Non-Autoregressive Coarse-to-Fine Video Captioning

Technical Appendix

Bang Yang,1 Yuexian Zou,2* Fenglin Liu,1 Can Zhang1
1 ADSPLAB, School of ECE, Peking University, Shen Zhen, China
2 Peng Cheng Laboratory
{yb.ece, zouyx, fengliniu98, zhangcan}@pku.edu.cn

Detailed Formulation

Decoder

Our decoder consists of a multi-head self-attention, a multi-head inter-attention and a feed-forward network. Assuming that attention layer has \(H \) heads, each of which can be defined as follows (omitting biases for clarity):

\[
f_{\text{att}}^h(Q, K, V) = \text{Softmax} \left(\frac{QW_Q(KW_K)^T}{\sqrt{d_k}} \right) VW_V
\]

where \(Q \in \mathbb{R}^{s_q \times d_m} \) denotes query, \(K \in \mathbb{R}^{s_k \times d_m} \) denotes key, \(V \in \mathbb{R}^{s_v \times d_m} \) denotes value, and \(s_\ast (\ast \in \{ Q, K, V \}) \) is the sequence length. \(\{ W_Q, W_K, W_V \} \in \mathbb{R}^{d_m \times d_k} \) are learnable weights and \(d_k = d_m / H \). So multi-head attention (MHA) can be formulated as follows:

\[
f_{\text{MHA}}(Q, K, V) = \text{LN}([f_{\text{att}}^1; f_{\text{att}}^2; \ldots; f_{\text{att}}^H]W_{\text{MHA}} + Q)
\]

where \([;] \) represents concatenation, \(\text{LN} \) denotes layer normalization and \(W_{\text{MHA}} \in \mathbb{R}^{d_m \times d_m} \) is linear transformation. Following the MHA, it is a fully connected feed-forward network (FFN), which is defined as follows:

\[
f_{\text{FFN}}(X) = \text{LN}(\text{GELU}(XW_{F_1})W_{F_2} + X)
\]

where GELU is short for Gaussian Error Linear Unit (Hendrycks and Gimpel 2016), \(W_{F_1} \in \mathbb{R}^{d_m \times d_m} \) and \(W_{F_2} \in \mathbb{R}^{d_h \times d_m} \) are the matrices for linear transformation. In practice, \(f_{\text{MHA}} \) and \(f_{\text{FFN}} \) in our decoder excluded layer normalization (LN) because we found the training procedure more stable by doing so. Given an input sequence \(Y \) of length \(N \) and video representation \(R \), the transformation of our decoder is achieved by the following formula:

\[
f_{\text{dec}}(Y, R) = f_{P_J}(f_{\text{FFN}}(f_{\text{MHA}}(f_{\text{MHA}}(E, E, E, R, R))))
\]

where \(E \) is the normalized input embeddings of \(Y \) (\(e_n = \text{LN}(e_{tok} + e_{pos} + e_{src}) \) and \(f_{P_J} \) maps the outputs into a distribution over the vocabulary:

\[
f_{P_J}(X) = \text{Softmax}(XW_{P_J})
\]

where \(W_{P_J} \in \mathbb{R}^{d_m \times V} \) and \(V \) is the vocabulary size.

Length Beam and Teacher Rescoring

Following the common practice of noisy parallel decoding (Gu et al. 2018; Wang et al. 2019), we select top \(B \) length candidates with the highest probability from the predicted distribution \(L \) during inference, which is somewhat analogous to beam search in AR decoding. Then we decode the same example with different lengths \(\{ N_1, N_2, \ldots, N_B \} \) in parallel. Here we make \(N_b \in [4, N_{\text{max}}] \) to ensure that a complete sentence can be generated. Finally, we select the sequence with the highest average log-probability as our hypothesis based on \(C(T) \):

\[
\frac{1}{N_b} \sum_{n=1}^{N_b} \log c_n
\]

Besides solely using \(C(T) \) to decide the best candidate, we also use the teacher rescoring technique (Gu et al. 2018; Wang et al. 2019; Mansimov, Wang, and Cho 2019) to evaluate the collected \(B \) captions. In this work, we simply utilize AR-B to give a mark \(Z \) to the generated \(Y(T) \):

\[
z_n = p_{\theta}(y = y_{<n}^{(T)} | y_{<n}^{(T)}, R)
\]

where \(z_n \) reveals the coherence between \(y_{<n}^{(T)} \) and previous generated words \(y_{<n}^{(T)} \). Note that this rescoring operation is parallel because the whole sentence \(Y(T) \) is already known. Then we jointly consider \(C(t) \) and \(Z \) to decide the best caption candidate, so Eq. 6 is modified as follows:

\[
\frac{1}{2N_b} \sum_{n=1}^{N_b} (\log c_n + \log z_n)
\]

Reproducibility

To assess the reproducibility of our work, we here introduce details of our experiments besides providing our codes.

Vocabulary Processing

To extract vocabulary from the MSVD and MSR-VTT datasets, we first remove punctuation and convert all words to lower case. Then for MSVD we keep all words whereas we filter words that appear less than 3 times for MSR-VTT. After taking special tokens (\(\text{eos} \), \(\text{bos} \), \(\text{unk} \), \(\text{mask} \), \(\text{vis} \), \(\text{pad} \)) into account, the resulting vocabulary size of MSVD is 9,468, whereas that of MSR-VTT is 10,547.
Figure 1: Illustration of training examples for (a) masked language modeling and (b) visual word generation. When generating visual words, we only focus on nouns and verbs, but ignore verbs like “is” and “are”, which do not reveal the relevant visual contents.

Video Processing
To get sampled frames, we sample the video at 3 fps for MSVD whereas 5 fps for MSR-VTT, and set the maximum number of frames as 60. In terms of video clips, we sample the videos at 25 fps and extract features for every 16 consecutive frames with 8 frames overlap for both datasets. For features of each video, we divide them into $K = 8$ snippets and randomly/uniformly sample one frame per snippet in training/evaluation process.

Training
An intuitive example of training is given in Fig. 1. One may argue that masked language modeling (MLM) and visual word generation (VWG) belong to an inclusive relationship. Here are their differences. (1) MLM often processes partially-observed sentences while VWG always takes completed unobserved sequences as inputs. (2) MLM predicts any word in the vocabulary whereas VWG predicts either a [mask] token or a visual word (Fig. 1 (b)). Ideally, our NACF can be trained with two complementary settings, i.e., VWG and predicting unknown words conditioned on the visual words. Nevertheless, our method may fail to generate comprehensive visual words (see qualitative examples at the end of this document). Hence we adopt MLM and VWG for robustness. From another prospective, training MLM jointly with VWG is to some extent similar to attaching higher weights to those visual words when calculating the overall loss. Therefore, our proposed visual word generation can alleviate the insufficient training of meaningful words.

Evaluation Metrics
• BLEU (Papineni et al. 2002). BLEU@n measures the precision of n-grams between the ground-truth and generated sentences. This precision-based metric is generally believed to prefer short sentences, though it has introduced a penalty factor to alleviate that.

• METEOR (Banerjee and Lavie 2005) not only leverages a uni-grams-based weighted F-score and a penalty function to punish incorrect word order but also consider the matching of synonyms.

• CIDEr-D (Vedantam, Lawrence Zitnick, and Parikh 2015) adopts a voting-based approach, where TF-IDF is taken into account. Therefore, CIDEr-D prefers to punish the often-seen words and awarding rare words. This metric is considered to be more robust to incorrect annotations and more relevant with human judgment.

Standard of Selecting the Best Model
Given the number of training epochs e, the score of a specific metric (e.g. BLEU@4) s_i at i-th epoch $(i \in [1, e])$ and the highest score of a specific metric s_{best}^i till i-th epoch, we calculate the relative score $r_s = s_i/s_{\text{best}}^i$. For multiple metrics, we measure the summation of their relative scores. Finally, we select the model with the highest summation of relative scores on the validation set as our best model and report its performance on the testing set.

Experimental Details
Parameters. For our NACF, we set the number of iterations T to 5, the length beam size B to 6 and use the CT-MP algorithm unless otherwise specified. For NA-B, same T and B are adopted. But NAB does not support CT-MP algorithms because it excludes visual word generation. Hence NA-B use the MP algorithm by default. For autoregressive models (e.g., AR-B), beam size B is to 5, which has higher performance than $B = 6$ (see Fig. 5(b) in the submitted paper). All these parameters are determined by the performance on the validation set. Please note that B has different meanings for NA models and AR models.

Explanation of Fig. 4 in the submitted paper. Let denote the generated captions of NA-B on the MSR-VTT test set as C. From C, we can obtain a set of unique words W of size N, based on which we calculate the word frequency f_w for each $w_i \in W (i \in [1, N])$:
$$f_w = \frac{\text{occurrence}(w_i)}{\sum_{j=1}^{N} \text{occurrence}(w_j)}$$

(9)

Then the word frequencies $F = \{f_{w_1}, f_{w_2}, \ldots, f_{w_N}\}$ for NA-B is obtained. Similarly, we can get W_{vis} of size N_{vis} and F_{vis} for “NA-B w/ C_{vis}”. Given a word $w \in W_{\text{vis}} \cup W$, its relative growth rate of word frequency r_w is defined as:

$$r_w = \begin{cases} 1.0 & \text{if } w \in W_{\text{vis}} \& w \notin W \\ -1.0 & \text{if } w \notin W_{\text{vis}} \& w \in W \\ \frac{f_{w_{\text{vis}}} - f_w}{f_w} & \text{otherwise} \end{cases}$$

(10)

At last, given a specific type of words (e.g. visual words) W_{spec}, we measure $\frac{1}{|W_{\text{spec}}|} \sum_{w \in W_{\text{spec}}} r_w$, which is defined as average relative growth rate of word frequency in the submitted paper.

Extra Experiments and Analyses
Analysis on MSR-VTT Corpora
The division of part-of-speech (POS) tags is given in Table 1, where six subsets and their frequency on MSR-VTT are
Table 1: The Part-of-Speech (POS) tags are obtained by the NLTK toolkit (Bird, Klein, and Loper 2009) and divided into six subsets, whose frequency (%) in corpus- and vocabulary-level on the whole MSR-VTT dataset is also presented.

<table>
<thead>
<tr>
<th>Subsets</th>
<th>Part-of-Speech Tags</th>
<th>Corpus-Level Frequency</th>
<th>Vocab-Level Frequency</th>
<th>Per-Word Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>NN, NNS</td>
<td>35.84</td>
<td>51.74</td>
<td>0.69</td>
</tr>
<tr>
<td>Verb</td>
<td>VB, VBD, VBG, VBN, VBP, VBZ</td>
<td>14.62</td>
<td>23.23</td>
<td>0.63</td>
</tr>
<tr>
<td>Adjective</td>
<td>JJ, JJR, JJS, AFX</td>
<td>12.67</td>
<td>19.23</td>
<td>0.66</td>
</tr>
<tr>
<td>Adverb</td>
<td>RB, RBR, RBS, WRB</td>
<td>6.08</td>
<td>1.06</td>
<td>5.74</td>
</tr>
<tr>
<td>Determiner</td>
<td>WDT, WP$, PRP$, DT, PDT</td>
<td>19.00</td>
<td>0.29</td>
<td>65.52</td>
</tr>
<tr>
<td>Others</td>
<td>IN, RP, CC, CD, . . ., “be” (is, are, was, . . .)</td>
<td>11.79</td>
<td>4.45</td>
<td>2.65</td>
</tr>
</tbody>
</table>

Table 2: Performance of our NACF (CT-MP) when using different combinations of POS subsets for visual word generation on MSR-VTT test set.

<table>
<thead>
<tr>
<th>Combination</th>
<th>Stage 1: Training</th>
<th>Stage 2: Training + Coarse-Grained Template</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLEU@4</td>
<td>METEOR</td>
</tr>
<tr>
<td>∅ (NA-B)</td>
<td>40.4</td>
<td>28.0</td>
</tr>
<tr>
<td>{Noun}</td>
<td>40.7</td>
<td>28.0</td>
</tr>
<tr>
<td>{Verb}</td>
<td>40.6</td>
<td>27.9</td>
</tr>
<tr>
<td>{Noun, Verb} (NACF)</td>
<td>40.8</td>
<td>28.2</td>
</tr>
<tr>
<td>{Noun, Adjective}</td>
<td>40.6</td>
<td>28.2</td>
</tr>
<tr>
<td>{Noun, Verb, Adjective}</td>
<td>40.8</td>
<td>28.3</td>
</tr>
<tr>
<td>{Noun, Verb, Adverb}</td>
<td>40.3</td>
<td>27.9</td>
</tr>
<tr>
<td>{Noun, Verb, Adjective, Adverb}</td>
<td>40.0</td>
<td>28.0</td>
</tr>
</tbody>
</table>

Figure 2: The statistics of training data about per-position vocabulary usage, which may reveal the model’s perplexity on each position.

presented. By comparing the per-word occurrence of different subsets, we can observe that non-visual words (e.g. determiner) appear more frequently than visual words like nouns and verbs.

Why NA-B Behaves Poorly on MSR-VTT?

We suspect that NA-B confronts a more serious “multi-modality” problem (Gu et al. 2018) on MSR-VTT than MSVD. To test our hypothesis, we measure per-position vocabulary usage in training data, which may reveal the model’s perplexity on each position, as a proxy metric for the “multi-modality” problem. The results shown in Fig. 2 match our hypothesis. For example, more than one-quarter words from the vocabulary can be placed at the first position (the start of the sentence) on MSR-VTT, more than twice the proportion on MSVD, making the NA-B more confused when predicting tokens individually. On the one hand, this suggests that linguistic diversity of a large-scale dataset present great challenges for NA decoding. On the other hand, the superior performance of our NACF demonstrates that decoding sentences under the guidance of some content related visual words can mitigate description ambiguity, i.e., alleviate the “multi-modality” problem.

Different Combinations of Part of Speech

Instead of only generating nouns and verbs (i.e., our proposal of visual word generation), we here analyze the effect of different combinations of POS subsets in Table 2 and have the following observations:

- Compared with “{Verb}”, “{Noun}” performs better. On the one hand, nouns are more common than verbs in the corpus and vocabulary (see Table 1). On the other hand, nouns are highly associated with salient subjects or objects in video contents, which could be more distinguishable than verbs like “playing”, “talking”. So both enhancing the model’s awareness towards nouns (stage 1) and taking generated nouns as the coarse-grained templates (stage 2) can yield better performance.

- The reason why “{Verb}” brings limited improvement can refer to Fig. 4 (b). As we can see, our model performs badly on identifying verbs, which is probably due to the lack of position modeling (Bao et al. 2019; Gu et al. 2018)
that has been proved to be effective for non-autoregressive decoding.

- Among all combinations, both “{Noun, Verb, Adjective}” and “{Noun, Verb}” are promising. Although “{Noun, Verb, Adjective}” performs better than “{Noun, Verb}” at stage 1, they achieve similar performance at stage 2. This indicates that nouns and verbs in the generated coarse-grained templates already provide rich contextual information. Thus, we follow (Sigurdsson, Russakovsky, and Gupta 2017) and treat nouns and verbs as visual words in our paper.

More Insights of Decoding Algorithms

We here investigate the preference of different decoding algorithms during decoding. As shown in Fig. 3 (a), EF is sure about the leftmost word \((n = 1) \) at the first iteration \((t = 1) \) but the rest words are generated adaptively. Based on the superior performance of (CT)-EF over (CT)-L2R, we conclude that adaptive rather than monotonic generation is requisite for our NACF to generate plausible descriptions. We also visualize the refinement order of CT-MP in Fig. 3 (b) and have the following observations. (1) Given sentences of length 7, visual words are often generated at second and rightmost positions. (2) Guided by the visual words, the leftmost, third and penultimate words are less likely to be reconsidered in later iterations \((t \geq 2) \), which are usually determiners, verb “be” and prepositions (i.e., non-visual words). (3) The model, in turn, refines those visual words repeatedly in later iterations, which is expected because nouns and verbs form the major part (roughly 70%) of the vocabulary. Given that visual words are highly associated with the caption quality, how to utilize more semantic information to guide the refinement process deserves further consideration.

What makes our method different from previous ones is the flexible decoding paradigm, i.e., words can be modified based on bidirectional context at a small cost of inference speed. We here measure the relative performance improvement during the intermediate process of iterative refinement. As shown in Fig. 4(a), all metrics are boosted, especially the BLEU@4 metric. This shows that refinement can make sentences more fluent and add more precise visually-grounded details. Therefore, we hope that this work will foster further research in flexible paradigms for caption generation.

Effect of Teacher Rescoring

We here present an example in Fig. 5 (a) to show how teacher rescoring (TR) influences the process of picking the best caption from \(B \) caption candidates. As we can observe, although two of six candidates \((B = 6) \) are free from the repeated translation errors, without TR, the model fails to select either of them as the best caption due to the insensitivity to sentence fluency, which is resulted by the removal of sequential dependency in NA decoding. Considering the scoring information of an autoregressive counterpart, which measures how coherent a token is with its previous tokens, can mitigate this problem. So it is not surprising to see that in Fig. 5 (b), TR matters on performance, which is consistent with the observations in NMT (Gu et al. 2018; Mansimov, Wang, and Cho 2019; Wang et al. 2019). Specifically, the relative improvements brought by TR for CT based algorithms are less than that of original ones, indicating that
the utilization of coarse-grained templates improves the sentence fluency to some extent. In short, both results demonstrate that retrieving sequential information to NA decoding is crucial, which is left to our future study. More qualitative examples are given in Fig. 7.

Effect of Auxiliary Information

We ablate the performance to measure the effect of the copied source information e^{src} and the category tags of MSR-VTT. As shown in Table 3, exp2 is worse than exp1, showing that enhancing the inputs of NA decoders is important (Guo et al. 2019). Comparing exp3 with exp1, we can conclude that the category information is complementary to visual features. Since such prior information is not always available, an auxiliary task of classifying videos can be integrated into the model in the future.

Robustness of NACF

Since the proposed visual word generation (VWG) is critical in our NACF, what if VWG captures irrelevant details from the video content? Here, we manually control (modify) the generated coarse-grained templates of VWG to figure out what will happen. As we can see in Fig. 6, before manual control, our NACF generates a visual word “aquarium”, and the final description is related to the scene. Then at the first case, we change the word “aquarium” to “tank”. As we can see, the captioning result (“swimming in a tank”) is affected by our modification but it is still reasonable. At the second case, we add the word “fish” at the third position. Surprisingly, the final description contains a more precise detail, i.e., “gold fish”. At the last case, we make the coarse-grained template completely irrelevant to the scene. We can see that our NACF is robust to re-convert these mistakes.

References

Figure 7: Examples of NACF (CT-MP) for picking the best caption among B candidates ($B = 6$), where the numbers in black denote the original ranking while in green denote the ranking affected by teacher rescoring. We mark the errors in captions in red. As we can observe, teacher rescoring is beneficial for picking a suitable description that sounds natural in most cases (the first three examples).
GT: a woman wearing a black shirt show us her clothes
AR-B: a person is showing how to fold a piece of jeans
NA-B (init.): _ _ _ _ _ _
(t = 1): a woman is a dress
(t = 2): a woman is a clothes
(t = 3): a woman is talking something
(t = 4): a woman is explaining something
(t = 5): a woman is talking about something

NACF (CT): _ _ _ _ _ _
(t = 1): a woman is a a a clothes
(t = 2): a woman is talking a a a clothes
(t = 3): a woman is talking about her clothes
(t = 4): a woman is talking about her clothes
(t = 5): a woman is talking about her clothes

NACF (EF): _ _ _ _ _ _
(t = 1): a woman is a a a clothes
(t = 2): a woman is talking a a a clothes
(t = 3): a woman is talking about her clothes
(t = 4): a woman is talking about her clothes
(t = 5): a woman is talking about her clothes

NACF (L2R): _ _ _ _ _ _
(t = 1): a woman is a a a clothes
(t = 2): a woman is talking a a a clothes
(t = 3): a woman is talking about her clothes
(t = 4): a woman is talking about her clothes
(t = 5): a woman is talking about her clothes

Figure 8: Qualitative results on MSR-VTT, where ground-truth sentences (GT), captions generated by two baselines (AR-B and NA-B) and our NACF are presented. The generated process of NA-B (MP), NACF (CT-MP) and NACF (CT-EF) is highlighted, i.e., the words in bold and italic denote the update at each iteration. We mark the errors in read and keywords in green.
Figure 9: Qualitative results on MSR-VTT, where ground-truth sentences (GT), captions generated by two baselines (AR-B and NA-B) and our NACF are presented. The generated process of NA-B (MP), NACF (CT-MP) and NACF (CT-EF) is highlighted, i.e., the words in bold and italic denote the update at each iteration. We mark the errors in red and keywords in green.
Figure 10: Qualitative results on MSR-VTT, where ground-truth sentences (GT), captions generated by two baselines (AR-B and NA-B) and our NACF are presented. The generated process of NA-B (MP), NACF (CT-MP) and NACF (CT-EF) is highlighted, i.e., the words in bold and italic denote the update at each iteration. We mark the errors in read and keywords in green.