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ABSTRACT 

In recent years, single image dehazing methods based on 
Atmospheric Scattering Model (ASM) have achieved state-of-the-
art results. But the dehazing outputs of those methods suffer from 
color shift and blocking effect. Our preliminary experiments show 
that the negative bias of the estimated transmission and the bias of 
tiny transmission value will cause serious color shift. Therefore,  in 
this study, a new loss function (TransLoss) and a new natural 
activation function (NAF) are proposed to restrain negative bias of 
transmission and avoid tiny transmission value from being activated, 
respectively. Moreover, it is noted that the block effect is caused by 
patch-level transmission estimation mechanism in existing dehazing 
models. To address this issue, a new pixel-level transmission 
estimation module (ETM) is dedicated designed to avoid blocking 
effect. In the end, an end-to-end CNN dehazing network avoiding 
color shift and blocking effect is developed, termed as ABC-Net. 
Experimental results indicate that the ABC-Net outperforms four 
comparison methods on both synthetic and real-world images.  

Index Terms— Single image dehazing, atmospheric 
scattering model, color shift avoiding, blocking effect avoiding 

1. INTRODUCTION 
Most single image dehazing methods establish their model by using 
atmospheric scattering model (ASM) [1] and estimate the 
parameters of ASM. Transmission is the decisive parameter of ASM, 
but obtaining it from a single image is an ill-posed problem. 
Mainstream dehazing methods tend to find prior information or 
build a deep model to estimate the transmission which could give 
promising dehazing results. However, the color shift and blocking 
effect usually can be observed, especially for the serious hazy 
images (see Fig. 1). 

As it is hard to find a prior information that can be suitable all 
the time, and biases of the estimated parameters solved by deep 
model are inevitable, so avoiding dehazing distortion is still 
challenging. In this paper, we explore the correlations between the 
bias of ASM parameters and the bias of dehazing outputs, and utilize 
them to restrain dehazing distortion. 

We analyze ASM formula and get some interesting discoveries 
(details are elaborated in section 3.1): 1) Bias of transmission value 
cause more severe deviation of dehazing output than bias of 
atmospheric scattering light; 2) Compared with positive bias of 
transmission, negative bias causes severer deviation of dehazing 
outputs; 3) In heavy hazy image patch, the transmission value is 
close to 0. In that case, the bias of transmission has a greater impact 
on dehazing result and causes color shift more easily. 4) Methods [2, 
17] assign a uniform transmission value to one local image patch, 
which tend to result in blocking effect. While methods without using 
this strategy could avoid blocking effect, such as [3,4] (see Fig 5). 

 
Fig. 1. The dehazing results with different methods. Our method can 
get clean results without color shift and blocking effect. 
 

Based on the above discoveries, we propose an end-to-end single 
image dehazing network to address color shift and blocking effect. 
The network focuses on restricting the negative bias of transmission 
and the bias of tiny transmission values as well as using pixel-level 
transmission value assignment approach. Experiments show that our 
method is capable of restraining color shift and avoiding blocking 
effect. The major contributions of our work are: 
1). We find out the cause of color shift by analyzing the correlation 
between the bias of ASM parameters and dehazing outputs. 
Simultaneously, we ascertain  the cause of blocking effect by testing 
different dehazing methods. 
2). To avoid color shift, we propose a new loss function, termed as 
TransLoss, to restrain negative bias of transmission. Concurrently, 
we design a new activation function, termed as Natural Activation 
Function (NAF), to restrain tiny transmission value from being 
activated. 
3). To avoid blocking effect, we propose a new pixel-level 
estimation transmission module (ETM). 
4). We design an end-to-end CNN-based dehazing network, termed 
as ABC-Net, which applies TransLoss, NAF and ETM. The 
experimental results on both synthetic and real-world hazy databases 
provide strong support for the effectiveness of our proposed method. 

2. BACKGROUND AND RELATED WORK 

Atmospheric scattering model (ASM) [1] is suitable for image 
dehazing, and a common form of it is showed in equations below: ���� � �������� 	 
� � ����
 � � 

���� � ������� � � 
where I(x) is the hazy image. J(x) is the haze-free image. �  is a 
coefficient value which represent the degree of haze. d(x) denotes 
the distance from object to camera. t(x) is transmission map. For 
brief expression, we will use I, J, t instead of I(x), J(x), t(x) in the 
rest of this paper. A is global atmospheric light factor and it can be 
considered as a constant among the whole image. A lot of dehazing 
methods strive to estimate A and t. If they are obtained, the clean 
image J can be calculated by equation (3): 

� � � � 
� 	 
 � � 
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Fig. 2. (a) The correlation of the bias of estimated global 

atmospheric light �A, the bias of estimated transmission �� and the 

bias of dehazing output �� . (b) The correlation of the true 
transmission ���, the bias of estimated transmission �� and the bias 

of dehazing output ��. 
 

Single image dehazing methods are popular recently. These 
methods can be categorized as: image prior-based methods and deep 
learning-based methods. 

Image prior-based methods try to find prior information that can 
be definitive in improving visibility of hazy images. DCP [2] (2009) 
estimates the transmission map t based on dark channel prior and get 
haze-free image by equation (3). Berman [5] (2016) solves the 
dehazing problem by a non-local prior named as haze-line.  

Deep learning-based methods try to estimate parameters of ASM 
by neural networks. DehazeNet [3] (2016) use CNN [14] to obtain 
multi-scale features and output transmission. AOD-Net [4] (2017) 
and IASM-Net [6] (2018) are end-to-end neural networks based on 
re-formulated ASM which can output haze-free image directly. 

However, both deep learning-based methods and image prior-
based methods cannot avoid bias in estimating ASM parameters, and 
these uncertain biases will cause color shift and blocking effect. 

3. PROPOSED METHOD 
3.1. Analysis of the causes of color shift & blocking effect 
Color shift and blocking effect reflect the distortion of dehazing 
result. In order to analyze the correlation between bias of dehazing 
output and bias of ASM parameters, we denote that: 
��� � 
�� 	 �
 � � ���� � ��� 	 �� � � ���� � ��� 	 �� � � 
where 
�� , ��� , ���  denote true atmospheric scattering light, true 

transmission, ground truth haze-free image, respectively. 
���, ����, ���� are the corresponding estimated values. �
, ��, �� are the bias 
of each parameter. From equation (3)(4)(5)(6) we can obtain: 

� � ���� � ��� � �
������� 	 �� � 
 	 ���
�� � �

������� 	 ��
 � � 

To better understand equation (7), we assign �� � 
�� � , 
��� � , � �  to plot the correlation figure of �
 , �� and �� 
(see Fig. 2 (a)). Similarly, we assign  �
 �  
�� � , � � , 

to plot the correlation figure of ���, �� and �� (see Fig. 2 (b)). 

Color shift issue. It is caused by the bias of dehazing output. 
From equation (7) and Fig. 2 (a) and (b), we can find out that: 1) 
Compared with the bias of atmospheric scattering light �
, the bias 

of transmission �� cause more severe distortion of dehazing output; 
2) Compared with positive bias of transmission, negative bias causes 
severer distortion of dehazing output; 3) When transmission has tiny 
value (heavy hazy condition), the bias of transmission will have a 
great impact on dehazing output.  

Blocking effect issue. We discover that the results of methods 
like [2,3], that have patch-level processing mechanism are more 
likely to have blocking effect. Patch-level processing mechanism 
means assigning a uniform transmission value to an image patch. 

Methods like AOD-Net [4] can avoid blocking effect with another 
processing mechanism that assign an estimated transmission to each 
pixel (see Fig. 5). What's more, blocking effect of dehazing outputs 
is more obvious in heavy hazy condition (see Fig. 5 (b)). Based on 
these observations, we conclude that the blocking effect is mainly 
caused by the patch-level transmission processing mechanism. And 
the bias of transmission will make the blocking effect more obvious. 

Hence, to avoid color shift and blocking effect, we can restrain 
the bias of transmission and use a pixel-level transmission 
processing mechanism. 

3.2. TransLoss 
Some methods use MSE loss function to learn transmission map, 
such as DehazeNet [3], which only consider bias between ��� and 

����. But transmission is only an intermediate variable, the ultimate 

goal is to make dehazed image ���� consistent with the ground truth 

haze-free image ���. So, we mainly consider the bias of dehazing 

output in our transmission training loss function, termed as 

TransLoss. Based on this idea, we denote ����� � � �, where ����� 
is the loss function of training estimating transmission module. From 
equation (3)(6), we can get: 

����� � � � � ���� � ��� � �� � 
� ����� � ���� � � 
Because �� � 
� is irrelevant to transmission � as well as always 

positive, we omit it and get a simplified loss function: 

���������� ���� �  ! "������� � ������"
#

�$%
� � 

where � is pixel index,   represents image size, the absolute value 
is taken to ensure TransLoss has a minimum value. For better 
understanding, we plot this loss function in Fig. 4 (a). We can find 
out from equation (9) and Fig. 4 (a) that TransLoss reaches down to 
the minimum when the value of ���� is equal to the value of ���. At 

the same time, in order to restrain negative bias, TransLoss can give 
a greater penalty to the negative bias than the positive one. 

3.3. Natural activation function (NAF) 
Existing activation functions are not perfectly suitable for estimating 
transmission. As transmission value is in the range of [0, 1], but 
ReLU [7] tend to output values bigger than 1. Sigmoid can confine 
the output range to [0,1], but it gives a negative estimated value a 
positive output, which make it unsuitable, too. BReLU [8] can also 
confine the output range to [0,1]. But it saturates too fast and kills 
the gradients. The appropriate activation function should have such 
features: 1) Its output range should be [0,1]. 2) It should limit 
negative and tiny positive value to be activated to avoid destructive 
dehazing output bias in heavy hazy condition; 3) It should maintain 
a reasonable activation range and gradient to facilitate training. 
Inspired by a natural activation function model, the Leaky Integrate-
and-Fire (or LIF) [9], we design a similar activation function. Refer 

to equation (2), we choose ��&  as an appropriate threshold to 
achieve a balance between dehazing ability and restraining 

transmission bias ability. Values less than ��& will be assigned as ��&. It won't impair the dehazing ability within 30 meters depth in 

light hazy condition (� � ), while 6 meters depth in heavy hazy 

condition (� � ). Hence, we design a novel activation function 
and name it as Natural Activation Function (NAF). 

 
'��� � (��&)�
*+

� � , ��&
��& � - ��& � � 

We plot NAF in Fig. 4 (b). The NAF have all the three features 
we list above and make dehazing output more natural by restraining  
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Fig. 3. The network architecture of our ABC-Net. 

 
the bias of transmission. 

3.4. Estimating Transmission Module (ETM) 
In DCP [2], the transmission map is obtained by: 

� � �./01 2./03 2�
44 � � 
where 5 denote the color channels and 6 denote the local patch of 

hazy image �. Multi-scale feature has been proven to be effective for 
dehazing in [10]. This technique is also used in DehazeNet [3] and 
shows good performance. Following those work, we use a min 
pooling layer to get dark channel feature, and then use two 
convolutional layers to convert the feature into transmission. Multi-
scale mechanism is exploited in both pooling layer and 
convolutional layers. The ETM does not use downsampling, so it 
can estimate a transmission value for each pixel in the input image. 
To avoid the bias of transmission estimate, we use NAF as the 
activation function of ETM. The ETM works as follows:  

'%7 � 1 8 9 ���: ;<�=� 0 > ? @ � � 
'%A � 5�05B�C'%% '%D '%& '%E '%FG � � 

'D7 � HD7'%A 	 ID7 ;<�=� 0 > ? @ � � 'DA � 5�05B�?'D% 'DD 'D& 'DE@ � � '&% � H&%'DF 	 I&% � � '&D �  
'�'&%� � � 
where 67denote different patch size, which is one of ? ) )) ) ) @ . And 5�05B�  means concatenating the 
inputs. 

3.5. ABC-Net 
Following AOD-Net [4] and IASM-Net [6], we design an end-to-
end dehazing network using ASM. For avoiding color shift, we 
apply TransLoss and NAF to our dehazing network. For avoiding 
blocking effect, we use pixel-level transmission processing 
mechanism. We name our network as ABC-Net as it has ability to 
Avoiding Blocking effect & Color shift. The network architecture of 
ABC-Net is shown on Fig. 3. This network has three modules: 1) 
estimating transmission module (ETM); 2) estimating atmospheric 
scattering light module (EAM); 3) estimating haze-free image 
module (EHIM). The detail of ABC-Net is described in below.  

Estimate transmission map details are described in section 3.4. 
Estimate atmospheric scattering light: In equation (3), the 

global atmospheric light 
 usually can be considered as a constant 
due to its homogeneousness. So, we use a max pooling layer to get 
the maximum value from each channel of the input hazy image. The 
EAM works as follows: 
1 � .B���1� ;<�=� 5 > ?= J K@ � � 
 � 5�05B� �
L 
� 
M� � � 

Estimate haze-free image: After obtaining transmission � and 

global atmosphere light 
, the equation (3) is employed to figure out 

the haze-free image �. In order to refine the output and remove noise, 

we process �  with a convolutional layer followed by a BReLU 
activation function. The EHIM works as follows: 

'E% � � � 
'&D 	 � � 

'ED � HE%'E% 	 IE% � � 'E& � �'ED� � � 
Our proposed ABC-Net is delicately designed for dehazing with 

restraining bias and avoiding color shift and blocking effect. 

4. EVALUATIONS 
4.1. Datasets and training details 
Adequate training data is essential for CNN-based methods, but 
since it is very difficult to collect both clean and hazy images of a 
same scene, real world dehazing databases are very scarce. Lots of 
methods, such as DehazeNet [3], AOD-Net [4], use ASM [1] to 
synthesize dehazing dataset. By convention, we use NYU-Depth-v2 
[11] to synthesize our dataset. NYU-Depth-v2 provide 1449 clean 
images and theirs corresponding depth information. Referring to 
equation (1)(2) and setting � �  (light hazy condition), we use 
1000 images and the rest 449 images to create training and testing 
set, respectively. In order to verify the robustness and generalization 
of our method, we use the rest 449 images to make another testing 
set by giving � �  (heavy hazy condition). 

In training session, we use TransLoss to train the estimating 
transmission module (ETM), under the supervision of ground truth 
transmission maps. Then, we use MSE loss to training the whole 
ABC-Net, under the supervision of ground truth haze-free images. 
The former is introduced in equation (9) and the latter can be found 
in equation (23). With the help of stochastic gradient descent 
algorithm, we take 100 iterations to train ETM, and take another 100 
iterations to train the whole network, then repeat the cycle until both 
ETM and ABC-Net converge. While in testing session, hazy images 
are input into the model and clean images are used for evaluation. 

����N����� ���� �  !�������� � �������
D#

�$%
� � 

4.2. Evaluation of restraining bias capability of ABC-Net 
In order to evaluate the restraining capability of ABC-Net to 
negative bias of transmission, we collect the output transmission of 

ETM of all the 449 testing samples with � � . Comparing with 
their ground truth transmission image, we calculate the bias of each 
pixel on each sample pair to get an average bias. The average bias 
of 449 testing samples is a tiny value, 0.0586. And all values of the 
biases are small and within O� P. At the same time, most 
of them (335 of 449, 74.6%) have positive bias of transmission. It 
shows that our ABC-Net can restrain negative bias of transmission 
effectively. 

In order to test the restraining capability of ABC-Net for tiny 

transmission value, we also use the above testing set with � �  
to evaluate. Among 449 testing samples, none of them have 

transmission value lower than ��&. It shows that our ABC-Net can 
restrain tiny transmission value effectively. 

4.3. Evaluations on synthetic hazy image dataset 
We evaluate ABC-Net on two different synthetic hazy datasets, 

which are obtained by setting � �  and 0.75, respectively. Note 
that we only train our model on � �  training dataset. Dataset 

with � �  is created only for verifying the robustness and 
generalization of ABC-Net. Another four high-performance 
methods [2-5] are reimplemented for comparing. The comparing 
results are shown in Fig. 5 and Table 1. 

With � �  (see Fig. 5 (a)), the results of image prior-based 
methods suffer from color shift in heavy hazy area or white image 
patches, and two deep learning-based methods, DehazeNet [3], 
AOD-Net [4] avoid color shift but produce poor-effect dehazing 

����
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(a) (b) 

Fig. 4. (a) The plot of our proposed loss function, TransLoss. The 
loss reaches down to the minimum when the estimated transmission 
value ����  equal to ��� . (b) The plot of our proposed activation 

function, Natural Activation Function (NAF). 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. (a) Evaluation on synthetic hazy dataset with � � . 
Results demonstrate that our method can get clean dehazing results 
with avoiding color shift and blocking effects. While others get 
unclean dehazing results, or suffer from blocking effect and color 

shift. (b) Evaluation on synthetic hazy dataset with � � . (c) 
Evaluation on real-world hazy dataset.  
 
outputs. If zoom in for details, it can be found that all the comparing 
methods have blocking effect in various degrees, while the results 
of our ABC-Net are haze-free as well as avoiding color shift and 
blocking effect. It shows our method has the most outstanding 
performance in enhancing visibility of all the compared methods. 

Evaluating on datasets with � �  (heavy hazy condition), it 
shows all comparing methods' dehazing results and ours in Fig. 5 (b). 

The comparing methods either retain heavy haze in output image, 
or contain obvious color shift. And none of them avoid blocking 
effect (zoom in if interest in details). However, our ABC-Net still 
performs well, maintaining a fine dehazing capability as well as 
avoiding color shift and blocking effect, even though it is only 

trained under light hazy condition (� � ) but tested in heavy 
hazy condition. It shows our ABC-Net not only performs the best at 
balancing between maintaining dehazing capacity and restraining 
severe bias, but also has great robustness and generalization. 

Although our work focuses on improving visibility, it also does 
well in quantitative comparisons. Peak Signal to Noise Ratio (PSNR)  

Table 1. Quantitative comparisons for different methods. Our 
method ranks all first of those 3 indexes on the whole 3 datasets 

 

Database Index DCP Berman 
Dehaze

Net 
AOD-

Net 
Ours 

Synthetic Q �  

PSNR 17.32 16.57 14.65 12.77 17.78 
SSIM 0.785 0.763 0.749 0.688 0.785 

CIEDE
2000 

10.886 13.066 14.205 18.491 9.605 

Synthetic Q �  

PSNR 13.52 10.30 7.84 8.53 13.90 
SSIM 0.654 0.613 0.546 0.539 0.660 

CIEDE
2000 

16.560 24.665 32.386 30.260 16.461 

Real-world 
O-Haze 

PSNR 16.59 16.61 16.21 17.13 19.02 
SSIM 0.735 0.750 0.666 0.664 0.752 

CIEDE
2000 

20.745 17.088 17.348 15.774 10.144 

 
[15] and Structural Similarity Index Measure (SSIM) [16] are 
commonly used in evaluating dehazing results. CIEDE2000 [12] 
measures accurately the color difference between two images and 
generates values in the range O P, with smaller values indicating 
better color shift avoiding ability, which can evaluate the level of 
color restoration. We calculate PSNR, SSIM, CIEDE2000 of all 
comparing methods and our method and provide the result in Table 
1. Our ABC-Net ranks all first in PSNR, SSIM and CIEDE2000 on 

datasets with � �  and , even it is only trained on dataset 

with � � . It implies that our bias restrain strategy is successful. 

4.4. Evaluations on real-world hazy image dataset 
We evaluate our method and four comparing methods on real-world 
hazy image dataset O-Haze [13]. It has 45 images, we choose 40 of 
them to train our model from scratch and 5 images are used as testing 
samples. We present some of the results in Fig. 5 (c). In addition, to 
compare with more deep learning-based method, we retrain AOD-
Net [4] and show results in Fig. 5 (c), too. 

In Fig. 5 (c), we can see that our results not only are the closest 
to the ground truth, but also performs best in avoiding color shift and 
blocking effect. After dehazing, the results of the compared methods 
are blue, while ours restore the color. What’s more, in Table 1, our 
method performs the best in PSNR, SSIM and CIEDE2000 on O-
Haze dataset. Therefore, the qualitative and quantitative results 
show that our method leads to a superior performance in real world 
hazy condition. 

5. CONCLUSIONS 
In this paper, we analyze the causes of color shift and blocking effect 
of image dehazing algorithms, and find that positive and negative 
bias of transmission have different effects on dehazing results. 
Based on these discoveries, we propose a new TransLoss, a new 
natural activation function (NAF) and a new transmission estimating 
module (ETM), respectively. We further incorporate the proposed 
TransLoss, NAF and ETM to form a unified dehazing network 
called ABC-Net, which can restrain the bias of transmission and 
calculate pixel-level transmission value. Experimental results show 
our method can get outstanding clean dehazing outputs without 
blocking effect and color shift. 
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