image captioning [4]–[11]. The most advanced methods

[8]–[11] rely on the encoder-decoder framework and combine

the attention mechanism [4] to transform the image into

coherent caption. However, the paired image-sentence data for

training these models is expensive to collect. The first model

under the unsupervised training setting, built by [15], aims to

take the pivot language to connect source image and target

caption. Although image and target language caption pairs are

not used, their method relies on image-pivot pairs and a pivot-

target parallel translation corpus. [16] and [17] align between

the vision and the language domain in a adversarial way, so

they don’t need any paired image-sentence data. In contrast

to the approaches mentioned above, our approach attempts to

regard semantic concepts as a bridge and explore the semantic

relationships among them, which has not been well studied yet.

B. Unsupervised Machine Translation.

Unsupervised image captioning is essentially similar to un-

supervised machine translation. Nevertheless, due to the appar-

ently different characteristics of the image and text modality,

unpaired image-to-sentence translation is more challenging

than unpaired sentence-to-sentence translation.

C. Exploring Semantic Relationships.

A most recent advancement [9], [11] attempts to use graph

networks to explicitly explore visual relationships by encoding

scene graphs, which model the spatial and semantic relation-

ships of image regions based on visual features. However, they

built an additional model to explicitly predict the relationships

between visual objects with extra annotated data. Instead, our

model associates the semantic concepts based on attention,

and the relationships are implicitly modelled as weighted

combinations and trained with the captioning model.

III. THE PROPOSED FRAMEWORK

As shown in Figure 2, the proposed framework consists

of four main modules: (1) Semantic Concept Extractor: this

module is able to extract the semantic concepts from images

or sentences; (2) Semantic Relationship Explorer (Figure 3):

since the extracted semantic concepts are independent and not

associated with each other, e.g., the three words riding, boy
and bike, this module can associate these words together as a

phrase boy riding bike to represent a complete semantics; (3)

Semantic Relationship Embedding: this module can strengthen

the expressive ability of relationship features by extracting

different features of the explored semantic relationships from

different parts; (4) Through the above three steps, we are

able to provide rich semantic relationship information which

is beneficial for the fourth module, i.e., Attention-based Sen-
tence Decoder, to generate the complete and coherent image

captions under the unpaired setting. In the following parts of

this section, we will describe these steps in detail.

A. Semantic Concept Extractor

In recent studies [6], [22]–[25], the semantic concepts are

introduced to represent the explicit high-level information of

the image [22]. In particular, it consists of a series of words,

440



Input Image

Image Concepts

mountain, skis, 
riding, skiers, 

standing, snow, 
covered, slope, 

flying, man, 
people, sky, hill, 
blue, group, air, 

skiing, kite,
snowy, top

Sem
antic C

oncept Extractor

Coarse-Grained 
SRE

Fine-Grained 
SRE

“Attribute” 
Aggregator

“Object”
Aggregator

“Relation” 
Aggregator

“skiers standing snow”,
“man standing mountain”

“snowy mountain”, 
“blue sky”, “group people”

“man riding”, “man skiing” 
“man standing”

“group skiers riding skis ”, 
“group people standing snowy snow”

“kite flying blue sky”
“snow covered mountain”

Sem
antic R

elationship Explorer

Sem
antic R

elationship Em
bedding

Attention-based LSTM
 D

ecoder

Figure 2: Illustration of the proposed framework. The semantic concepts are extracted by an extractor [23]. The color Green
denotes the attribute words, the color Red denotes the object words and Blue color denotes the relation words. The Semantic
Relationship Explorer consists of a Coarse-Grained Semantic Relationship Explorer and a Fine-Grained Semantic Relationship
Explorer. The latter one includes three sub-modules: a “Attribute” Aggregator, an “Object” Aggregator and a “Relation”
Aggregator, then adaptively explores the relationships among the extracted semantic concepts. The proposed approach could

achieve deep semantic understanding of the image and in turn generate more complete and coherent captions.

including attributes (e.g., young, black), objects (e.g., woman,

shirt) and relationships (e.g., sitting, wearing). In this case,

these semantic concept words for an image can be generated

by a Semantic Concept Extractor [6], [22]. In implementation,

we adopt a weakly-supervised method of Multiple Instance

Learning (MIL) [26] to build the Semantic Concept Extractor,

following [23]. Technically, for each concept, MIL takes the

“positive” and “negative” bags of bounding boxes as input

sets, where every bag corresponds to an image. If the current

concept is in the semantic label (e.g. description and scene

graph) of the image, the bag is regarded to be positive,

otherwise it is said to be negative. MIL iteratively selects

the positive instances to train an extractor for the semantic

concepts. Due to limited space, please refer to [23] for detailed

explanation. Other semantic concept extracting approaches can

also be used and may produce better results, which, however,

are not the main focuses of this work.

To extract the semantic concepts of a sentence, we directly

use the words, which appear in both the ground truth and the

pre-defined semantic concepts vocab, as semantic concepts.

In addition, because semantic concepts are discrete word to-

kens, we adapt a word embedding to project them into vectors

Cg = {c1, c2, . . . , cNg
}, ci ∈ R

e, where e is the dimension

of word embedding. Then all words, words containing only

“attribute”, words containing only “object” and words con-

taining only “relation” are respectively represented as global

semantic concepts Cg ∈ R
Ng×e, attribute semantic concepts

Ca ∈ R
Na×e, object semantic concepts Co ∈ R

No×e and

relation semantic concepts Cr ∈ R
Nr×e, where Ng , Na, No

and Nr represent the number of words per type.

B. Semantic Relationship Explorer

In this section, we will first introduce the method we use

to extract the semantic relationships - MultiHead Attention,

then we will introduce the proposed Semantic Relationship
Explorer, Figure 3 shows a sketch.

1) MultiHead Attention: In order to extract the semantic

relationships, we adopt multi-head attention [27], which can

calculate the association weights between each pair of the

given semantic concepts [28]. The following multi-head atten-

tion consists of N parallel heads and each head is represented

as a scaled dot-product attention.

Att(Q,K,V) = softmax

(
QWQ(KWK)T√

dk

)
VWV (1)

where Q ∈ R
l×dh , K ∈ R

k×dh and V ∈ R
k×dh represent

respectively the query matrix, the key matrix and the value

matrix. WQ,WK,WV ∈ R
dh×dk are learnable parameters and

dk = dh/n, where n represents the number of heads.

Following the multi-head attention is a fully-connected feed-

forward network, which is defined as follows:

FFN(x) = ReLU(xWf + bf)Wff + bff (2)

where Wf and Wff denote matrices for linear transformation;

bf and bff represent the bias terms.

We use the attention-based method to make each semantic

concept adaptively find the most relevant attributes, objects and

relations, and establish related relationships, thus completing

the exploration process of the semantic relationships.

2) Coarse-Grained Semantic Relationship Explorer: The

Coarse-Grained SRE is a simple and intuitive way to explore

the semantic relationships. The relationships are built via

multi-head attention on the global semantic concepts Cg . Par-

ticularly, we use Cg as Query, Key and Value simultaneously.

The result turns out to be a set of attended semantic concepts:

Rg = FFN(MultiHead(Cg,Cg,Cg)) (3)

with Coarse-Grained SRE, all semantic concepts can attend

to other semantic concepts related to them, making it easy to

capture global relationships quickly. However, the semantic

relationships extracted by Coarse-Grained SRE are coarse-

grained, because for any kind of semantic concept as a Query,

it is not necessary to treat all words as Key and Value, i.e.,

there is no need to attend to the most relevant among all

words. For example, when an “attribute” word is used as

441



mount a i ,  sui u k r o i ,  i dg
mount a asnaeswi cvr k r owi r nl p i r nl dw

mi r nl wfnysusk h nt r cv r d

Multi-Head
Attention

Add & Norm

Add & Norm

Feed
Forward

h nt r cv r gwi ,  i gw
u k r ogwi ,  sui gw

i cvr k r ogwi r nl gw
fnysuskgwi enasgw

bep r ogwh vr gw
asnaesgwi , pgw“ eegw
”et sgwount agwv ugw

i ,   r ogw,  csgw
i r nl pgwcna

h nt r cv r gwi ,  i gw
u k r ogwi ,  sui gw

i cvr k r ogwi r nl gw
fnysuskgwi enasgw

bep r ogwh vr gw
asnaesgwi , pgw“ eegw
”et sgwount agwv ugw

i ,   r ogw,  csgw
i r nl pgwcna

mi r nl pwh nt r cv r dgw
m”et swi , pdgw

mount awasnaesd

Multi-Head
Attention

Add & Norm

Add & Norm

Feed
Forward

h nt r cv r gwi ,  i gw
i ,  sui gwi r nl gw
i enasgwh vr gw
asnaesgwi , pgw
“ eegwv ugw,  cs

u k r ogwbep r ogw
i cvr k r ogwcna

fnysuskgw”et sgw
ount agwi r nl pgw

Multi-Head
Attention

Add & Norm

Add & Norm

Feed
Forward

mi ,  sui wi cvr k r o i r nl dg
mh vr wi cvr k r o h nt r cv r d

mh vr wu k r odgw
mh vr wi ,   r odw

mh vr wi cvr k r od

Multi-Head
Attention

Add & Norm

Add & Norm

Feed
Forward

“Attribute” 
Aggregator

“Relation” 
Aggregator

“Object” 
Aggregator

Fine-Grained SRECoarse-Grained SRE

Figure 3: Illustration of the proposed Semantic Relationship Explorer. The color Green denotes the Attribute words, the color

Red denotes the Object words and Blue color denotes the Relation words.

a Query, it does not need to pay attention to the “relation”

words. This is because the “attribute” words are usually used

to describe a specific object, while the “relation” words are

usually used to describe the relationship among two or more

objects, that is, the association between the “attribute” words

and the “relation” words is not very strong. Therefore, the

semantic relationships explored by Coarse-Grained SRE are

not good due to the noise introduced by many unrelated words.

3) Fine-Grained Semantic Relationship Explorer: In order

to solve the problems of the Coarse-Grained SRE and to

extract more fine-grained and more precise semantic relation-

ships, we propose the Fine-Grained Semantic Relationship Ex-
plorer (Fine-Grained SRE). Inspired by the proposed attribute

embedding, object embedding and relationship embedding in

[11], we propose “Attribute” Aggregator, “Object” Aggrega-
tor and “Relation” Aggregator, which use attribute words,

object words and relation words, respectively, as Value and

Key. In addition, we get finer and more accurate semantic

relationships by using the words of the category most relevant

to them as Query.

a) “Attribute” Aggregator: A specific object may have

multiple attributes. Therefore, we have to focus on the at-

tributes that are most relevant to it from a set of attribute

semantic concepts. In this case, according to the attention

theorem, the object semantic concepts Co are the Queries, and

the attribute semantic concepts Ca are the Keys and Values.

Consequently, the result turns out to be a set of attended

attribute semantic concepts:

Ra = FFN(MultiHead(Co,Ca,Ca)) (4)

Through this formula, we can get detailed object-attribute

relationship information.

b) “Object” Aggregator: For a particular relation con-

cept, we tend to focus on seeking for two objects that are

related to each other to form the object-relationship-object,

e.g., women-wearing-shirt. Therefore, for the “Object” Ag-
gregator, the relation semantic concepts should focus on the

object semantic concepts. The relation semantic concepts Cr

serve as Queries, and the object semantic concepts Co serve

as Keys and Values, which can be defined as follows:

Ro = FFN(MultiHead(Cr,Co,Co)) (5)

Thus, we can get detailed object-relation-object relationship

information by the “Object” Aggregator.

c) “Relation” Aggregator: A specific object may have

many relations with other objects, so we need to focus on the

relation that is most relevant to it from a set of relation se-

mantic concepts, e.g., woman-eating, woman-holding, woman-
wearing and so on. Therefore, for “Relation” Aggregator, we

consider what relationships they are attached to. Accordingly,

the object semantic concepts Co should pay attention to the

relation semantic concepts Cr, which is defined as follows:

Rr = FFN(MultiHead(Co,Cr,Cr)) (6)

where we can get object-relation relationship information.

C. Semantic Relationship Embedding

For the semantic concepts of each image or sentence,

through Coarse-Grained SRE and Fine-Grained SRE, we can

get coarse-grained relationships Rg ∈ R
Ng×e and fine-grained
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relationships Ra ∈ R
Na×e, Ro ∈ R

No×e and Rr ∈ R
Nr×e,

respectively. These semantic relationships are of different

quantity and contain different information. So in order to have

the same number of features for each type of semantic relation-

ships and to encourage the diversity of extracted main features

for decoding effectively, we use a self-attention mechanism

provided by [29]. This mechanism can be defined as follows:

A = softmax(W s2 tanh(W s1Rk
T )) (7)

Mk = ARk, k ∈ {g, a, o, r} (8)

where W s1 ∈ R
da×e and W s2 ∈ R

r×da are learnable

parameters; r stands for the number of extracted features in

different parts. Through the formula, we can get different

semantic relationship embeddings, i.e., Mk ∈ R
r×e(k ∈

{g, a, o, r}), which share the same dimensions. For coarse-

grained relationships embedding, M c = Mg . We combine

Ma, Mo and M r to obtain the fine-grained relationships

embedding, Mf = [Ma;Mo;M r], where [;] stands for

concatenation operation.

D. Attention-Based Decoder

The decoder part is essential in the way that it translates

the extracted semantic relationships into their corresponding

captions. The decoder is an attention-based LSTM [30], which

takes the word embedding vector we
t , concatenated with the

averaged semantic concepts vector cavg = 1
Ng

∑Ng

i=1 ci, as

input, which is denoted as xt = [we
t ; cavg].

At each time step, when the decoder generates captions,

the semantic relationship information that needs attention

varies with different time steps. Inspired by the attention

mechanism in [30], we design an attention LSTM sentence

decoder by injecting all of the coarse-grained or fine-grained

semantic relationship embedding features (Mk, k ∈ {c, f})

into a LSTM with attention mechanism. Specifically, at each

time step t, according to the current hidden layer ht ∈ R
d,

the attention LSTM decoder firstly generates the attention

distribution over the n (n is r for M c and 3r for Mf ) parts

of semantic relationship embedding features Mk, k ∈ {c, f}:

αt = softmax(wαtanh(WMMk
T ⊕W hht) (9)

where WM ∈ R
da×e, W h ∈ R

da×d and wα ∈ R
da are

learnable parameters; ⊕ denotes the matrix-vector addition,

which is calculated by adding the vector to each column of

the matrix. αt ∈ R
n is the attentive weight of Mk and the

attentive relationship vector rt ∈ R
e can be defined as follows:

rt = αtMk (10)

With a further combination with ht, the attentive relationship

can predict the current output word:

yt ∼ pt = softmax(W p,rrt +W p,hht) (11)

where W p,r ∈ R
|D|×e,W p,h ∈ R

|D|×d, and each value of

pt ∈ R
|D| denotes the probability suggesting how likely the

corresponding word in vocabulary D is the current output

word.

The approach mentioned above encourages the model to

exploit all the available semantic relationship information.

Thanks to the abundant and enriched information extracted

by the Semantic Relationship Explorer, the source semantic

concept information turns into a deep image understanding.

IV. IMPLEMENTATION DETAILS

In this section, we will introduce how to train our model

and how to use our model to generate image captions under

the unpaired settings.

A. Training Strategy

a) Training in Language Domain: Since there is no

parallel data, we train the full model in the language domain,

and use the method of reconstructing the original sentence to

train the model, that is:

Sentence → Semantic Concepts → Semantic Relation-
ships → Semantic Relationship Embedding → Decoder →
Sentence

The Semantic Relationship Explorer explores the Semantic

Relationships RS from the Semantic Concepts CS , which

are extracted from the sentence S, and obtain Semantic

Relationship Embeddings ES through a self-attention mecha-

nism. Finally, the original sentence S is reconstructed by an

Attention-based Sentence Decoder.

b) Training Objectives: Firstly, we train the full model

by minimizing the Cross-Entropy (XE) Loss [6], [30], [32]–

[35]. Given a target ground truth sequence y*
1:T and a cap-

tioning model with parameters θ, the goal is to minimize the

following cross entropy loss:

LCE(θ) = −
T∑

t=1

log(pθ(y
*
t |y*

1:t−1)) (12)

Recently, reinforcement learning methods have also been

widely used for captioning model training [8], [9], [11], [36].

Consequently, we further employ a reinforcement learning

(RL) loss to improve the performance of our model. In this

case, the cross-entropy loss method is used to pre-train the

model, after which our goal is to minimize the negative

expected score as:

LRL(θ) = −Ey1:T∼pθ
[r(y1:T )] (13)

where r is the score function (e.g., CIDEr). Following the

Self-Critical Sequence Training [36] (SCST), the gradient of

LRL(θ) can be approximated by

∇θLRL(θ) ≈ −(r(ys1:T )− r(ŷ1:T ))∇θlogpθ(y
s
1:T ) (14)

where r(ys1:T ) is the score of a sampled caption ys1:T and

r(ŷ1:T ) suggests the baseline score of a caption which is

generated by the current model using greedy decode. Through

this gradient, sampled captions with higher CIDEr scores are

more likely to be generated by the model because their corre-

sponding probabilities are increased. Through this approach,

we complete CIDEr optimization.
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

Language Pivoting [15] 46.2 24.0 11.2 5.4 13.2 - 17.7 -
Adversarial+Reconstruction [16] 58.9 40.3 27.0 18.6 17.9 43.1 54.9 11.1

Graph-Align† [17] 66.7 48.0 31.5 21.1 20.5 46.2 68.7 14.5
Graph-Align [17] 67.1 47.8 32.3 21.5 20.9 47.2 69.5 15.0

Coarse-Grained SRE 50.3 36.6 24.7 16.5 14.3 33.4 37.2 10.6
Fine-Grained SRE 57.5 38.9 27.1 19.7 17.4 41.9 49.7 13.3
Graph-Align [17] + Fine-Grained SRE 67.8 48.7 33.6 21.8 22.1 48.4 75.7 16.1

Table I: Performance on the MSCOCO Karpathy test split [31] under the unpaired setting. All values are reported in percentage

(%). Higher is better in all columns. † denotes the results of the re-implemented Graph-Align for fair comparison. The proposed

Fine-Grained SRE has a better performance than the Coarse-Grained SRE. Additionally, it is clear that the Fine-Grained SRE
approach also boosts the performance of Graph-Align, indicating that our approach learns very effective semantic relationship

information even for scene-graphs.

B. Inference Strategy

We use the full model to train the model in the language

domain to generate image captions. The inference process is

defined as follows:

Image → Semantic Concepts → Semantic Relationships
→ Semantic Relationship Embedding → Decoder → Sen-
tence

Given an image I , we can extract the Semantic Concepts

CI from I through the Semantic Concept Extractor. Then,

similar to sentence reconstruction process, we use the Semantic
Relationship Explorer to extract the Semantic Relationship

RI , which embedded to Semantic Relationship Embeddings

EI . At last, EI will use the decoder to generate captions.

V. EXPERIMENTS

In this section, we will firstly describe a benchmark dataset

for image captioning as well as some widely-used metrics

and experimental settings. Then we will present the proposed

model.

A. Datasets, Metrics and Settings

Several datasets consist of images-caption pairs. We use the

popular Microsoft COCO [38] dataset to evaluate our reported

results. This dataset contains 123,287 images and each image

is paired with 5 sentences. To make a fair comparison, we use

the widely-used splits in the work of Karpathy and Li [31] to

report our results. There are 5,000 images each in validation

set and test set, and 566,435 sentences for training full model.

We test the model performance with MSCOCO captioning

evaluation toolkit [38]. It reports the widely-used automatic

evaluation metrics SPICE, CIDEr, BLEU, METEOR and

ROUGE. SPICE [39] is based on scene graph matching and

CIDEr [40] is based on n-gram matching. These two metrics

are specifically designed to evaluate image captioning systems.

They both incorporate the consensus of a set of references for

an example. BLEU [41] and METEOR [42], [43] are originally

designed for machine translation evaluation, while ROUGE

[44] is proposed for automatic evaluation of the extracted

text summarization. A related research suggests that SPICE

correlates the best with human judgments and does especially

well in judging detailedness, where the other metrics present

negative correlations; CIDEr and METEOR follows with no

conspicuous superiority, then comes ROUGE-L, and BLEU-

4, in that order [39], [40]. Among them, SPICE and CIDEr

are specifically designed to evaluate image captioning systems

and will be the main considered metrics.

Following convention, we replace caption words appearing

less than 5 times in the training set with the commonly

unknown word token UNK. This has resulted in 9,487 words

for MSCOCO. The size of the word embedding e is 512 and

the hidden size d of the LSTM is 512. N , the number of

heads in multi-head attention is set to 8 and dff , the feed-

forward network dimension is set to 2048. Besides, the hidden

layer size da is 350. The relationship embedding has 30 rows

(the r), which is similar to [29]. Following [17], we train

the Semantic Concept Extractor on the Visual Genome [45]

dataset. Only top 20 semantic concepts are selected for each

image. We also share the semantic concept embedding and the

input word embedding in implementation. During the training

process, firstly, we train the model with the cross-entropy loss

for 15 epochs. Then, in reinforcement learning, we train the

entire model with the batch size of 50 and use Adam [46] for

parameter optimization. For full model, the learning rate is

4e-4. The β1, β2 are respectively set to 0.8 and 0.999. During

sampling for MSCOCO dataset, we apply beam-search with a

beam size of 5.

B. Results

1) Under the Unpaired Setting: In this section, in order to

show the advantages of our method, firstly we compare our

approach with the current unpaired image captioning meth-

ods, including the recently proposed Language Pivoting [15],

Adversarial+Reconstruction [16] and Graph-Align [17], which

are the most advanced on the MSCOCO dataset in comparable

settings. As shown in Table I, in terms of SPICE, our proposed

Fine-Grained SRE is competitive with all baselines, which use

complex models and schemes. This is reasonable because both

semantic concepts and semantic relationships are high-level

and understandings of image [22]. Additionally, we boost the

performance of Graph-Align, which indicates vision domain

and language domain can be connected by our approach

effectively. As expected, the Fine-Grained SRE has a better
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

ATT-FCN [5]

Baseline 70.9 53.7 40.2 30.4 24.3 53.3 95.6 18.6
+ Proposal 72.3 55.6 41.6 32.0 25.9 54.8 100.2 19.2

LSTM-A2 [6]

Baseline 73.3 56.5 42.7 32.2 25.3 53.9 99.1 18.3
+ Proposal 77.2 58.4 44.6 33.1 25.9 54.2 103.5 18.7

LSTM-A3 [6]

Baseline 73.5 56.6 42.9 32.4 25.5 53.9 99.8 18.5
+ Proposal 76.8 57.9 44.2 33.2 26.7 54.5 104.1 19.1

LSTM-A4 [6]

Baseline 72.1 55.5 41.7 31.4 24.9 53.2 95.7 17.8
+ Proposal 72.8 56.4 43.4 32.1 26.6 54.6 101.4 18.4

LSTM-A5 [6]

Baseline 73.4 56.7 43.0 32.6 25.4 54.0 100.2 18.6
+ Proposal 75.2 57.9 44.2 34.0 26.7 54.8 108.0 19.7

Table II: Evaluation of representative systems under the paired setting. The proposed approach can further improve the already

strong baselines in all metrics, which demonstrates the generalization ability of our approach to a wide range of existing

systems. The significant improvements come from the explored semantic relationships rather than the simple incorporation of

the semantic concepts, which indicates its effectiveness in exploring semantic relationships.

effect than the Coarse-Grained SRE. This indicates that the

Fine-Grained SRE helps improve the quality of the extracted

semantic relationships by extracting relevant relationships in

more precise ranges.
2) Under the Paired Setting: We have done experiments

to further illustrate the advantages of our method. Under the

paired setting, we use five strong baselines without exploring

the semantic relationships for semantic concepts. We replace

the source semantic concept information of the baselines with

extracted semantic relationship information, which is extracted

by Fine-Grained Semantic Relationship Explorer. Since our

focus is to provide semantic relationship information, we

preserve the original settings for all baselines.

ATT-FCN [5] attends semantic concepts in all decoding

steps. LSTM-A [6] uses a series of models (LSTM-A2,3,4,5)

to incorporate the semantic concepts. We will study the effect

of our method on them. LSTM-A3 takes semantic concepts as

input at the first decoding step and visual features at the second

step. LSTM-A4 presents textual concepts to the decoder,

leaving visual features for the following steps; Contrary to

LSTM-A3 and LSTM-A4, LSTM-A2 and LSTM-A5 reverse

this order by firstly presenting visible features, respectively.

As shown in Table II, Fine-Grained SRE successfully pro-

motes all baseline systems. It has brought improvements up to

8% and 6% in terms of CIDEr and SPICE, respectively, which

further demonstrates its wide-range generalizing ability and

indicates its effectiveness in exploring semantic relationships,

which is less prone to the variations of model structures, hyper-

parameters (e.g., learning rate and batch-size), and learning

paradigm.

To conclude, we not only performs better than existing

methods under the unpaired setting, but manage to greatly

improve the baselines under the paired setting.

VI. ANALYSIS

In this section, we will first analyze the contribution of each

component in the proposed method. Then examples and error

analysis under the unpaired setting are given to demonstrate

the strengths and areas for improvement of our model. The

following analysis are conducted on the the proposed Fine-
Grained SRE.

A. Quantitative Analysis

The generic captioning performance can be affected by

the Semantic Relationship Embedding and Attention-based
Sentence Decoder we adopted. Therefore, we first assume

that ground truth semantic concepts are fixed and then ana-

lyze them. The results are shown in Table III. In addition,

because of our main contribution is proposing the Semantic
Relationship Explorer, we select the Graph-Align to conduct a

series of experiments under real unpaired situations to evaluate

the contribution of sub-modules. The results are shown in

Table IV. Meanwhile, we have also listed results of SPICE

sub-categories to make it easier to analyze the quality and

differences of the captions.

a) Contribution of Semantic Relationship Embedding and
Attention-based Sentence Decoder: As shown in Table III, the

comparison of the three models indicates the upper limit of

the performance of attention mechanism (Att) and embedding

mechanism (Emb). It is demonstrated that the Attention-based
Sentence Decoder (GT-SRE-Att) outperforms the non-attention

model (GT-SRE) in all metrics. This proves that weighing over

features can improve the global dependency of features. The

performance of model is greatly improved when it is combined

with Semantic Relationship Embedding (GT-SRE-Emb-Att).
This indicates that Semantic Relationship Embedding can
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

GT-ATT [22] 82.3 71.7 54.2 44.9 30.7 59.7 143.9 24.1

GT-SRE 84.7 72.9 57.8 46.4 32.0 61.5 154.1 26.2
GT-SRE-Att 90.6 80.4 65.9 57.2 35.5 66.9 161.5 27.4
GT-SRE-Emb-Att (Full Model) 92.4 86.9 74.4 63.1 36.7 69.1 174.4 28.3

Table III: Performance of the proposed models using the ground-truth semantic concepts on MSCOCO. The attention mechanism

(Att) and the embedding mechanism (Emb) can promote the baseline in all metrics. Additionally, we report the performance

of a representative system ATT [22]. As we can see, our approach outperforms the ATT substantially in all metrics, which

further demonstrates the effectiveness of our approach.

Methods BLEU-4 METEOR ROUGE-L CIDEr
SPICE

All Objects Attributes Relations Color Count Size

Graph-Align 21.1 20.5 46.2 68.7 14.5 28.8 3.8 3.8 1.7 0.7 1.9
Graph-Align w/ “Attribute” 21.5 20.9 47.0 71.2 15.0 29.2 5.6 3.4 3.1 2.6 2.3
Graph-Align w/ “Object” 21.3 21.4 46.7 70.1 15.6 30.7 4.2 4.3 2.4 1.5 2.0
Graph-Align w/ “Relation” 20.7 20.4 46.4 69.8 14.7 29.0 3.6 4.5 2.0 1.1 1.9

Full Model 21.8 22.1 48.4 75.7 16.1 31.0 5.8 4.9 3.4 3.7 2.5

Table IV: Results of incremental analysis of our proposed approach under the unpaired setting. For a better understanding of

the differences, we further list the breakdown of SPICE F-scores. “w/ Attribute”, “w/ Object” and “w/ Relation” stand for

the baseline further equipped with the “Attribute” Aggregator, “Object” Aggregator and “Relation” Aggregator, respectively.

The bold numbers are best numbers before applying full model. We can see that the “w/ Attribute” has a higher attributes,

colors, count and size scores than the other baselines. The “w/ Object” promotes the baseline in objects scores and the “w/
Relation” reaches better scores in relations. As we can see, incorporating all the sub-modules (i.e., Full Model) directly on

the baseline leads to overall improvements.

further extract multiple features from semantic relationships,

which strengthens its representing ability.

Furthermore, our full model performs better than GT-ATT.

The latter directly uses semantic concepts at all steps instead

of exploring the semantic relationships for semantic concepts.

This proves the necessity to build relationships between se-

mantic concepts.

b) Effect of “Attribute” Aggregator.: As shown in Ta-

ble IV, if we incorporate our model with the “Attribute”
Aggregator and aggregate correlated attributes in each specific

object, it will have strengthened attribute relationship repre-

sentations. Consequently, the object united with the strengths

of attribute collocations can produce a balanced improvement.

This is especially true in attributes, color and count score. It

can also promote the decoder to generate accurate captions.

c) Effect of “Object” Aggregator.: Just as we have

expected, “Object” Aggregator performs well in connecting

related objects in the semantic concepts according to a relation

word, which is proved by the increased scores in objects. The

object collocations use the “relation” word as a pivot to extract

constrained collocations, which distills more detailed relation-

ship information between objects, promoting the decoder to

generate comprehensive captions.

d) Effect of “Relation” Aggregator.: As is shown in

Table IV, the base model, which directly incorporates “Re-
lation” Aggregator, have improved relations. This indicates

that the introduction of relation collocations has induced more

powerful relation information to the decoder. The decoder

therefore establishes more fine-grained relationships around a

specific object.

e) Full Model.: As we expected, each component, with

different functions, brings about improvements from different

aspects to the model. Consequently, their advantages are united

to produce abundant and enriched information. This achieves

deep image understanding, brings an overall improvement (see

Table IV) and results in generating comprehensive and detailed

captions (see Figure V).

B. Qualitative Analysis

In the Figure V, we list examples to intuitively show the

differences between models. As is shown, all models can gen-

erate fluent and descriptive sentences of input images. How-

ever, different models present different amount of semantic

relationship information. The w/ Object has more objects but

lacks details, e.g. color and number. The w/ Attribute generates

more detailed attributes and color. The w/ Relation performs

well in portraying the relations but worse in attributes. The

proposed Full Model, compared with the models mentioned

above, helps the baseline to maintain good balances as well

as generates more complete and coherent captions.

The reason for this phenomenon is “Object” Aggregator can

automatically extend its focus in a specific relation and find

related objects to establish a relationship group. “Attributes”
Aggregator learns attribute-word collocations from various

visual attributes and rich semantic information. “Relation”
Aggregator learns to automatically extend its focus in a

specific object and look for related relations. Based on rich

semantic relationship information, the decoder can retrieve
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Reference a zebra grazing on grass in a
green open field.

a woman is outside playing
with her dogs in the grass.

a herd of wild animals walking
across a large dry field.

a woman playing tennis on a
tennis court while people
watch.

Graph-Align an animal standing on a field. a woman standing on a field. an animal standing on a field. a woman standing on a field.

w/ “Attribute” an animal standing on lush
green grass field.

a beautiful woman standing on
a grass field.

a herd of animals standing on
a dry field.

a woman standing on a tennis
court.

w/ “Object” a zebra standing on a field
with grass.

a woman in shirt and dogs
playing on a grass field.

zebras and giraffes standing on
a dry field.

a woman with a racket
standing on a tennis court.

w/ “Relation” an animal standing on a field
eating grass.

a woman wearing shirt standing
on a grass field with dogs
nearby.

animals walking in a field.
a woman holding a racket
standing on a tennis court.

Full Model a zebra eating lush green grass
in a grass field.

a woman wearing black shirt is
playing with dogs on a green
grass field.

giraffes and zebras standing on
a dry grass field.

a woman wearing white shirt
holding a tennis racket on the
court.

Table V: Examples of the captions generated by different methods. The first line is the input image. The second and the third

lines are the ground truth and the captions generated by the Graph-Align. The fourth, the fifth and the sixth lines are captions

generated by adding “Attribute” Aggregator, “Object” Aggregator and “Relation” Aggregator, respectively. From the captions,

we can find that the “Attribute” Aggregator helps the baseline to generate more detailed captions in attributes and colors for

each object. The “Object” Aggregator results in more comprehensiveness in objects, and the “Relation” Aggregator helps the

baseline to establish more reasonable relationships among objects. The Full Model, which incorporates all sub-modules, is able

to generate more complete captions that are detailed in the objects, attributes, relations and colors.

  a ribute objectloca on

Ours

two bowls of 
cut up bananas
next to a whole 

banana.

Reference

Error Type

Error 
Analysis

a yellow banana
in a red bowl
si ng on a 

wooden table.

a cow standing 
in the eld 

ea ng grass.

a group of cows 
standing on 
a dry eld.

a woman 
wearing a 

bandanna and 
ugly sun glasses.

a man wearing
a glass with 
a group of 

people nearby.

Figure 4: Illustrations of the error analysis of the proposal.

information through attention mechanism. It will also decide

on the most probable next word.

The qualitative analysis indicates that the semantic relation-

ship information, extracted by Semantic Relationship Explorer,

is much more aggregated than the source semantic concept

information, ensuring the focus of current caption generation.

C. Error Analysis

In this section, we conduct error analysis using the proposed

(full) model on the test set to provide insights on how the

model may be improved. We find some generated captions

that do not meet the standard. There are mainly three types

of errors, i.e., location (45.9%), attribute (21.7%), and object

(18.4%), with the left (14.0%) falling into other categories. In

the Figure 4, we also give some examples.
Location error means that the model describes an irrelevant

location relationship for an object (e.g., mislocating banana).

Attribute error occurs when there are a lot of attributes, which

can respectively establish logical relationships with a specific

object. Therefore, the model mistakenly treats an incorrect

relationship as grounded. In the given example, field can

establish a relationship with either dry or grass, but only

grass field is correct as shown in the picture. Object error

occurs when there are incorrect extracted semantic concepts.

The model treats the semantic concept as grounded in the

image. In the given example, the incorrect semantic concept

is man.
The challenging part is that these semantic relationships,

which are extracted by the Semantic Relationship Explorer, are

logically correct, otherwise the proposed model will choose

other semantic relationships. A more powerful and accurate

Semantic Concept Extractor may be needed to solve the

problem, but it’s unlikely to be completely avoided.

VII. CONCLUSIONS

In this work, we have proposed a framework for unpaired

image captioning and a Semantic Relationship Explorer (SRE).

Without any parallel data, SRE extracts abundant and rich
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semantic relationship information for image captioning. Our

method employs the semantic relationships to bridge the gap

between vision and language domains. It is a powerful basis

for the image description. We also use Semantic Relation-
ship Embedding to get more powerful relationship features.

Meanwhile the Attention-based Sentence Decoder is adopted

to improve the global dependency of features. Our proposal is

validated by experiments on the MSCOCO image captioning

dataset. Remarkably, the proposed method outperforms the

existing methods under the unpaired setting. In addition, it

manages to boost five strong baselines to achieve a significant

improvement under the paired setting. As shown in the quan-

titative and qualitative analysis, generated captions achieve

a great balance among “object”, “attribute” and “relation”,

which are more complete and coherent compared to other

existing models.
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