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Abstract
Spoken question answering (SQA) has recently
drawn considerable attention in the speech com-
munity. It requires systems to find correct an-
swers from the given spoken passages simultane-
ously. The common SQA systems consist of the au-
tomatic speech recognition (ASR) module and text-
based question answering module. However, previ-
ous methods suffer from severe performance degra-
dation due to ASR errors. To alleviate this problem,
this work proposes a novel multi-modal residual
knowledge distillation method (MRD-Net), which
further distills knowledge at the acoustic level from
the audio-assistant (Audio-A). Specifically, we uti-
lize the teacher (T) trained on manual transcriptions
to guide the training of the student (S) on ASR
transcriptions. We also show that introducing an
Audio-A helps this procedure by learning residual
errors between T and S. Moreover, we propose a
simple yet effective attention mechanism to adap-
tively leverage audio-text features as the new deep
attention knowledge to boost the network perfor-
mance. Extensive experiments demonstrate that the
proposed MRD-Net achieves superior results com-
pared with state-of-the-art methods on three spoken
question answering benchmark datasets.

1 Introduction
In recent years, spoken question answering (SQA) has re-
ceived remarkable attention by researchers. The goal of SQA
is to fully understand the spoken content of the passage and
questions, and then provide an accurate language answer.
Commonly, this challenging task includes two sub-tasks: au-
tomatic speech recognition (ASR) and text question answer-
ing (TQA). In general, the SQA system first utilizes the ASR
module to transfer spoken content to sequential utterances in
text form, and then employs the TQA module to tackle the
auto-transcribed text documents. In this way, taking ASR
transcriptions as input brings noisy signals (e.g., substitution
error), which misleads the system to make wrong predictions.
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In other words, this leads to a suboptimal performance of spo-
ken question answering.

Several studies have been proposed to alleviate automatic
speech recognition errors [Li et al., 2018; Lee et al., 2018;
Lee et al., 2019; You et al., 2020b; Kuo et al., 2020]. Li et
al. [2018] and Lee et al. [2018] utilized sub-word units to
generate the auto-transcriptions to mitigate the impact of
speech recognition errors. However, such methods bring
the SQA system limited performance gains. More recently,
Lee et al. [2019] learned the domain-invariant representa-
tions by projecting audio and text features into the common
latent space for the development of SQA systems. However,
these methods turn out to be susceptible to training instability.
Subsequently, You et al. [2021] demonstrated that knowledge
distillation [Hinton et al., 2015] (KD) proved to be a promis-
ing way to achieve superior performance, in which employs
a soft-label distillation loss to transfer the knowledge of T
trained on the clean text (manual transcriptions) to S trained
on the ASR transcriptions. Nevertheless, they only focus on
resolving the challenge in a textual way without considering
the acoustic-level information to further improve the model
performance.

The machine learning research community has devoted
substantial efforts to leverage various types of knowledge
from multiple domains to improve the model performance.
Previous work [Su and Fung, 2020] has shown that spoken
content can provide additional cues for remarkable perfor-
mance improvements. Moreover, Siriwardhana et al. [2020]
adopted the pre-trained “BERT-like” language model in the
self-supervised manner to fuse both speech and text fea-
tures to tackle the multi-modal speech emotion recognition
task. Concurrent with our research, Kuo et al. [2020] built
an audio-enriched BERT-based (aeBERT) framework for the
spoken multiple-choice question answering task. However,
most existing methods are not unified approach to address
spoken language tasks, which is impractical in real-world ap-
plications .

In this paper, we propose a deep multi-modal resid-
ual knowledge distillation framework for SQA tasks, called
MRD-Net. Specifically, multi-domain features are treated as
knowledge in this work. In our teacher-student paradigm, we
first train the teacher model (T) on text transcriptions, and
then the student model (S) is trained on ASR transcriptions
with the goal of achieving the comparable performance. To



further enhance the process of knowledge transfer, we pro-
pose an audio-assistant model (Audio-A) to learn the resid-
ual error between the hidden state features of T and S (See
Figure 1). Furthermore, we introduce a novel attention (ST-
Attention) mechanism by utilizing the scaled dot-product be-
tween multi-modal key-value and query vector pairs in the
attention module as the audio-text knowledge to boost the
performance (See Figure 2). With such knowledge transfer-
ring scheme, S can achieve the ideal mimicking on T effi-
ciently. We validate the proposed method on three bench-
mark datasets, and experimentally demonstrate that our pro-
posed method achieves superior performance compared with
state-of-the-art methods.

The contributions of our work are summarized as follows:
• We propose a novel distillation model, MRD-Net, for

the spoken question answering task, by introducing the
multi-modal residual knowledge distillation (MRKD)
strategy to alleviate the ASR errors. Moreover, we pro-
pose an Audio-A to learn residual error between the
teacher and student models, which helps significantly
improve model performance.

• We build a novel attention mechanism, termed as ST-
Attention, to aid multi-modal knowledge transfer pro-
cess with diverse-grained representations. Moreover,
we further validate the proposed attention mechanism
on other downstream multi-modal language processing
tasks, and show its generalization ability.

• We evaluate the proposed MRD-Net on three commonly
used speech question answering datasets, and prove
that MRD-Net significantly outperforms state-of-the-art
methods.

2 Related Work
2.1 Spoken Question Answering
Spoken question answering aims at enabling machine learn-
ing systems to automatically find the relevant answers from
the given spoken documents. Typically, the spoken ques-
tion answering system includes two main modules: auto-
matic speech recognition and text question answering (TQA).
Specifically, the ASR module first converts spoken content
into noisy transcriptions, and then the noisy transcriptions
are treated as input to TQA module to find the answers in
given spoken transcriptions by leveraging robust information
retrieval (IR) techniques. But existing work [Su and Fung,
2020] has proved that noisy ASR errors would significantly
degrade the SQA performance. Much effort has been devoted
to alleviate this issue. Utilizing sub-word unit in SQA [Li et
al., 2018; Lee et al., 2018] achieved competitive performance
in SQA tasks by mitigating the impact of speech recogni-
tion errors. The key idea of such methods is that ASR errors
can be viewed as substitutions of word sequences for another
ones (e.g., “feature” to “feather”). Therefore, the sub-word
information can still be transferred correctly while the com-
mon error was missing or wrongly added one or two word
transcriptions in ASR systems. A very recent work, called
SpeechBERT [Chuang et al., 2020], introduced a pre-trained
BERT-based language model for SQA tasks to jointly learn

audio-text features for significant accuracy performance im-
provements.

2.2 Knowledge Distillation
In KD scheme [Hinton et al., 2015], the teacher model T(·)
is to transfer richer knowledge to the student model S(·). In
other words, the student network is trained with the purpose
of fully reproducing the predictive behavior of the teacher
network. Suppose fT and fS denote the behavior functions
of T and S, respectively, behavior functions aim to transform
network inputs into informative feature representations, and
distill the knowledge from T to S. To further promote the
distillation process, many attempts [Hahn and Choi, 2019;
Gao et al., 2020] have been proposed. Gao et al. [2020]
proposed residual knowledge distillation (RKD) strategy by
adopting a residual learning strategy into the standard KD
framework. Especially, RKD aims to supervise S to acquire
knowledge from T, and then employ an assistant model A to
learn the residual difference between S and T, such that A can
further ease the process of knowledge transfer. Although our
study shares a similar topic, our research method differs. Our
experimental results show significant performance improve-
ments by enabling the Audio-assistant model to capture the
multi-modal residual knowledge to refine the learned feature
representations. Most importantly, we focus on the question
of utilizing multiple domain knowledge for network perfor-
mance improvements.

3 Method
In this section, we detail a novel distillation method for the
spoken question answering task. First, we present the design
decisions for the proposed BERT-based network. We then
present the proposed multi-modal residual knowledge distil-
lation (MRKD) algorithm (See Figure 1). Next, we intro-
duce the proposed ST-Attention mechanism (See Figure 2),
and perform prediction-layer distillation to guide the learn-
ing framework throughout the training process. Finally, we
describe how to incorporate the progressive learning in the
training procedure in Section 3.5.

3.1 Problem Formulation
The backbone of the proposed MRD-Net is similar to
BERT [Devlin et al., 2019]. We follow the spoken ques-
tion answering convention in [Lee et al., 2018; Kuo et
al., 2020] that set the ASR token sequences of passages
and corresponding questions as input to the following mod-
ule. Specifically, a special token [CLS] is added to the
beginning of the input sequences, and a special bound-
ary token [SEP] is applied to separate token sequences.
Given a passage P = {p1, p2, ..., pn}, and the correspond-
ing question Q = {q1, q2, ..., qm}, these two sequences
are packed together into {[CLS], q1, q2, ..., qm,[SEP],
p1, p2, ..., pn,[SEP]}. Then the pre-trained BERT is em-
ployed to extract hidden state features from the given token
sequences. A task-specific layer finally predicts the possibil-
ity of each token. Although directly adopting the pre-trained
BERT language model has achieved good performance, there
exist noisy ASR errors in the transcriptions, which signifi-
cantly lead to the degradation of SQA performance. Thus,
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Figure 1: Overview of the proposed MRD-Net.

the key research problem becomes how to effectively allevi-
ate the ASR errors and robust behavior functions. Different
from previous natural language processing (NLP) models, we
consider how to leverage spoken features to achieve better
performance.

3.2 Multi-Modal Residual Knowledge Distillation
Knowledge Distillation. MRD-Net uses a pretrained BERT
as the backbone of teacher and student models, consisting of
12 Transformer layers with the word embedding dimension
of 768. Specifically, T is trained on manual transcriptions,
and S on ASR transcriptions, including highly noisy ASR er-
rors. Thus, there exists a substantial gap between the learning
capacities of T and S.
Audio-Assistant. To narrow down the performance gap be-
tween the representation abilities of T and S, we use a BERT-
like network trained on discretized speech tokens as the
Audio-A. Concretely, a pre-trained VQ-Wav2Vec [Schneider
et al., 2019] is trained on Librispeech-960 [Panayotov et al.,
2015] to encode speech signals to a sequence of input tokens.
Audio-A then utilizes contextual information from speech to-
ken sequences to aid the S in the mimicking process by learn-
ing the residual error between the feature maps of S and T.
It is worth noting that Audio-A shares the similar structure
with S and T (See Section 4.2).

Intuitively, we perform MRKD to encourage S to fully ac-
quire knowledge from T in the distillation process. More con-
cretely, in our proposed MRKD setting, S targets to mimic the
hidden state representations of T to achieve comparable per-
formance. Since there exists a huge gap of the learning ca-
pacities between T and S, we introduce Audio-A to facilitate

the knowledge transfer process.
In MRKD, each model consists of the L-layer Transformer

model, as shown in Figure 1. Let hAL , hTL , and hSL denote the
hidden state features of Audio-A, T and S, respectively. Then,
we train Audio-A by minimizing the following loss function:

LA =
(hTL − hSL)(h

A
L)
T∥∥hTL − hSL

∥∥
2

∥∥hAL
∥∥
2

, (1)

where the size of hidden state features hAL , hTL , and hSL are
l1 × d1, l2 × d2, and l2 × d2, respectively. l1 and l2 refer to
the length of input speech word tokens and text word tokens,
and d1 and d2 are the word embedding dimensions, respec-
tively. Then we compute residual-error-involved feature rep-
resentations by summing the feature maps with the residual
error with hL = hSL + hAL , will be used as the input of the
following St-Attention.

3.3 ST-Attention
To achieve more accurate distillation process, we propose a
novel ST-Attention mechanism by fusing audio features and
textual features (See Figure 2). Let hL and sL represent fea-
ture representations in both text and spoken forms. The calcu-
lation of ST-Attention mechanism depends on the three com-
ponents of key, query and value matrices with Transformer
layers. Different from self-attention mechanism, we first set
key-value pairs from textual features and queries from acous-
tic information as input. The attention heads compute atten-
tion maps aL in the speech domain with additional text con-
text information. Then, we choose aL as key-value pairs with
hL as queries into the following module to generate audio-
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Figure 2: Overview of ST-Attention mechanism.

text feature representations wL. To ease the process of knowl-
edge transfer, we adopt the Adapter [Houlsby et al., 2019]
in the ST-Attention mechanism with the parameter-efficient
tuning to yield a compact and extensible model for every new
NLP task. The feature map wL is used for inference.

3.4 Prediction Layer Distillation
In addition to mimick the behavior of the L-th layer, we
also utilize the standard knowledge distillation [Hinton et al.,
2015]. Specifically, we compute the soft cross-entropy loss
to guide S to learn from the softened output of T. More con-
cretely, wTL and wSL = wL denote the logits vectors generated
by T and S, and y represents the corresponding sequence of
ground-truth. We perform prediction layer distillation, and
the objective is defined as:

LS = αLNLL(pτ (wSL), pτ (w
T
L)) + (1− α)LCE(wSL, y),

(2)
where LNLL and LCE denote the negative log-likelihood loss
and cross-entropy loss, respectively. pτ (·) refers to the soft-
max function with temperature τ . α is a hyper-parameter .

In the training phase, to achieve better performance, the
knowledge transfer process consists of two steps. S first distill
knowledge from the softened output of T, and then Audio-A
is introduced to help refine the feature representations by cap-
turing the underlying knowledge to improve the performance
significantly.

3.5 MRKD with Progressive Learning
Inspired by the recent success [Wang et al., 2018], we in-
corporate progressive learning into MRKD to enable more
effective knowledge transfer. In this fashion, S is able to cap-
ture both high-level and low-level information from T, lead-
ing to significant performance gains. Concretely, we perform
MRKD with each block to advance the process of the knowl-
edge transfer. For example, in the first layer, S1 attempts
to mimic the feature map of T1, and then Audio-A1 learns
the residual error given the intermediate feature maps. After

Data Usage Experimental Results

Training Dev & Test EM F1

Manual Manual 67.73 77.71

Manual ASR 41.79 54.70

ASR ASR 40.58 54.12

ASR Manual 42.53 54.81

Table 1: Performance of BERT model trained on different types of
transcriptions on Spoken-CoQA.

that, residual-error-involved features are utilized as the input
for the following training. Following this learning strategy,
both S is able to learn richer knowledge from T at multiple
levels. In this way, S can be optimized at one time with

LA =

L∑
i=1

(hTi − hSi )(h
A
i )
T∥∥hTi − hSi

∥∥
2

∥∥hAi
∥∥
2

. (3)

4 Experiments
4.1 Datasets
In this section, we evaluate the effectiveness of the proposed
method on a variety of speech question answering tasks.

Spoken-SQuAD Spoken-SQuAD [Li et al., 2018] is an En-
glish listening comprehension dataset, which contains 37k
ASR transcripts question pairs in the training set and 5.4k in
the testing set, respectively. In Spoken-SQuAD, the spoken
documents are in spoken form, and the questions and answers
are in the text form. Specially, the word error rate (WER)
is 22.77% on the training set, and 22.73% on the testing
set, respectively. The manual written documents of Spoken-
SQuAD are from the original SQuAD dataset [Rajpurkar et
al., 2016], which is one of the most popular machine reading
comprehension benchmark datasets.

FGC 2018 Formosa Grand Challenge (FGC) dataset 1 is
a Mandarin Chinese spoken multi-choice question answer-
ing (MCQA) dataset, which includes 7k passage-question-
choices (PQC) pairs as the training set and 1.5k as the de-
velopment set, respectively. Each PQC pair consists of a pas-
sage, a question, and four corresponding answers, in that only
one choice is the correct answer. In FGC dataset, all passages,
questions, and multiple choices are in spoken form. Follow-
ing the standard setting in [Kuo et al., 2020], we utilize the
Kaldi toolkit to build up our ASR system where the WER is
about 20.4%.

Spoken-CoQA Spoken-CoQA [You et al., 2020a] is an
English spoken conversational question answering (SCQA)
dataset, which consists of 40k and 3.8k question-answer pairs
from 4k conversations in the training set and 380 conversa-
tions in test set from seven diverse domains, respectively. The
WER is 18.7%. In Spoken-CoQA, questions and passages are
both in text and spoken form, and answers are in the text form,

1https://fgc.stpi.narl.org.tw/activity/techai2018



Method Spoken-SQuAD Spoken-CoQA FGC

EM F1 AOS EM F1 AOS Accuracy (%)

SDNet [Zhu et al., 2018] 57.81 71.84 64.72 41.51 53.12 42.57 76.70
HMM [Luo et al., 2019] 54.43 65.11 46.88 37.71 50.09 34.75 72.00
Lee et al. [2019] 51.11 63.11 - - - - 69.88
Speech-BERT [Chuang et al., 2020] 51.09 63.09 59.61 40.41 51.77 43.11 68.72
vanilla BERT [Devlin et al., 2019] 58.31 70.20 64.12 40.58 54.12 48.01 77.00
Su and Fung [2020] 59.71 70.94 65.01 42.11 55.64 48.17 77.78
aeBERT [Kuo et al., 2020] 59.37 70.36 67.87 44.38 55.67 50.34 78.20

MRD-Net 62.31 74.95 70.81 49.24 60.78 54.02 81.91
Progressive MRD-Net 63.12 75.89 71.79 50.75 61.99 54.68 82.73

Table 2: Comparison results between our proposed model with other methods. Progressive MRD-Net is MRD-Net with progressive learning.

respectively. In the spoken conversational question answer-
ing task, the machine comprehension systems aim to fully
understand the spoken multi-turn dialogues, and then answer
questions among the passage and conversations.

4.2 Experimental Settings
In this study, we use BPE as the tokenizer to generate token
sequences as input for both T and S, and Audio-A adopts VQ-
Wav2Vec as tokenizer. The maximum sequence lengths of T
and S are 512, and the Audio-A is 1024. We utilize AdamW
optimizer in training, and the learning rate is set to 8e-6. All
models are trained using 4 as the batch size. The hyperpa-
rameter τ and α are set to 1 and 0.9, respectively. Specially,
when training MRD-Net on Spoken-CoQA dataset, we uti-
lize conversation history via adding the last question with
previous 2 rounds of questions and ground-truth answers.
When training MRD-Net on FGC, we concatenate ASR to-
ken sequences of a passage, a question, and the correspond-
ing answers in training. We train our student model using
2 NVIDIA 2080Ti GPU. We choose Exact Matched (EM)
percentage and F1 score as the evaluation metrics for Spoken-
CoQA and Spoken-SQuAD, and use accuracy to evaluate the
model on FGC. Furthermore, we adopt Audio Overlapping
Score (AOS) [Li et al., 2018] to evaluate overlap of time span
between predictions and ground-truth answers.

4.3 Results
To demonstrate the performance degradation caused by ASR
errors, we first evaluate the standard BERT on Spoken-CoQA
dataset, which only set text document as inputs for answer
predictions. In Table 1, we find that using standard BERT
to train and to make inferences on the manual transcriptions
achieves 67.73%/77.71% on EM/F1 scores, which outper-
forms that in other settings. This indicates that speech recog-
nition errors lead to poor performances of the SQA systems,
confirming the similar patterns in [Lee et al., 2019].

We also demonstrate the effectiveness of our proposed
method. The results on Spoken-SQuAD, Spoken-CoQA, and
FGC datasets are reported in Table 2. From Table 2, we can
draw two following conclusions. i) The proposed method sig-
nificantly outperforms all other evaluated methods. For ex-
ample, on FGC dataset, aeBERT is the best language model
among all the 7 evaluated methods. Compared with aeBERT,

Model S-SQuAD S-CoQA FGC

F1 F1 Accuracy (%)

MRD-Net 74.95 60.78 81.91
- w/o pl distillation 73.87 59.23 80.75
- w/o Audio-A 73.09 58.12 80.42
- w/o ST-Attention 72.81 58.61 79.07
- w/ MSE 74.32 60.13 81.20

Table 3: Ablation study of different components of MRD-Net on
Spoken-SQuAD (S-SQuAD) and Spoken-CoQA (S-CoQA), respec-
tively. For brevity, pl distillation denotes prediction layer distilla-
tion. MSE denotes using mean-squared-error loss function instead
of Equation 1.

our proposed model achieves 81.91% (+ 3.71% improve-
ment) in terms of accuracy. Moreover, MRD-Net is capable
of achieving superior performance on Spoken-SQuAD and
Spoken-CoQA datasets. The results suggest that our pro-
posed method is capable of improving the performance in a
variety of language tasks. ii) Here we introduce the progres-
sive learning strategy to MRD-Net (Progressive MRD-Net).
Table 2 shows that Progressive MRD-Net can perform bet-
ter than that without using progressive learning, improving
the results by 0.81%/0.96% and 0.98% on Spoken-SQuAD,
1.51%/1.21% and 0.66% on Spoken-CoQA and 0.82% on
FGC, in terms of EM, F1, and AOS scores, respectively. This
suggests that some missing low-level feature representations
embedded in both text corpora and speech documents can
help with the performance improvements.

5 Ablation Study
In this section, we conduct ablation studies to analyze the
following contributions of: i) validating the effectiveness of
different components, ii) examining different distillation ob-
jectives, iii) investigating how ST-Attention results in perfor-
mance gain, iv) exploring how the hyperparameter selection
affects network performance. Note that here we utilize the
pre-trained BERT as the backbone for T and S in this study.

Different Components of MRD-Net. We report results in
Table 3. We can clearly see that removing either perdition
layer distillation or Audio-A leads to a significant perfor-
mance drop over three benchmark datasets. This confirms the



Algorithm S-SQuAD S-CoQA FGC

F1 F1 Accuracy (%)

KD (Text only) 72.23 57.68 78.81
RKD (Text only) 73.09 58.12 80.75
KD (Audio only) 64.51 52.31 70.01

“[CLS]”-based 69.32 53.10 76.43
Attention-based 74.11 59.11 80.78
MRD-Net 74.95 60.78 81.91

Table 4: Comparison results of different distillation objectives. Text
only and Audio only denote T is trained on text or speech docu-
ments, respectively, and S is trained on ASR transcripts. ‘[CLS]”-
based means using hidden features from the “[CLS]” token as dis-
tilled knowledge. Attention-based represents distilling knowledge
from self-attention weights instead of using hidden state features in
transformer block. To make better evaluation, all T and S model are
fixed to the same structure.
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Figure 3: Performance of different temperature τ .

importance of the knowledge transfer process and audio fea-
tures in this setting. The results also indicate that the acoustic-
level information distilled from Audio-A can help S to deeply
model the behavior of T. Specifically, we observe that with-
out using ST-Attention leads to the performances drop by
2.14%, 2.17% and 2.84%, respectively. Moreover, it is worth
to note that using mean-squared-error (MSE) loss instead of
Eq.1 also suffers performance degradation.

Effects of Distillation Objectives. We investigate the ef-
fects of distillation objectives on the proposed method. The
quantitative results are reported in Table 4. From Table 4,
we can obtain the following conclusion. i) Compared with
directly using knowledge distillation strategy on either text
corpora or audio documents, the proposed model achieves
better performance by using both acoustic and textual fea-
tures. This indicates the importance of multi-domain knowl-
edge for SQA tasks. ii) Directly utilizing the [CLS] to-
ken in BERT [Devlin et al., 2019] to process passage for
the following knowledge transfer process leads to the sig-
nificant performance drop. This shows that, compared with
the simple sentence-level classifier tasks, the SQA task is
more challenging for machine systems to fully comprehend
the passages and make correct predictions. iii) Our proposed
MRKD approach outperforms the attention-based distillation
approach [Jiao et al., 2020]. Although knowledge embed-
ded in attention weights contains more syntax and corefer-
ence information, it is hard to align similar abstract concepts

Algorithm S-SQuAD S-CoQA FGC

F1 F1 Accuracy (%)

Multi-T [2019] 71.93 56.69 78.76
Co-Att [2019] 72.82 58.07 79.63
ICCN [2020] 71.71 57.31 79.01
S-Fusion [2020] 68.16 51.79 75.13

ST-Attention 74.95 60.78 81.91
- w/o Adapters 74.41 60.15 81.13

Table 5: Comparison results of ST-Attention mechanism.

Algorithm Happy Sad Angry Neutral
Acc(h) F1(h) Acc(h) F1(h) Acc(h) F1(h) Acc(h) F1(h)

Multi-T [2019] 84.4 81.9 77.7 74.1 73.9 70.2 62.5 59.7
ICCN [2020] 87.41 84.72 86.26 85.93 88.62 88.02 69.73 68.47
Co-Attention [2019] 88.64 87.61 89.01 88.3 93.04 93.21 80.31 79.09
Shallow-Fusion [2020] 89.71 88.34 89.48 89.2 93.82 93.9 80.93 81.01

St-Attention 90.76 89.42 90.54 89.7 94.21 94.76 82.31 82.77

Table 6: Comparison results of multi-modal emotion fusion mecha-
nisms on ICMOCAP.

in speech representations. In contrast, our proposed method
can effectively tackle the above issues.
Effects of ST-Attention. We also investigate the effective-
ness of ST-Attention mechanism. As shown in Table 5, using
ST-Attention achieves superior performance compared with
other methods. Furthermore, we can see that using Adapters
results in small performance degradation. This demonstrates
that Adapters can yield performance gains by filtering out
useless knowledge. To illustrate the generality and robust-
ness of the proposed ST-Attention mechanism, we further
validate ST-Attention on the multi-modal emotion recogni-
tion task. For a fair comparison, we adopt various multi-
modal fusion mechanisms into the BERT-liked model [Siri-
wardhana et al., 2020]. Following the setting in [Sun et al.,
2020], we choose four most commonly used emotion cate-
gories, including Happy, Sad, Angry, and Neutral on IEMO-
CAP dataset [Busso et al., 2008]. In parallel, we use Binary
Accuracy and F1-Score for evaluation. As shown in Table 6,
we observe that our method achieves better performance than
other evaluated methods among all emotion categories.
Effects of Temperature τ . We present the model perfor-
mance with different temperature τ in Figure 3. τ is chosen
from {1, 2, 4, 6, 8}. From Figure 3, MRD-Net achieves supe-
rior results when τ is set to 1.

6 Conclusion
We propose a novel speech question answering framework,
called MRD-Net, which further distills knowledge from T to
alleviate ASR errors. Specially, we introduce audio-A to aid
knowledge transfer process for performance improvements.
In addition, we introduce ST-Attention mechanism by incor-
porating audio-text representations to further distill multi-
domain knowledge to bring further performance improve-
ments. Extensive experiments demonstrate the effectiveness
of the proposed method on a variety of tasks. In future work,
we will explore new training strategies by only leveraging
acoustic features to achieve comparable performance.
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