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ABSTRACT

Hand-crafted spatial features (e.g., inter-channel phase dif-
ference, IPD) play a fundamental role in recent deep learning
based multi-channel speech separation (MCSS) methods.
However, these manually designed spatial features are hard
to incorporate into the end-to-end optimized MCSS frame-
work. In this work, we propose an integrated architecture
for learning spatial features directly from the multi-channel
speech waveforms within an end-to-end speech separation
framework. In this architecture, time-domain filters span-
ning signal channels are trained to perform adaptive spatial
filtering. These filters are implemented by a 2d convolution
(conv2d) layer and their parameters are optimized using a
speech separation objective function in a purely data-driven
fashion. Furthermore, inspired by the IPD formulation, we
design a conv2d kernel to compute the inter-channel convo-
lution differences (ICDs), which are expected to provide the
spatial cues that help to distinguish the directional sources.
Evaluation results on simulated multi-channel reverberant
WSJO 2-mix dataset demonstrate that our proposed ICD
based MCSS model improves the overall signal-to-distortion
ratio by 10.4% over the IPD based MCSS model.

Index Terms— multi-channel speech separation, spatial
features, end-to-end, inter-channel convolution differences

1. INTRODUCTION

Speech separation refers to recovering the voice of each
speaker from overlapped speech mixture. It is also known as
cocktail party problem [1], which has been studied in signal
processing literature for decades. Leveraging the power of
deep learning, many methods have been proposed for multi-
channel speech separation (MCSS), including time-frequency
(T-F) masking [2-5], integration of T-F masking and beam-
forming [6, 7], and end-to-end approaches [8]. T-F masking
based methods formulate speech separation as a supervised
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learning task in frequency domain. The network learns to
estimate a T-F mask for each speaker based on the magni-
tude spectrogram and interaural differences calculated from
the complex spectrograms of observed multi-channel mixture
signals, such as the phase difference between two microphone
channels, which is known as the interaural phase difference
(IPD).

However, one limitation for T-F masking based meth-
ods is the phase reconstruction problem. To avoid the
complex phase estimation, time-domain speech separation
has attracted increasing focus recently. A single-channel
time-domain state-of-the-art approach, referred as SC-Conv-
TasNet [9], replaces the short time Fourier transform (STFT)-
inverse STFT with an encoder-decoder structure. Under the
supervision from clean waveforms of speakers, SC-Conv-
TasNet’s encoder learns to construct an audio representation
that optimized for speech separation. However, the per-
formance of SC-Conv-TasNet is still limited under far-field
scenario due to the smearing effects brought by reverbera-
tion. To tackle with this problem, in [8], we proposed a new
MCSS solution, in which hand-crafted IPD features are used
to provide spatial characteristic difference information be-
tween directional sources. With the aid of additional spatial
cues, improved performances have been observed. However,
the IPDs are computed in frequency domain with fixed com-
plex filters (i.e., STFT) while the encoder output is learned in
the data-driven manner. This causes a data mismatch, which
indicates that IPDs may not be the optimal spatial features to
incorporate into the end-to-end MCSS framework.

Bearing above discussions in mind, this work aims to
design an end-to-end MCSS model, which are endowed with
the capability to learn effective spatial cues using a speech
separation objective function in a purely data-driven fashion.
As illustrated in Figure 1, inspired by the success of SC-
Conv-TasNet and [8], the main body of our proposed MCSS
model adopts an encoder-decoder structure. In this design, the
time-domain filters spanning all signal channels are trained
to perform spatial filtering for multi-channel setting. These
filters are implemented by a 2d convolution (conv2d) layer
to extract the spatial features. Furthermore, inspired by the
formulation of IPD, a novel conv2d kernel is designed to

ICASSP 2020

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on November 03,2020 at 03:07:32 UTC from IEEE Xplore. Restrictions apply.



mixture ch1 encode

Separated
."‘_.| encoder 3 separator decoder speech
: (st N e iPDs |8
| e o1 STET  o-="
i -UM:*' : MCs
L. conv2d iens

Multi-channel
Speech mixture

Fig. 1. The diagram of our proposed end-to-end multi-
channel speech separation system.

compute the inter-channel convolution differences (ICDs). It
is noted that ICDs are learned in data-driven manner and are
expected to provide the spatial cues that help to distinguish
the directional sources without bringing any data mismatch
issue compared with the hand-crafted spatial features. In the
end, an end-to-end MCSS model is trained with the scale
invariant signal-to-distortion ratio (SI-SDR) loss function.
Performance evaluation is conducted on a simulated spatial-
ized WSJO 2-mix dataset. Experimental results demonstrate
that our proposed ICDs based MCSS model outperforms IPD
based MCSS model by 10.4% in terms of SI-SDRi.

The rest of the paper is organized as follows. Section 2
introduces our proposed architecture in detail. Experimental
procedure and result analysis is presented in Section 3. Sec-
tion 4 concludes the paper.

2. PROPOSED ARCHITECTURE

2.1. Multi-channel speech separation

The baseline MCSS separation system [8] adopts an encoder-
decoder structure, where the data-driven encoder and decoder
respectively replaces the STFT and iSTFT operation in exist-
ing speech separation pipelines, as shown in Figure 1. Firstly,
the encoder transforms each frame of first (reference) chan-
nel’s mixture waveform y; to the mixture encode in a real-
valued feature space. Specifically, the learned encoder con-
sists of a set of basis functions, as illustrated in Figure 2 (a).
Most learned filters are tuned to lower frequencies, which
shares the similar property with mel filter banks [10] and fre-
quency distribution of human auditory system [11]. Secondly,
IPDs computed by STFT and the mixture encode are concate-
nated along the feature dimension and fed into the separation
module. The separation module learns to estimate a mask
in encoder output domain for each speaker, which shares the
similar concept with T-F masking based methods. Finally,
the decoder reconstructs the separated speech waveform from
the masked mixture encode for each speaker. To optimize the
network end-to-end, scale-invariant signal-to-distortion ratio
(SI-SDR) [12] is utilized as the training objective:
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Fig. 2. (a) Visualization of encoder learned from far-field
data. The top figure plots encoder’s basis functions and the
bottom is the corresponding FFT magnitudes. These basis
functions are sorted by the frequency bin containing the peak
response. (b) FFT magnitudes of STFT kernel functions.

respectively. The zero-mean normalization is applied to z and
Z to guarantee the scale invariance.

However, the combination of IPD and encoder output may
cause a data mismatch. Different from the encoder which is
learned in a data-driven way, the IPD is calculated with com-
plex fixed filters (i.e., STFT), the center frequencies of which
are evenly distributed, as illustrated in Figure 1 (b). Also,
as [9] points out, STFT is a generic transformation for sig-
nal analysis that may not be necessarily optimal for speech
separation.

2.2, Spatial feature learning

To perform the spatial feature learning jointly with the rest of
the network, we propose to learn spatial features directly from
multi-channel waveforms with an integrated architecture. The
main idea is to learn time-domain filters spanning all signal
channels to perform adaptive spatial filtering [13—15]. These
filters parameters are jointly optimized with the encoder using
Eq. 1 in a purely data-driven fashion.

Denote these filters as K = {k(™} € RE*L*N where
k™ = [.., k,@”), ...] € RE*L is a set of filters spanning C
signal channels with window size of L. Then, the multi-
channel features are computed by summing up the convo-
Iution products between the c-th channel mixture signal y,.

and filter kﬁ”) along signal channel ¢, named as multi-channel
convolution sum (MCS):

c
MCS™ =) ye @ k(" 2
c=1
where ® denotes the convolution operation. The design prin-
ciple lies in Eq. 2 is similar to that of delay-and-sum beam-
former, where signal arriving at each microphone are summed
up with certain time delays to emphasize sound from a partic-
ular direction. Each set of filters k(") is expected to steer at
a different direction, therefore different spatial views of the
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Fig. 4. Conceptual illustration of our designed conv2d kernel
and generation of ICDs. To facinate training, w; is fixed as 1
while w, € R'*L is a learnable parameter initialized as -1.

multi-channel mixture signals can be obtained by MCS and
therefore enhancing the separation accuracy.

To implement these learnable filters within the network,
we employ a 2d convolution (conv2d) layer. The generation
of MCS with conv2d is illustrated in Figure 3. The kernel
size is C' x L (heightxwidth) and there are N convolution
channels in total. The conv2d layer’s stride along width axis
represents the hop size and is fixed as L/2 in our experiments.

Furthermore, inspired by the formulation of interaural dif-
ferences (e.g., IPDs), we design a special conv2d kernel to
extract inter-channel convolution differences (ICDs). As we
know, IPD is a well-established frequency domain feature
widely used for spatial clustering algorithms and recent deep
learning based MCSS methods. The rationale lies in that, the
IPDs of T-F bins that dominated by the same source will nat-
urally form a cluster within each frequency band, since their
time delays are approximately the same. The standard IPD is
computed by the phase difference between channels of com-
plex spectrogram as IPD,, = £Y,,;, — £Y,,, where Y is
the mutli-channel complex spectrogram computed by STFT
of multi-channel waveform y, m; and ms represent two mi-
crophones’ indexes of the m-th microphone pair.

Following this concept, the n-th ICD between the m-th
pair of signal channels can be computed by:

2
1D =S " w - (y ® lc’(”)) 3)
c=1

where k/(") € R'*L is a filter shared among all signal chan-
nels to ensure identical mapping, w. € R'™% is a window
function designed to smooth the ICD and prevent potential
spectrum leakage. When w; is fixed as full ones and wo as
full negative ones, Eq. 3 calculates the exact inter-channel
difference between the m-th microphone pair.

Figure 4 illustrates our designed conv2d kernel and gen-
eration of different pairs of ICDs. The conv2d kernel height
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Fig. 5. Visualization of learned filters K’. Each column rep-
resents a filter, and the right plot is its corresponding FFT
magnitude response. These filters are sorted by the frequency
bin containing the peak response.

is set as 2 to span a microphone pair. Note that different con-
figurations of dilation d and stride s on the kernel height axis
can extract ICDs from different pairs of signal channels, i.e.,
my =14+ (m —1)s,my =2+ d+ (m — 1)s. For example,
for a 6-channel signal, setting dilation as 3 and stride as 1, we
can obtain the three pairs of channels: (1, 4), (2, 5) and (3, 6).
To shed light on the property of learned filters K/ =
{k'™}, we visualize these filters in Figure 5. It can be ob-
served that these learned filters show similar frequency tuning
characteristics with the encoder (Figure 2 (a)). This suggests
that the learned ICD may be more coincident with the encoder
output and enables more efficient feature incorporation.

3. EXPERIMENTS AND RESULT ANALYSIS

3.1. Dataset

We simulated a spatialized reverberant dataset derived from
Wall Street Journal 0 (WSJO) 2-mix corpus, which are open
and well-studied datasets used for speech separation [9, 16—
18]. There are 20,000, 5,000 and 3,000 multi-channel, rever-
berant, two-speaker mixed speech in training, development
and test set respectively. All the data is sampling at 16kHz.
The performance evaluation is all done on test set, the speak-
ers in which are all unseen during training. In this study,
we take a 6-microphone circular array of 7cm diameter with
speakers and the microphone array randomly located in the
room. The two speakers and the microphone array are on the
same plane and all of them are at least 0.3m away from the
wall. The image method [19] is employed to simulate RIRs
randomly from 3000 different room configurations with the
size (length-width-height) ranging from 3m-3m-2.5m to 8m-
10m-6m. The reverberation time T60 is sampled in a range
of 0.05s to 0.5s. Samples with angle difference between two
simultaneous speakers of 0-15°, 15-45°, 45-90° and 90-180°
respectively account for 16%, 29%, 26% and 29%.

3.2. Network and Training details

All hyper-parameters are the same with the best setup of
Conv-TasNet version 2 in [20], except L is set to 40 and
encoder stride is 20. Batch normalization (BN) is used in all
the experiments to speed up the separation process.

The microphone pairs for extracting IPDs and ICDs are
(1,4),(2,5),(3,6),(1,2),(3,4) and (5, 6) in all experiments.
These pairs are selected because the distance of microphones
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Table 1. SDRi (dB) and SI-SDRi (dB) performances with different configurations of conv2d layer on far-field WSJO 2-mix.

. SI-SDRi (dB) .
Setup window w # filters N <15°  15°-45°  45°-00° >90° | Ave. SDRi (dB)
Single-channel Conv-TasNet - - 8.5 9.0 9.1 9.3 9.1 94
+MCS (conv2d (6x40)) - 256 5.7 10.3 11.9 129 | 10.8 11.2
+ICD (conv2d (2x40)) fix -1 256 5.5 10.9 12.3 129 | 11.0 114
+ICD (conv2d (2x40)) init. -1 256 6.2 11.2 12.6 132 | 114 11.8
+ICD (conv2d (2x40)) init. randomly 33 8.2 8.1 9.0 9.1 8.9 9.2
+ICD (conv2d (2x40)) fix -1 33 6.9 11.1 12.3 129 | 11.3 11.7
+ICD (conv2d (2x40)) init. -1 33 6.7 11.7 13.1 139 | 11.9 12.3

in between each pair is either the furthest or nearest. In this
case, there are two setups of dilation d and stride s for the
conv2d layer, respectively d = 1,s = 2and d = 3,s = 1.
The first channel of mixture waveform is set as the reference
channel as the encoder input. To match the encoder output’s
time steps, both IPDs and ICDs are extracted with 2.5ms (40-
point) window length L and 1.25ms (20-point) hop size with
64 FFT points. SI-SDR (Eq. 1) is utilized as training objec-
tive. The training uses chunks with 4.0 seconds duration. The
batch size is set to 32. Permutation invariant training [17] is
adopted to tackle with label permutation problem.

3.3. Result Analysis

Following the common speech separation metrics [12,21], we
adopt average SI-SDR and SDR improvement over mixture as
the evaluation metrics. We also report the performances under
different ranges of angle difference between speakers to give
a more comprehensive assessment for the model.
Different configurations for conv2d layer. We explore dif-
ferent conv2d configurations for computing the ICD, includ-
ing different numbers of filters and initialization methods of
window function w (ws in section 2.2). The number of fil-
ters are chosen to be 256 and 33, where 256 matches the
basis function number of encoder, 33 is the number of bins
for 64-point FFT size, which is the closest exponential of 2
for 40-point frame length. The results are listed in Table 1.
SC-Conv-TasNet is served as the baseline system, achieving
9.1dB of SI-SDRI on the far-field dataset. By learning spa-
tial filters, the MCS based model outperforms the baseline by
1.7dB of SI-SDRi. For ICD setups, we found that the per-
formances with 33 filters are relatively superior to those with
256 filters. One possible reason is that, according to sampling
theorem, the highest frequency resolution can achieve with
sampling rate of 16kHz and frame length of 40 is limited.
Furthermore, the value of w contributes significantly to
the separation performance (9.2dB v.s. 12.3dB for model with
33 filters). If w is randomly initialized, or in other words,
there is no explicit subtraction operation between signal chan-
nels, the model will not be able to automatically learn useful
spatial cues. If w is initialized and fixed as -1 (fix -1), this
indicates that the exact convolution difference operation be-
tween signal channels is computed as the ICD. Furthermore,
relaxing w to be learnable (init. -1) produces a much better

Table 2. SDRi (dB) and SI-SDRi (dB) performances of IPD,
ICD-based separation systems on far-field WSJO 2-mix.

SI-SDRi (dB)
Features <15° >15°| Ave.
cosIPD, sinIPD 77 122 | 11.5
cosIPD, sinIPD (trainable kernel) [8] | 7.9 123 | 11.6
ICD 6.7 129 | 11.9
ICD, cosIPD, sinIPD 8.1 132 | 124

result, which demonstrates the validity of ICD’s formulation.
IPD versus ICD. We examine the performance of IPD versus
proposed ICD for MCSS and report the results in Table 2. In
addition, the performance of IPD with trainable kernel based
MCSS model [8] is listed for comparison. Specifically, in [8],
the standard STFT operation is reformulated as a function
of time domain convolution with a trainable kernel, which
is optimized for the speech separation task. Combining the
cosIPD and sinIPD we can obtain SI-SDRi of 11.5dB, which
has 2.4dB gain over the single-channel baseline. It suggests
IPDs can provide beneficial spatial information of sources.
With the trainable kernel, the performance improves slightly.
The proposed ICD based separation model obtains 0.4dB im-
provement over cosIPD+sinIPD based, benefiting from the
data-driven learning fashion. Note that the performance under
15° for ICD based model is worse than that of IPD based. One
possible reason is that the portion of data under 15° is rela-
tively few hence causing difficulty in learning effective ICDs.
The incorporation of ICDs and IPDs achieves further 0.5dB
improvement. In this case, we found that almost all filters
are tuned to relatively low frequency. This indicates that the
ICDs learn complementary spatial information to compensate
the IPD ambiguity in low frequencies.

4. CONCLUSION

This work proposes an end-to-end multi-channel speech sep-
aration model, which is able to learn effective spatial cues
directly from the multi-channel speech waveforms in a purely
data-driven fashion. Experimental results demonstrated the
MCSS model based on learned ICDs outperforms that based
on well established IPDs.
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