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Abstract—As a multi-label classification task, audio tagging
aims to predict the presence or absence of certain sound events
in an audio recording. Existing works in audio tagging do not
explicitly consider the probabilities of the co-occurrences between
sound events, which is termed as the label dependencies in this
study. To address this issue, we propose to model the label
dependencies via a graph-based method, where each node of
the graph represents a label. An adjacency matrix is constructed
by mining the statistical relations between labels to represent the
graph structure information, and a graph convolutional network
(GCN) is employed to learn node representations by propagating
information between neighboring nodes based on the adjacency
matrix, which implicitly models the label dependencies. The
generated node representations are then applied to the acous-
tic representations for classification. Experiments on Audioset
show that our method achieves a state-of-the-art mean average
precision (mAP) of 0.434.

Index Terms—Audio tagging, label dependencies, graph con-
volutional network, representation learning

I. INTRODUCTION

UDIO tagging [1] is the task of predicting the presence or

absence of sound events within an audio clip, which has
many applications such as information retrieval [2] and music
tagging [3]. Compared to single-label audio classification [4],
[5], one of the challenges in audio tagging is to deal with the
multiple labels in an audio recording.

Recently, convolutional neural networks (CNNs) [6]-[11]
and convolutional recurrent neural networks (CRNNs) [12]—
[14] provide the state-of-the-art results in audio tagging tasks,
which show powerful ability to learn acoustic representations
from manually-design features, such as log mel spectrograms.
In most previous methods, each sound event type is con-
sidered independently, so that audio tagging is treated as a
binary classification problem for each sound event type. As
a result, the intrinsic relationships between sound events are
ignored in these methods. As sound events often co-occur
in an audio clip, (e.g. when the sound event piano appears,
guitar is more likely to appear than babycry), it would be
beneficial to take into account the dependencies among labels.
Meanwhile, labels often conform to the ontology structure of
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the abstract sound categories [15]. For example, snake can be
categorized either as a general category of animal or a more
specific category of wild animal. Some approaches have been
proposed to capture the relationships among labels for audio
classification. In [16], graph Laplacian regularization was
introduced to model the co-occurrence of sound events, and
Xu et al. [17] proposed a deep neural network (DNN)-based
hierarchical learning method for acoustic scene classification.
In addition, SONYC Urban Sound Tagging (SONYC-UST)
[18] containing 8 coarse-grained classes and 23 fine-grained
classes was presented for the DCASE 2019 Urban Sound
Tagging Challenge [19]. For large-scale multi-label datasets
(e.g. Audioset [21]), which contain numerous categories, the
hierarchical structures are not clearly pre-defined. However,
the implicit label dependencies could be explored to achieve
better classification performance.

In this paper, we model the label dependencies via a
graph, which has been proven to be effective in capturing the
relationships among labels [22]-[24]. The main contribution
of this paper is that the implicit dependencies between labels
are modeled via GCN with the statistical relations between
labels. This is different from two contemporary works [15],
[20] brought to our attention where the ontology based domain
knowledge is used for the graph construction, rather than the
statistical relations exploited in our work. More specifically,
each edge in the graph represents the relationships between
two nodes, and the adjacency matrix is constructed by the
conditional probabilities between labels within the dataset to
represent the graph structure information. GCN is employed to
learn node representations using the graph structure informa-
tion, which are then applied to the acoustic representations as
the label-wise weights for classification. A single layer GCN
learns the representations of each node by aggregating the
information of its immediate neighbors. While in multi-layer
GCN, information is propagated from more neighbors, hence
implicitly modeling the label dependencies. In addition, re-
weighting schemes are proposed to alleviate the over-fitting
and over-smoothing problems for the adjacency matrix.

II. GRAPH CONVOLUTIONAL NETWORK

Graph convolutional network (GCN) was presented for
semi-supervised learning on graph-structured data [25]. The
main idea of GCN is to learn the node representations by
aggregating the information of neighboring nodes on a graph
G = (V,€), with n nodes v; € V, edges (v;,v;) € €E.
Let A € R™™™ be the adjacency matrix of G, each GCN
layer takes the node representations H O € R"™ ¢ from the
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Fig. 1. Overall architecture of our AT-GCN model. Node representations are
initially obtained by the word embeddings of the labels and the final node
representations learned by GCN are applied to the acoustic representations
for classification.

previous layer as inputs and outputs updated node repre-
sentations HUTY ¢ R"XC,, where ¢ and ¢ indicate the
dimensions of node features in the I-th layer and the (I + 1)-th
layer, respectively. A multi-layer GCN follows the layer-wise
propagation rule between the nodes [25]:
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Here, D 2AD is the normalized symmetric adjacency
matrix. A = A + Iy is the adjacency matrix with added
self-connections (I is the identity matrix) and D is the
diagonal degree matrix, where D~ii = Zj flij. wl g Rex<
is a trainable weight matrix, and h(-) denotes an activation
function.
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III. PROPOSED METHOD

In this section, we present a graph-based method to model
the label dependencies for audio tagging. The graph structure
is constructed by the statistical relations between the labels,
and GCN is employed to learn node representations on the
graph. The generated node representations are then applied to
the acoustic representations for classification, as detailed next.

A. GCN for Audio Tagging

The overall architecture of our proposed model (AT-GCN)
is shown in Fig. 1, and CNN10 [11] is used as the baseline
model in our experiments. See [11] for details about CNN10.
Acoustic representation learning The aim of acoustic rep-
resentation learning module is to extract the acoustic feature
from the input log mel spectrogram, and our proposed AT-
GCN has the same acoustic representation learning module
as CNN10 [11]. Specifically, convolutional layers are applied
to the spectrogram M € R**/, followed by a global pool-
ing layer and a fully-connected layer. Following [11], both
maximum and average operations are used for global pooling.
Let feon, fep» ftc be the operations of the convolutional
layers, the global pooling layer and the fully-connected layer,
respectively. The acoustic feature € R® (where C' denotes
the dimensionality of the acoustic feature) can be obtained by

T = ffc (fgp (fcnn (M7 ecnn)) ;efc) (2)

Here, 0., and 6s. denote the model parameters of the convo-
lutional layers and the fully-connected layer, respectively.
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Fig. 2. An example of the graph to model the label dependencies. Each
node represents a label and each edge represents the relationships between
two nodes, which is determined by the conditional probabilities. Note that
the edges with small values of the probabilities are filtered by a re-weighting
scheme and not shown in the figure.

Node representation learning GCN is employed to learn
node representations in our method. As in (1), the stacked
multiple GCN layers are applied where each GCN layer takes
the node representations H O from the previous layer as inputs
and outputs new node representations H (+1) The input node
representations H 0 ¢ RVxe of the first GCN layer are the
word embeddings of the labels, where N denotes the number
of labels and c is the dimensionality of the embeddings. For
the last layer (assuming that the number of layers is L), the
output is H'X) € RN*C where C equals the dimensionality
of the acoustic feature. The predicted score §§ € R is
then obtained by applying the last node representations to the
acoustic representations [28].

§=0 (H(L)w> 3)

where o(-) is the sigmoid function to restrict §(*) € (0,1).
For the given ground truth of the labels within an audio clip
y € RY (where y(¥ = {0, 1} denotes whether label i appears
or not), the loss L is calculated using binary cross-entropy:
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B. Construction of the Graph Structure

The graph structure determines the information propaga-
tion between nodes, however, there is no pre-defined graph
structure in any audio tagging datasets. In our work, an
adjacency matrix is constructed via mining the conditional
probabilities between labels within the dataset to represent the
graph structure information, as shown in Fig. 2.

Firstly, we count the occurrence of label pairs in the training
set and get the matrix X € RV*N (where N indicates the
number of labels, and X;; denotes the co-occurring times of
label L; and L;). Then, the occurrence times of the labels
in the training set are counted and the conditional probability
matrix can be calculated by

P = Xi;/T; &)

where T; denotes the occurrence times of label L; in the
training set, P;; = P (L;|L;) means the probability of label
L; when label L, appears. Note that P;; is not equal to Pj;
since Tj is not the same as T}.



However, the conditional probabilities between labels in
the training and test set may not be completely consistent,
and some small probabilities may become noise. Thus, it is
necessary to alleviate over-fitting of the adjacency matrix.
Specifically, a threshold 7 is applied to filter noisy edges:

0,
Ay = { 5

where A is the re-weighted adjacency matrix.

Another potential problem is over-smoothing, i.e. as the
GCN layer deepens, the node features may be over-smoothed
and nodes from different clusters may become indistinguish-
able [26], [27]. Thus, we adjust the information propagation
among nodes in GCN by another re-weighting scheme:

Al = { pAij/Z%% Ay, ifi#g
1 7

1—p, ifi=j
where A’ is the re-weighted and normalized adjacency matrix,
and p determines the weights assigned to a node itself and its
neighbors. When p — 0, the neighboring information tends to
be ignored. On the contrary, when p — 1, the information of
a node itself will not be considered.
The proposed algorithm is summarized in Algorithm 1.

ifPZ‘j<T
ifPijZT (6)
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Algorithm 1 AT-GCN
Input: The log mel spectrogram M; The initial node repre-
sentations H(%;

QOutput: The predlcted score ¥;
1: Calculate the adjacency matrix A using equation (5)-(7);
2: Extract the acoustic representation x using equation (2);
3: for/=0,...,L—1do

4 Get the node representations of the next layer H

using equation (1);

end for

6: Calculate y according to equation (3);

7: return y;

(1+1)
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IV. EXPERIMENTS

A large-scale multi-label dataset (Audioset [21]) is used
in our experiments to evaluate our method, which is one of
the most challenging datasets for audio tagging [1]. Log mel
spectrograms are extracted from the audio signals as the input
of the networks. The details are as follows.

A. Dataset, Metrics and Preprocessing

Dataset Audioset [21] is a large-scale dataset with over 2
million 10-second audio clips from YouTube videos, with a
total of 527 categories. The training set consists of 2,063,839
audio clips including a balanced subset of 22,160 audio clips.
The evaluation set consists of 20,371 audio clips. Following
[14], both the balanced and unbalanced training sets are used
for training, with one part taken as our validation set. The
evaluation set is used as the test set in our experiments.

Metrics Mean average precision (mAP), mean area under the
curve (mAUC) and d-prime are used as our evaluation metrics.

TABLE I
COMPARISON OF PERFORMANCE ON AUDIOSET

Model Depth  mAP mAUC  d-prime
Google CNN (2017) [21] - 0314 0.959 2.452
Multi-level attention (2018) [9] - 0.360 0.970 2.660
Multi-level attention* (2018) [9] - 0.362 0.970 2.667
TAL Net (2019) [14] - 0.362  0.965 2.554
TAL Net* (2019) [14] - 0.367 0.969 2.638
DeepRes (2019) [5] - 0.392  0.971 2.682
CNNI10* (2019) [11] - 0.422°0.970 2.653
I-layer 0.428 0.971 2711
AT-GCN (ours) 2-layers 0.434 0.974 2.736
3-layers 0.430 0.972 2.715

*The listed results of Multi-level attention [9], TAL Net [14] and CNN10
[11] are obtained under the same experimental setups as AT-GCN (e.g.
using preprocessing and data augmentation). The original Multi-level
attention [9] and TAL Net [14] did not use data augmentation.

TABLE I
ACCURACY COMPARISONS ON DIFFERENT CONSTRUCTION METHODS OF
THE ADJACENCY MATRIX

Construction Method mAP mAUC  d-prime
AT-GCN w/ method in [15], [28]  0.431 0.973 2.727
AT-GCN w/ method in [20] 0.429 0.971 2.701
AT-GCN w/o scheme 0.132 0.907 1.872
AT-GCN w/ scheme in (6) 0.267 0.952 2.360
AT-GCN w/ scheme in (7) 0.188 0.932 2.113
AT-GCN w/ scheme in (6) & (7)  0.434 0.974 2.736

These metrics are calculated on individual classes and then
averaged across all classes.

Preprocessing Limited by the computation resource, the pre-
extracted log mel spectrograms [14] with window size 50ms
and hop length 25ms are used in our experiments instead of the
raw audio signals, which have lower time domain resolution
than those used in [11]. The number of Mel bands is set to
64 and the size of a log mel spectrogram is 400 x 64.

B. Implementation Details

AT-GCN The node representation learning module of our AT-
GCN ! consists of two GCN layers with output dimensionality
of 256 and 512. It was proven that the performance is
hardly impacted by the different initial label representations
[28], and following [28], the word embeddings of 300-dim
GloVe? [29] are used as the initial label representations in our
experiments. The dimensionality of the acoustic representation
is set to 512 for a fair comparison with CNN10 [11], and the
hyperparameters 7 in (6) and p in (7) are set to 0.3 and 0.2
empirically based on the validation set. PReLU [30] with the
negative slope of 0.2 is used as the activation function in (1).
Training details In the training phase, the Adam [31] is
employed as the optimizer with a learning rate of 0.001.
Batch size is set to 64 and training takes 600, 000 iterations.
Following [11], data augmentation methods mixup [32] and
SpecAugment [33] are applied in our experiments to prevent
the system from over-fitting and improve the performance.

Uhttps://github.com/WangHelin1997/AT-GCN
Zhttps://github.com/stanfordnlp/GloVe
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Fig. 3. Accuracy comparisons of different values of 7 and p f01r1 AT—GCI}I

with two GCN layers (metric: mAP). Note that when 7 = 1.0, D" 2 AD ™ 2
in (1) becomes the identity matrix. AT-GCN degenerates to a structure almost
identical to CNN10, but with an extra fully-connected layer (as a GCN layer
degenerates to a fully-connected layer). As a consequence, the mAP result
(42.3%) by AT-GCN is slightly different from that of CNN10 (42.2%).

C. Experimental Results and Analysis

Table I demonstrates the performance of our proposed AT-
GCN and other state-of-the-art methods on the Audioset.
The results indicate that the proposed AT-GCN outperforms
all the compared methods, which confirms the effectiveness
of modeling the label dependencies. A single layer GCN
learns the node representations by aggregating the information
of the immediate neighbors guided by the graph structure
information. The results show that AT-GCN with one GCN
layer achieves a better performance than the baseline model
(CNN10) owing to these statistical relations, which is similar
to [16]. While in multi-layer GCN, information is propagated
from more neighbors, which implicitly models the deep label
dependencies and offers more performance gain. However,
increasing the number of GCN layers may lead to over-
smoothing [34], which may mix the features of too many
nodes and make them indistinguishable. It can be observed
that AT-GCN with two GCN layers provides a good trade-off
in these aspects and achieves the best performance.

In order to analyze the impacts of the formulation of the
adjacency matrix, ablation experiments are carried out. As
shown in Table II, AT-GCN does not perform well when
no re-weighting scheme is applied because of the over-
fitting and over-smoothing problems, which are discussed in
Section III-B. In [15], [28], a threshold is set to filter the
noisy edges and other edges are treated equally, which is
achieved by binarizing the adjacency matrix. However, our
proposed re-weighting schemes retain the information of the
other edges by only re-weighting the noisy edges and obtain
better performance. Both the re-weighting schemes in (6) and
(7) improve the performance, and a higher performance can be
achieved with the combination of them. In addition, we have
tested another construction method of the adjacency matrix
[20], which utilizes the ontology rather than the statistical
relations. Our proposed method achieves better performance,
which shows that the label dependencies are more important
in the large-scale multi-label dataset (i.e. Audioset).

In addition, we vary the values of the hyperparameters 7 in
(6) and p in (7) to analyze the effects, and show the results
in Fig. 3. As the values of 7 and p increase, the accuracy
is boosted and then drops, which achieves the peek accuracy
when 7 = 0.3 and p = 0.2. 7 is the threshold to filter the

(b) t—SNE on the last node representations learned by AT-GCN

Fig. 4. Visualization of the last node representations learned by AT-GCN and
the learned weights of the last fully-connected layer of CNN10 on Audioset.
Note that Audioset [21] contains 527 classes (527 dots in the figure) with
7 general categories (the same color dots in the figure). Here, 9 classes are
marked as examples.

edges, and the small values of 7 mean the edges of small
probabilities (i.e. noisy edges) are filtered. However, when
too many edges are filtered, the correlated neighbors will be
ignored as well which decreases the accuracy. p determines the
balance between a node itself and its neighbors when updating
the node features. If p is too small, the nodes of the graph
cannot get sufficient information from correlated nodes. On
the other hand, it will lead to over-smoothing if p is too large.
Furthermore, the t-SNE [36] is adopted to visualize the
last node representations (i.e. H (L) in (3)) learned by our
proposed AT-GCN as well as the weights of the last fully-
connected layer of CNN10, with the results shown in Fig. 4.
It can be observed that CNN10 can learn some meaningful
relationships among the labels, such as the cluster pattern of
the general category music. However, the other cluster patterns
are not clear and the semantic related labels (e.g. sobbing and
babycry) are not close in the label space. In contrast, AT-GCN
shows less divergence in the label space and exhibits more
clear cluster patterns. Specifically, the semantic related labels
(such as piano and keyboard, sobbing and babycry) tend to be
much closer in the label space than CNN10, which shows the
effectiveness of modeling the label dependencies.

V. CONCLUSION

In this paper, a novel audio-tagging method (AT-GCN) has
been proposed where the implicit dependencies between the
labels are modeled by a graph convolutional network. Our
proposed method achieves the state-of-art performance on the
Audioset.
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