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Modeling Label Dependencies for Audio Tagging
With Graph Convolutional Network

Helin Wang ", Yuexian Zou
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Abstract—As a multi-label classification task, audio tagging aims
to predict the presence or absence of certain sound events in an
audio recording. Existing works in audio tagging do not explicitly
consider the probabilities of the co-occurrences between sound
events, which is termed as the label dependencies in this study. To
address this issue, we propose to model the label dependencies via
a graph-based method, where each node of the graph represents a
label. An adjacency matrix is constructed by mining the statistical
relations between labels to represent the graph structure informa-
tion, and a graph convolutional network (GCN) is employed to
learn node representations by propagating information between
neighboring nodes based on the adjacency matrix, which implicitly
models the label dependencies. The generated node representations
are then applied to the acoustic representations for classification.
Experiments on Audioset show that our method achieves a state-
of-the-art mean average precision (mAP) of 0.434.

Index Terms—Audio tagging, label dependencies,
convolutional network, representation learning.

graph

I. INTRODUCTION

UDIO tagging [1] is the task of predicting the presence or

absence of sound events within an audio clip, which has
many applications such as information retrieval [2] and music
tagging [3]. Compared to single-label audio classification [4],
[5], one of the challenges in audio tagging is to deal with the
multiple labels in an audio recording.

Recently, convolutional neural networks (CNNs) [6]-[11] and
convolutional recurrent neural networks (CRNNs) [12]-[14]
provide the state-of-the-art results in audio tagging tasks, which
show powerful ability to learn acoustic representations from
manually-design features, such as log mel spectrograms. In
most previous methods, each sound event type is considered
independently, so that audio tagging is treated as a binary
classification problem for each sound event type. As a result, the
intrinsic relationships between sound events are ignored in these

Manuscriptreceived May 16,2020; revised July 10,2020; accepted August 16,
2020. Date of publication August 26, 2020; date of current version September 15,
2020. This work was supported in part by the Shenzhen Science and Technology
Fundamental Research Programs under Grant JCYJ20170817160058246 and
Grant JCYJ20180507182908274 and in part by the Collaboration Research
Project funded by PKU-HKUST ShenZhen-HongKong Institution. The asso-
ciate editor coordinating the review of this manuscript and approving it for
publication was Mr. Ville M. Hautamaki. (Corresponding author: Yuexian Zou.)

Helin Wang, Yuexian Zou, and Dading Chong are with the School
of Electronic, and Computer Engineering, Peking University, Shen-
zhen 518055, China (e-mail: wanghll5@pku.edu.cn; zouyx @pku.edu.cn;
1601213984 @pku.edu.cn).

Wenwu Wang is with the Centre for Vision, Speech, and Signal Processing,
University of Surrey, Surrey GU27XH, U.K. (e-mail: w.wang @surrey.ac.uk).

Digital Object Identifier 10.1109/LSP.2020.3019702

, Senior Member, IEEE, Dading Chong, and
, Senior Member, IEEE

methods. As sound events often co-occur in an audio clip, (e.g.
when the sound event piano appears, guitar is more likely to ap-
pear than babycry), it would be beneficial to take into account the
dependencies among labels. Meanwhile, labels often conform to
the ontology structure of the abstract sound categories [15]. For
example, snake can be categorized either as a general category
of animal or a more specific category of wild animal. Some
approaches have been proposed to capture the relationships
among labels for audio classification. In [16], graph Laplacian
regularization was introduced to model the co-occurrence of
sound events, and Xu et al. [17] proposed a deep neural net-
work (DNN)-based hierarchical learning method for acoustic
scene classification. In addition, SONYC Urban Sound Tagging
(SONYC-UST) [18] containing 8 coarse-grained classes and
23 fine-grained classes was presented for the DCASE 2019
Urban Sound Tagging Challenge [19]. For large-scale multi-
label datasets (e.g. Audioset [21]), which contain numerous
categories, the hierarchical structures are not clearly pre-defined.
However, the implicit label dependencies could be explored to
achieve better classification performance.

In this letter, we model the label dependencies via a graph,
which has been proven to be effective in capturing the rela-
tionships among labels [22]-[24]. The main contribution of this
letter is that the implicit dependencies between labels are mod-
eled via GCN with the statistical relations between labels. This is
different from two contemporary works [15], [20] brought to our
attention where the ontology based domain knowledge is used
for the graph construction, rather than the statistical relations
exploited in our work. More specifically, each edge in the
graph represents the relationships between two nodes, and the
adjacency matrix is constructed by the conditional probabilities
between labels within the dataset to represent the graph structure
information. GCN is employed to learn node representations
using the graph structure information, which are then applied
to the acoustic representations as the label-wise weights for
classification. A single layer GCN learns the representations
of each node by aggregating the information of its immediate
neighbors. While in multi-layer GCN, information is propagated
from more neighbors, hence implicitly modeling the label de-
pendencies. In addition, re-weighting schemes are proposed to
alleviate the over-fitting and over-smoothing problems for the
adjacency matrix.

II. GRAPH CONVOLUTIONAL NETWORK

Graph convolutional network (GCN) was presented for semi-
supervised learning on graph-structured data [25]. The main
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Fig. 1.
initially obtained by the word embeddings of the labels and the final node
representations learned by GCN are applied to the acoustic representations for
classification.

Overall architecture of our AT-GCN model. Node representations are

idea of GCN is to learn the node representations by aggregating
the information of neighboring nodes on a graph G = (V, ),
with n nodes v; € V, edges (v;,vj) € €. Let A € R™*" be the
adjacency matrix of G, each GCN layer takes the node repre-
sentations H") € R"*¢ from the previous layer as inputs and
outputs updated node representations H (1) ¢ R™*¢| where
¢ and ¢ indicate the dimensions of node features in the I-th
layer and the (I 4 1)-th layer, respectively. A multi-layer GCN
follows the layer-wise propagation rule between the nodes [25]:

HWD —p (D_%AD_;H(”W“O (1)

-

Here, D7%AD7 ? is the normalized symmetric adjacency ma-
trix. A= A+ Iy is the adjacency matrix with added self-
connections (I is the identity matrix) and D is the diagonal
degree matrix, where D~“ = Zj fl” WO e Re*¢ is a train-
able weight matrix, and h(-) denotes an activation function.

III. PROPOSED METHOD

In this section, we present a graph-based method to model
the label dependencies for audio tagging. The graph structure is
constructed by the statistical relations between the labels, and
GCNis employed to learn node representations on the graph. The
generated node representations are then applied to the acoustic
representations for classification, as detailed next.

A. GCN for Audio Tagging

The overall architecture of our proposed model (AT-GCN) is
shown in Fig. 1, and CNN10 [11] is used as the baseline model
in our experiments. See [11] for details about CNN10.

Acoustic representation learning The aim of acoustic rep-
resentation learning module is to extract the acoustic feature
from the input log mel spectrogram, and our proposed AT-
GCN has the same acoustic representation learning module as
CNNIO0 [11]. Specifically, convolutional layers are applied to
the spectrogram M € R**/, followed by a global pooling layer
and a fully-connected layer. Following [11], both maximum and
average operations are used for global pooling. Let fenn, fop, ftc
be the operations of the convolutional layers, the global pooling
layer and the fully-connected layer, respectively. The acoustic
feature = € R¢ (where C denotes the dimensionality of the
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Fig. 2. An example of the graph to model the label dependencies. Each node
represents a label and each edge represents the relationships between two nodes,
which is determined by the conditional probabilities. Note that the edges with
small values of the probabilities are filtered by a re-weighting scheme and not
shown in the figure.

acoustic feature) can be obtained by

T = fr (fgp (fenn (M3 0cnn)) ; s ) (2)

Here, 0.,,,, and 0s. denote the model parameters of the convolu-
tional layers and the fully-connected layer, respectively.

Node representation learning GCN is employed to learn
node representations in our method. As in (1), the stacked
multiple GCN layers are applied where each GCN layer takes
the node representations H O from the previous layer as inputs
and outputs new node representations H (+1) The input node
representations H 0 € RN*¢ of the first GCN layer are the
word embeddings of the labels, where N denotes the number
of labels and c is the dimensionality of the embeddings. For
the last layer (assuming that the number of layers is L), the
output is HX) € RVN*C where C' equals the dimensionality
of the acoustic feature. The predicted score ¢4 € RY is then
obtained by applying the last node representations to the acoustic
representations [28].

§=o0 (H<L>a,-) 3)

where o (-) is the sigmoid function to restrict () € (0, 1). For
the given ground truth of the labels within an audio clip

y € RN (where (") = {0, 1} denotes whether label 7 appears
or not), the loss L is calculated using binary cross-entropy:

N
— Ny log (5 _ 0 _ 40
L ;y tog (57) + (1= )10g (1-57) @)

B. Construction of the Graph Structure

The graph structure determines the information propagation
between nodes, however, there is no pre-defined graph structure
in any audio tagging datasets. In our work, an adjacency matrix
is constructed via mining the conditional probabilities between
labels within the dataset to represent the graph structure infor-
mation, as shown in Fig. 2.

Firstly, we count the occurrence of label pairs in the training
set and get the matrix X € RY*Y (where N indicates the
number of labels, and X;; denotes the co-occurring times of
label L; and L ;). Then, the occurrence times of the labels in the
training set are counted and the conditional probability matrix
can be calculated by

Py = X5 /T; ©)
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Algorithm 1: AT-GCN.
Input: The log mel spectrogram M ;
The initial node representations H (0);

Output: The predicted score y;

1: Calculate the adjacency matrix A using
equation (5)-(7);

2:  Extract the acoustic representation & using
equation (2);

3: fori=0,...,L—1do

4: Get the node representations of the next layer
H"Y using equation (1);

5:  end for

6: Calculate ¢ according to equation (3);

7. return y;

where T; denotes the occurrence times of label L; in the training
set, P;; = P(L;|L;) means the probability of label L; when
label L; appears. Note that P;; is not equal to Pj; since T is not
the same as T5.

However, the conditional probabilities between labels in the
training and test set may not be completely consistent, and some
small probabilities may become noise. Thus, it is necessary
to alleviate over-fitting of the adjacency matrix. Specifically,
a threshold 7 is applied to filter noisy edges:

o0, ifPj<T
Aij o {Pij7 lfP” Z T (6)

where A is the re-weighted adjacency matrix.

Another potential problem is over-smoothing, i.e. as the
GCN layer deepens, the node features may be over-smoothed
and nodes from different clusters may become indistinguish-
able [26], [27]. Thus, we adjust the information propagation
among nodes in GCN by another re-weighting scheme:

Aés{pAij/z% Ao 07 ™
1—p, ifi=j

where A’ is the re-weighted and normalized adjacency matrix,
and p determines the weights assigned to a node itself and its
neighbors. When p — 0, the neighboring information tends to
be ignored. On the contrary, when p — 1, the information of a
node itself will not be considered.

The proposed algorithm is summarized in Algorithm 1.

IV. EXPERIMENTS

A large-scale multi-label dataset (Audioset [21]) is used in our
experiments to evaluate our method, which is one of the most
challenging datasets for audio tagging [ 1]. Log mel spectrograms
are extracted from the audio signals as the input of the networks.
The details are as follows.

A. Dataset, Metrics and Preprocessing

Dataset Audioset [21] is a large-scale dataset with over 2
million 10-second audio clips from YouTube videos, with a total
of 527 categories. The training set consists of 2,063,839 audio
clips including a balanced subset of 22,160 audio clips. The

IEEE SIGNAL PROCESSING LETTERS, VOL. 27, 2020

TABLE I
COMPARISON OF PERFORMANCE ON AUDIOSET

Model Depth mAP mAUC  d-prime
Google CNN (2017) [21] - 0.314 0.959 2.452
Multi-level attention (2018) [9] - 0.360 0.970 2.660
Multi-level attention® (2018) [9] - 0.362  0.970 2.667
TAL Net (2019) [14] - 0.362  0.965 2.554
TAL Net* (2019) [14] - 0.367  0.969 2.638
DeepRes (2019) [5] - 0.392 0.971 2.682
CNNI10* (2019) [11] - 0422 0.970 2.653
I-layer 0.428 0.971 2.711
AT-GCN (ours) 2-layers 0.434 0.974 2.736
3-layers 0.430 0.972 2.715

“The listed results of Multi-level attention [9], TAL Net [14] and CNN10 [11] are
obtained under the same experimental setups as AT-GCN (e.g. using preprocessing and
data augmentation). The original Multi-level attention [9] and TAL Net [14] did not use
data augmentation.

evaluation set consists of 20,371 audio clips. Following [14],
both the balanced and unbalanced training sets are used for
training, with one part taken as our validation set. The evaluation
set is used as the test set in our experiments.

Metrics Mean average precision (mAP), mean area under the
curve (mAUC) and d-prime are used as our evaluation metrics.
These metrics are calculated on individual classes and then
averaged across all classes.

Preprocessing Limited by the computation resource, the pre-
extracted log mel spectrograms [14] with window size 50 ms
and hop length 25 ms are used in our experiments instead of
the raw audio signals, which have lower time domain resolution
than those used in [11]. The number of Mel bands is set to 64
and the size of a log mel spectrogram is 400 x 64.

B. Implementation Details

AT-GCN The node representation learning module of our AT-
GCN ! consists of two GCN layers with output dimensionality
of 256 and 512. It was proven that the performance is hardly
impacted by the different initial label representations [28], and
following [28], the word embeddings of 300-dim GloVe? [29]
are used as the initial label representations in our experiments.
The dimensionality of the acoustic representation is set to 512
for a fair comparison with CNN10 [11], and the hyperparameters
7 in (6) and p in (7) are set to 0.3 and 0.2 empirically based on
the validation set. PReLU [30] with the negative slope of 0.2 is
used as the activation function in (1).

Training details In the training phase, the Adam [31] is em-
ployed as the optimizer with a learning rate of 0.001. Batch size
is set to 64 and training takes 600,000 iterations. Following [11],
data augmentation methods mixup [32] and SpecAugment [33]
are applied in our experiments to prevent the system from
over-fitting and improve the performance.

C. Experimental Results and Analysis

Table I demonstrates the performance of our proposed AT-
GCN and other state-of-the-art methods on the Audioset. The
results indicate that the proposed AT-GCN outperforms all the

Thttps://github.com/WangHelin1997/AT-GCN
Zhttps://github.com/stanfordnlp/GloVe
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TABLE II
ACCURACY COMPARISONS ON DIFFERENT CONSTRUCTION METHODS OF THE
ADJACENCY MATRIX

Construction Method mAP mAUC d-prime
AT-GCN w/ method in [15], [28]  0.431 0.973 2.727
AT-GCN w/ method in [20] 0.429 0.971 2.701
AT-GCN w/o scheme 0.132 0.907 1.872
AT-GCN w/ scheme in (6) 0.267 0.952 2.360
AT-GCN w/ scheme in (7) 0.188 0.932 2.113
AT-GCN w/ scheme in (6) & (7)  0.434 0.974 2.736

compared methods, which confirms the effectiveness of model-
ing the label dependencies. A single layer GCN learns the node
representations by aggregating the information of the immedi-
ate neighbors guided by the graph structure information. The
results show that AT-GCN with one GCN layer achieves a better
performance than the baseline model (CNN10) owing to these
statistical relations, which is similar to [16]. While in multi-layer
GCN, information is propagated from more neighbors, which
implicitly models the deep label dependencies and offers more
performance gain. However, increasing the number of GCN lay-
ers may lead to over-smoothing [34], which may mix the features
of too many nodes and make them indistinguishable. It can be
observed that AT-GCN with two GCN layers provides a good
trade-off in these aspects and achieves the best performance.

In order to analyze the impacts of the formulation of the adja-
cency matrix, ablation experiments are carried out. As shown in
Table II, AT-GCN does not perform well when no re-weighting
scheme is applied because of the over-fitting and over-smoothing
problems, which are discussed in Section III-B. In [15], [28], a
threshold is set to filter the noisy edges and other edges are
treated equally, which is achieved by binarizing the adjacency
matrix. However, our proposed re-weighting schemes retain the
information of the other edges by only re-weighting the noisy
edges and obtain better performance. Both the re-weighting
schemes in (6) and (7) improve the performance, and a higher
performance can be achieved with the combination of them.
In addition, we have tested another construction method of the
adjacency matrix [20], which utilizes the ontology rather than
the statistical relations. Our proposed method achieves better
performance, which shows that the label dependencies are more
important in the large-scale multi-label dataset (i.e. Audioset).

In addition, we vary the values of the hyperparameters 7 in
(6) and p in (7) to analyze the effects, and show the results in
Fig. 3. As the values of 7 and p increase, the accuracy is boosted
and then drops, which achieves the peek accuracy when 7 = 0.3
and p = 0.2. 7 is the threshold to filter the edges, and the small
values of 7 mean the edges of small probabilities (i.e. noisy
edges) are filtered. However, when too many edges are filtered,
the correlated neighbors will be ignored as well which decreases
the accuracy. p determines the balance between a node itself
and its neighbors when updating the node features. If p is too
small, the nodes of the graph cannot get sufficient information
from correlated nodes. On the other hand, it will lead to over-
smoothing if p is too large.

Furthermore, the t-SNE [36] is adopted to visualize the last
node representations (i.e. H () in (3)) learned by our proposed
AT-GCN as well as the weights of the last fully-connected layer
of CNN10, with the results shown in Fig. 4. It can be observed
that CNN10 can learn some meaningful relationships among the
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two GCN layers (metric: mAP). Note that when 7 = 1.0, D 2 AD 2 in (1)
becomes the identity matrix. AT-GCN degenerates to a structure almost identical
to CNN10, but with an extra fully-connected layer (as a GCN layer degenerates to
afully-connected layer). As a consequence, the mAP result (42.3%) by AT-GCN
is slightly different from that of CNN10 (42.2%).

Accuracy comparisons of different values of 7 and p for AT-GCN with

(b) I—SNE on the last node representations learned by AT-GCN

Fig. 4. Visualization of the last node representations learned by AT-GCN and
the learned weights of the last fully-connected layer of CNN10 on Audioset.
Note that Audioset [21] contains 527 classes (527 dots in the figure) with 7
general categories (the same color dots in the figure). Here, 9 classes are marked
as examples.

labels, such as the cluster pattern of the general category music.
However, the other cluster patterns are not clear and the semantic
related labels (e.g. sobbing and babycry) are not close in the label
space. In contrast, AT-GCN shows less divergence in the label
space and exhibits more clear cluster patterns. Specifically, the
semantic related labels (such as piano and keyboard, sobbing
and babycry) tend to be much closer in the label space than
CNNI10, which shows the effectiveness of modeling the label
dependencies.

V. CONCLUSION

In this letter, a novel audio-tagging method (AT-GCN) has
been proposed where the implicit dependencies between the
labels are modeled by a graph convolutional network. Our
proposed method achieves the state-of-art performance on the
Audioset.
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