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Abstract—Multi-head attention (MHA) has shown its effective-
ness on aggregating frame-level features for speaker verification
task. However, MHA weights each frame individually without
considering context information which is important for modeling
speaker characteristics of the speech. Based on the assumption
that the highly relevant context information should follow a
temporal Gaussian distribution, we propose a novel variant
of multi-head attention, named as context-adaptive Gaussian
attention (CGA), which employs a set of Gaussian functions with
different parameters to dynamically model the distributions of
the weights obtained from each head. Furthermore, a Gaussian
Clustering algorithm (GC) is designed to merge the overlapped
Gaussian distributions between different heads. In this way, the
proposed method can facilitate the model to better capture multi-
span context information compared to the traditional multi-
head attention. Experiments on Voxceleb1 dataset demonstrate
that the proposed CGA outperforms the state-of-the-art pooling
approaches.

I. INTRODUCTION

Speaker verification (SV) is the task of verifying whether an
unkown speech segment belongs to a specific target speaker.
According to the restriction of the uttered content, speaker
verification can be categorized into text-dependent speaker
verification (TD-SV) and text-independent speaker verification
(TI-SV).

For many years, the combination of i-vector and Proba-
bilistic Linear Discriminant Analysis (PLDA) has become the
dominant approach [1]. Recently, with the advancement in
deep learning, more attention has been paid to discriminative
speaker embedding learning in speaker verification (SV) task.
Among these attempts, well-designed neural networks (e.g.
convolutional neural networks (CNNs) [2], recurrent neural
networks (RNNs) [3]) and loss function ( e.g. triplet loss[4],
Angular Softmax loss [5], cosine loss [6], affinity loss[7])
have been employed to enhance the discrimination of speaker
embedding. Most of these SV systems employed a pooling
mechanism to aggregation the variable-length frame-level fea-
tures into an utterance-level speaker embedding representation.

In d-vector based systems [8][9][10], temporal average
pooling was utilized to average the activation vectors of the
bottleneck layer over the feature sequence of an input speech
segment. The works in [11][12] proposed to use higher-order
statistic to characterize the variation across the frame-level
features. The mean and standard deviation of the frame-level
feature vectors were computed and then concatenated via a
statistic pooling layer. The speaker embedding (referred to as

x-vector) was derived from the following two hidden layers.
The experiments showed that x-vector outperformed i-vector
for short duration speech segments. However, the statistic
pooling assigns equal weight to each frame-level feature, this
may limit the performance of x-vectors.

Intuitively, the speaker model should be built upon the
frames corresponding to the phonemes instead of silent and
noisy frames. Thus, many efforts have been focused on using
a structured attention layer to learn different weights for dif-
ferent frames. In [13][14], the frame-level weights are learned
by a self-attention pooling mechanism, the concatenation of
weighted mean and standard deviation vector over an utterance
was produced by a weighted statistics pooling layer. To help
the network to attend to different sub-sets of the encoded
frame-level features, a self multi-head attention (MHA) mech-
anism was introduced in [3][15]. The MHA produces a set
of weight alignments (one for each head), so that the SV
model can jointly capture crucial discriminative information
from different representation subspaces. In this way, the final
utterance-level speaker embedding is obtained by concatenat-
ing the utterance-level representations from all the heads. The
existing attention mechanisms weight each frame-level feature
independently without considering of the context information.
However, the impact of context information among frames is
important in speech processing literature.

To address this problem, this paper proposes a novel
strategy to strengthen multi-head attention through capturing
the context information. The key idea is to learn context-
adaptive attention for aggregating the frame-level features.
Specifically, the weights obtained from each attention head
are calibrated using a Gaussian distribution, which is used to
dynamically capture the highly relevant regions in a fixed-
length context. To make the model attend to context with
vairous lengths, a Gaussian Clustering algorithm is further
proposed to merge the overlapped Gaussian distributions from
different heads. This enables the model to capture multi-
span context information. Finally, the revised weights are
used to compute the weighted mean vectors and weighted
standard deviation (std) vectors over variable-length frame-
level features. These weighted mean and std vectors are then
concatenated and fed into the following proceeding layers to
produce the utterance-level speaker embedding.

In summary, our contributions include: (a) we propose a
novel context-adaptive Gaussian attention (CGA) mechanism
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to weight frame-level features by the context information. (b)
a Gaussian Clustering (GC) algorithm is proposed to merge
overlapping weights. (c) CGA based x-vector system achieves
the state-of-the-art performance on Voxceleb1 dataset.

The rest of the paper is organized as follows. Section II
gives a brief introduction to the speaker embedding extrac-
tor and multi-head attention mechanism. Section 3 describes
the proposed CGA in detail. Experimental setup including
database description, training paradigm and results analysis
are described in Section 4. Section 5 concludes the paper.

II. RELATED WORKS

A. X-vector Extractor

Since the architecture of x-vector system [12] has proved
to be an effective speaker embedding extractor, this work
is built on the same extractor as in [12]. The extractor
employs five time-delay neural network (TDNN) layers to
produce the frame-level features. The frame-level features
are aggregated into a utterance-level representation through
a statistics pooling layer. In this layer, the mean and standard
deviation of these frame-level features are calculated and then
concatenated. Two additional feedforward layers followed with
a softmax layer are used to predict speaker identities. Once
the network is trained, the output of the last hidden layer is
regarded as the x-vector.

B. Multi-head Attention Mechanism

In speaker verification task, self attention mechanism has
been employed to emphasize the frame-level features with
strong speaker-discriminative information by calculating an
attention weight for each frame in [13], [14]. The utterance-
level representation extracted by vanilla self-attention mecha-
nism focuses on a specific encoded representation subspace
of the input utterance [15]. In other words, the utterance-
level feature only reflects one aspect of input utterance. To
address this problem, multi-head attention was proposed to
split the encoded representations into multiple homogeneous
sub-vectors called heads [16].

Formally, assuming H ∈ R
T×D is a frame-level feature

sequence of an utterance, where T is the number of total
frames in the utterance, and D is the feature dimension of each
frame. The multi-head attention takes the frame-level features
H as input, and computes the normalized weights matrix A
as follows:

A = softmax(f(HW1)W2) (1)

where the scalar weight A = {an}Nn=1 ∈ R
T×N , with N

heads, and each column vector an ∈ R
T×1 corresponds to

the attention weight vector obtained from head n. W1 is
an intermediate linear projection layer with size of D × M .
f(·) is a activation function. W2 is a trainable matrix of size
M ×N . It is noted that the softmax(·) is performed along the
column. The weighted mean vectors E = {en}Nn=1 ∈ R

N×D

is obtained by:
E = A�H (2)

III. CONTEXT-ADAPTIVE GAUSSIAN ATTENTION

In this section, we present the proposed context-adaptive
Gaussian attention in detail. Figure 1 illustrates the conception
of the proposed method. It consists of two main components:
Gaussianization of attention weights and a Gaussian clustering
(GC) algorithm.

A. Gaussianization of Attention Weights

Given a sequence of frame-level features H, to obtain the
utterance-level representation, a natural aggregation way is to
employ attention mechanism (e.g. self-attention, multi-head
attention) to assign a weight for each frame-level feature ht.
Then, the utterance-level representation can be produced by a
weighted statistic pooling. In this kind of pooling strategy, the
weight of each frame-level feature is computed individually.
However, it has been noted that, the context information
cannot be ignored in audio processing. To capture the context
information, we introduce Gaussian distributions to model the
temporal correlation between adjacent frame-level features.
Specifically, we compute the multi-head continuous relevance
score matrix Â = {ân}Nn=1 ∈ R

T×N across the frames as:

ân[i] =
1√
2πσ

exp(− (i− cn)
2

2σ2
)

cn = argmax
i

(an[i]) i ∈ {0, 1, ..., T}
(3)

where the elements of ân follow a Gaussian distribution with
mean value (index of the maximum value in ân) cn, the
standard deviation σ which controls the context length is fixed
to a constant in consideration of the duration of the training
segments. According to Eq. 3, the attention weights produced
by the multi-head attention are calibrated using N Gaussian
distributions respectively.

During the training stage, each of the Gaussian distribution
tends to focus on a local region around the most relevant
frame. So that each head models the context information of a
specific sub-segment in an input utterance. Gaussianization of
the attention weights derived from all the heads facilitates the
SV model to capture the context information of different sub-
segments in an input utterance. Unlike the traditional MHA
which weights each frame-level feature individually, the pro-
posed method takes the context information into consideration
when assigning weights to different frames.

B. Gaussian Clustering

With a standard deviation constant in Gaussian distribution,
the context is fixed to a certain duration. However, if Gaussian
distributions between different heads overlap with each other,
it suggests that each of them alone may not have the capability
to model information spanning a long context. To address this
issue, we propose a novel Gaussian Clustering algorithm to
merge those overlapped distributions and enable the capture
of the multi-span context, as shown in Figure 1.

Given two Gaussian-revised attention weights ap and aq
with center location of cp and cq , respectively, if the distance

��������	
���������		����������	���	����	������ �����������������������	�� �!"����	�

#$'

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 18,2021 at 08:07:21 UTC from IEEE Xplore.  Restrictions apply. 



Weighted means and standard deviations

Frame-level features H Multi-head attention weights A

Gaussianization of�
Attention�Weights

T frames
T� D

… … …
T� M T� N

2N� D Gaussian�clustering

c1 c2
�(�� + ��) 2

Gaussian�clustering

cc11 cc22
��((��� ++ ���)) 22

�� � �� < �

Merge

Attentive statistic pooling

P
ro

jectio
n
 L

ay
er

P
ro

jectio
n
 L

ay
er

[e1, …, eN, s1, …, sN ]

Fig. 1. Conception of our proposed context-adaptive Gaussian attention (CGA). It consists of two components: (1) Gaussian attention weight, each head’s
attention computed by multi-head attention is reformulated by the corresponding Gaussian distribution. (2) Gaussian Clustering: the overlapped Gaussian
distributions (blue and red) are merged to a Gaussian distribution with longer context.

between two center locations is smaller than a pre-defined
threshold λ, we merge these two distributions into one distri-
bution. The new distribution is shown as follows:

ân[i] =
1√
2πσ̀

exp(− (i− c̀n)
2

2σ̀2
)

c̀n =
cp + cq

2
, σ̀ = 2σ

i ∈ {0, 1, ..., T}

(4)

Through the attentive statistic pooling layer [13], the weighted
mean vectors en ∈ R

1×D and the weighted standard deviation
vectors sn ∈ R

1×D of head n are computed as follows:

en = â�nH

sn =
√
â�nH�H− en � en

(5)

The final utterance-level representation is then produced by
the concatenation of the weighted mean vectors and standard
deviation vectors from all the heads.

IV. EXPERIMENT AND ANALYSIS
A. Dataset

We evaluate the performance of our SV system on the
VoxCeleb1 dataset [17] since it is a widely used challenging
public speaker verification dataset. Specifically, this dataset
consists of about 150,000 utterances from 1251 different
speakers. The utterances are collected from YouTube videos.
The speakers belong to different races and have a wide range
of accents.

B. Implementation details
In order to compare experimental results and evaluate the

performance of our proposed CGA equitably, our experimental
settings are kept consistent with those of baselines [19]. Except
for the pooling strategy., we utilize the same network structure,
data processing, loss function, training and testing strategies
in our experiments as those used in [12], [19].

Network structure: The network is constructed based on
the x-vector system [12]. To be specific, a 5-layer TDNN is
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TABLE I
COMPARSION OF THE PROPOSED AND STATE-OF-THE-ART APPROACHES ON VOXCELEB1 DATASET. LDE DENOTES THE LEARNABLE DICTIONARY

ENCODING LAYER. SPE DENOTES THE SPATIAL PYRAMID ENCODING. MHA DENOTES MULTI-HEAD ATTENTION.(LOWER IS BETTER)

Front-end model Pooling Strategy Loss Function EER(%)
ivector+PLDA [17] - - 8.8

VGG-M [17] Temporal Average Contrastive loss 7.8
x-vector [2] Statistics Pooling Softmax loss 6.0
x-vector [13] Self-Attention Softmax loss 4.52
VGG(1d) [2] Statistics Pooling Softmax loss 5.3

LSTM [3] Self-Attention GE2E 6.2
LSTM(head:5) [3] MHA GE2E 5.2

ResNet-34 [5] Temporal Average A-softmax 4.46
ResNet-34 [5] LDE A-softmax 4.56
ResNet-34 [5] Self-Attention A-softmax + GNLL 4.40

ResNet-34 [18] SPE Softmax loss 4.20
VGG-ASR [15] Statistics Pooling Softmax loss 4.9
VGG-ASR [15] Self-Attention Softmax loss 4.71

x-vector [our implementation] Statistics Pooling Softmax loss 5.69
x-vector [our implementation] Self-Attention Softmax loss 4.99
x-vector [our implementation] MHA Softmax loss 4.24

x-vector [proposed] CGA Softmax loss 4.06

TABLE II
PERFORMANCE COMPARISON OF THE CGA WITH TRADITIONAL
MULTI-HEAD ATTENTION ON VOXCELEB1 FOR DIFFERENT HEAD

NUMBERS (LOWER IS BETTER).

Pooling strategy n head EER(%)

Multi-head Attention

4 4.43
6 4.44
8 4.41
16 4.24

CGA

4 4.13
6 4.09
8 4.08
16 4.06

used to produce frame-level features. Followed [19], [20], the
kernel size for each layer is [5,5,7,1,1] without dilation.

Features: The acoustic features are 30-dimensional MFCCs
with a frame length of 25ms. Mean-normalization was per-
formed on each feature dimension of the MFCCs. Also,
an energy-based voice active detection (VAD) was used to
detect speech frames. To increase the diversity of the training
data, we augmented the training data using reverberation and
additive noises from MUSAN [21] and RIR [22], respectively.

Training: We randomly chose 64 speakers in every training
step. The number of the features extracted from the truncated
training speech segments ranges from 200 to 400. The network
was optimized by stochastic gradient descent (SGD) with
an initial learning rate 0.01. L2-regularization was employed
to prevent overfitting during the training. According to the
duration of the training segments, the parameters σ and λ
were set to 10 based on cross validation. This means that each
Gaussian distribution can model a specific sub-segment with
225ms (2* 10 * 10ms (frame shift) + 25ms (frame length)).

C. Comparison with Recent Relevant Methods

System performance comparison between the proposed
CGA and the state-of-the-art relevant methods is shown in the
Table I. Our x-vector+CGA system achieves the comparable
lower EER among all the competitive systems. With the same

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT HYPERPARAMETERS IN

X-VECTOR+CGA (THE HEAD NUMBER IS SET TO 4).

hyperparameters EER(%)
σ = 5 4.30
σ = 8 4.39
σ = 10 4.13
σ = 12 4.30
σ = 15 4.37

x-vector feature extractor, the x-vector+MHA outperforms the
original x-vector+Statistics Pooling by a relative 22.49% EER
reduction. This confirms the effectiveness of the attention
mechanism. By replacing the MHA with CGA, a further
improvement is achieved (EER of 4.06% vs 4.24%).

D. Comparison with Traditional Multi-head Attention

In this section, we evaluate the performance of the proposed
CGA and the traditional multi-head attention under different
conditions of head number, i.e., 4, 6, 8, 16. The results
are shown in Table II. Compared with x-vector+MHA, the
x-vector+CGA achieves 6.77%, 7.88%, 7.25% and 4.24%
relative improvements with 4 ,6 ,8 and 16 head. This indicates
that it is reasonable to consider the context information to
weight frames rather than calculate the weight of each frame
separately. With the increment of head number, we notice that
the performance improvement of x-vector+CGA is smoother
than that of MHA. The reason is that the Gaussian clustering
algorithm merges the overlapped Gaussian distribution with
the increasing number of head, leading to a more stable
performance.

E. Effects of hyper-parameter

The main hyper-parameter in CGA is the variance σ, which
controls the context length in attention weights Gaussianiza-
tion algorithm. In Table III, we evaluate the performance of
x-vector+CGA(head:4) with σ varies from 5 to 15. From the
Table, with the increase of σ, the performance of the system
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shows an unstable change. When σ is set to 4, the system has
the best performance (EER: 4.13%).

V. CONCLUSION

This paper proposes a context-adaptive Gaussian attention
(CGA) mechanism to model context information in speech
utterances. CGA utilizes a set of learnable temporal Gaus-
sian distributions to dynamically capture the highly relevant
regions. To model information spanning a long context, a
Gaussian Clustering algorithm is proposed to merge those
overlapped distributions. In this way, the CGA is able to
capture multi-span context information. Experimental results
on Voxceleb1 dataset demonstrate the effectiveness of our
proposed CGA mechanism.
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