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Abstract

Few-shot intent detection is a problem that only a few annotated
examples are available for unseen intents, and deep models
could suffer from the overfitting problem because of scarce data.
Existing state-of-the-art few-shot model, Prototypical Network
(PN), mainly focus on computing the similarity between ex-
amples in a metric space by leveraging sentence-level instance
representations. However, sentence-level representations may
incorporate highly noisy signals from unrelated words which
leads to performance degradation. In this paper, we propose
Semantic Transportation Prototypical Network (STPN) to alle-
viate this issue. Different from the original PN, our approach
takes word-level representation as input and uses a new dis-
tance metric to obtain better sample matching result. And we
reformulate the few-shot classification task into an instance of
optimal matching, in which the key word semantic information
between examples are expected to be matched and the match-
ing cost is treated as similarity. Specifically, we design Mutual-
Semantic mechanism to generate word semantic information,
which could reduce the unrelated word noise and enrich key
word information. Then, Earth Mover’s Distance (EMD) is ap-
plied to find an optimal matching solution. Comprehensive ex-
periments on two benchmark datasets are conducted to validate
the effectiveness and generalization of our proposed model.
Index Terms: few-shot learning, intent detection, metric learn-
ing, spoken language system

1. Introduction

Intent detection (ID) is a challenging task in building task-
oriented spoken dialogue systems, which aims to capture un-
derlying intents from given utterances. During past years, deep
learning methods such as convolutional neural network (CNN)
[1, 2, 3], recurrent neural network (RNN) [4, 5, 6] and graph
neural network (GNN) [7] have been applied to this task and
achieved excellent performance. Moreover, pre-trained lan-
guage models [8, 9, 10] have also been explored to better detect
the intent implied in the given utterance. Despite of the promis-
ing results of these models, they often require large amounts
of labelled data, which is impractical in real world applications
because annotation is both time-consuming and costly.

In this paper, we focus on intent detection with only a few
training samples available, which is formally called few-shot in-
tent detection problem. Figure 1 gives an example of 3-way-1-
shot intent detection, where only one annotated sample is avail-
able for each three new intents. Essentially, few-shot intent de-
tection is a few-shot text classification (TC) task which has be-
come a hot topic recent years. Based on which aspect is the key
point, data or model, we divide existing few-shot TC methods
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Figure 1: 3-way-1-shot intent detection on NLUE [11]

into two categories: data augmentation (DA) and model im-
provement. DA aims to enrich the annotated data and reuse
deep models. [12, 13] proposed pseudo-labeling methods for
unlabelled data, using semi-supervised learning. But the acqui-
sition of the unlabelled data is also difficult. In order to tackle
the hindrance of collecting unlabelled data, several generative
DA approaches are given. [14] proposed back-translation which
utilizes language translation; [15] put forward Easy Data Aug-
mentation that consists of five word operations, such as syn-
onym replacement. Though DA can address the data scarcity
to some extent, it still suffers from the incorrectness of aug-
mented data and error can be accumulated to downstream tasks.
Thus, Model improvement is introduced as another solution,
which refers to designing dedicated models. Some end-to-end
few-shot classification models are discovered in computer vi-
sion (CV) field, including Matching Networks [16], Prototypi-
cal Networks (PN) [17] and Relation Networks [18]. Generally,
these models compute the similarity between query and support
set and then, classify the query into the class with highest rank.
[19] investigated the model performance on few-shot TC task
in order to check if these models are suitable for nature lan-
guage processing (NLP). They first used an encoder to extract
sentence-level vector, which can be regarded as global feature
vector, from word embedding. Then, they fed the vector into
aforementioned few-shot models and conducted experiments on
four text classification dataset. Their experiment results demon-
strates the superior performance of PN in few-shot TC tasks.
Although existing methods have achieved promising re-
sults, we observe that unrelated word may drive global fea-
ture representations from same class far apart in a metric space.
Abundant data and large model size could alleviate the data
noise to some extent, but the noise negatively impacts the few-
shot model whose parameters and labelled training data are few
[20]. Moreover, the global feature may lose the discrimina-
tive information maintained by words in sentence. Consider
the sentence “Book a train earlier in case of traffic jam” with
intent Transport ticket. We can easily figure out its intent rather
than query weather when noticing the key words “book” and
“train” while other words gives less information. Therefore, a
new distance metric is needed, which is capable of fully uti-
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lizing discriminative information of words and minimizing the
noise from irrelevant information.

To alleviate above-mentioned issues, we propose a novel
metric-based method, Semantic Transportation Prototypical
Network (STPN), to solve few-shot intent detection problem.
Different from the original Prototypical Networks, our approach
takes word-level local representation matrix as input and uses a
new distance metric to obtain better sample matching perfor-
mance. Specifically, we reformulate the sample matching prob-
lem into transportation optimization problem and adopt Earth
Mover‘s Distance (EMD) [21] to find an optimal solution. Our
model will be further detailed in section 2.4. Our contribu-
tion are three parts: 1)To the best of our knowledge, STPN is
the first few-shot intent detection model focusing on word-level
discriminative information, which is consistent to human cogni-
tion; 2) We adopt EMD as a distance metric to intent classifica-
tion, providing innovation of similarity measurement between
sentences, and we design Mutual-Semantic mechanism to ob-
tain semantic weight of words; 3) Experimental results on a
intent detection dataset and a text classification dataset demon-
strate the effectiveness and generalization of our method.

2. The Proposed Approach
2.1. Task Definition

Suppose we have a large labelled training set Dypqin. Our goal
is to develop a classifier that learns knowledge from Dirqin,
so that it can make predictions over new classes, in which we
only have a few annotated examples. In general, these few an-
notated data consist of support set Dgupport, and a query set
D query is also included to test the accuracy of the classifier on
new classes. Formally, if the support set contains K labelled
examples for each of the /N unique classes, we call this few-
shot problem a N-way-K-shot problem. For this paper we con-
sider N = 5 and K = 5 or 1. Obviously, K is too small to
train a good supervised classifier because such a data-scarcity
setting will bring about an overfitting problem. Therefore, we
follow the episode training strategy [16] to construct multiple
training episodes for /N-way-K-shot problem. For each train-
ing episode, we firstly sample a N-way-K -shot support set .S
and a query set (Q from Dyyqin, and then, both S and @ are
fed to the model to minimize loss. In the testing phase, same
episode mechanism is applied to report the model performance
on new classes which have never appeared in the training phase.

2.2. Revisiting Earth Mover’s Distance

The Earth Mover’s Distance (EMD), which is also known as
Wasserstein distance in mathematics, is often utilized to mea-
sure the distance between two sets of weighted objects or dis-
tributions. The EMD is initially regarded as a solution to the
transportation problem: Suppose that a set of suppliers S =
{si}i~, are required to transport something to a set of deman-
ders D = {d;}%_, and the transportation cost C' = {c; ;},i €
[1,m],j € [1,k] is given. The goal of EMD is to find a least-
expensive flow X, in the transportation plan set X = {x;;}
where ¢ € [1,m],j € [1, k]. Formally, EMD can be formulated
as a linear programming problem:

minimize > ", Zle CijTij

subjectto  x;; > 0,7 € [1,m],j € [1, k] (1)
Z?:l Tij = Si, RS [1,m]
ZZI zij =d;, J€ [Lk]
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where s; represents the supply units of supplier ¢, d; denotes
the demand of j-th demander, and z; ; represents the number
of units transported from supplier ¢ to demander j.

2.3. Prototypical Networks

Prototypical Networks (PN) were introduced by [17], and [19]
has proved its effectiveness in both CV and NLP field. The key
idea behind PN is very simple and straightforward. It learns
a feature space and computes the distance between samples in
that space to make classification.

Formally, given an instance S{ = {wa,...,wr}, which
is the i-th sample for class ¢ with 1" words, it will be em-
bedded to the semantic space as X{ = [z1,...,z7], Where
z; = Wew; € R?* and W, refers to the embedding matrix
whose dimension is d. Several methods can be used to obtain
the instance feature vector, like averaging and CNN. Once V°,
the vectors of instances belonging to class ¢ are obtained, the
prototype vector for class ¢ can be calculated by:

1 K
Pf= ;fe(vf) )

where the Fy represents a learnable linear function that could
transform feature spaces to better distinguish different classes.
Afterwards, given a query vector V'%, the similarity between the
query and the prototype of class c can be computed as follows:

_ exp(D(V1, P°))
S oy exp(D(Ve, P))

3

where D is a distance metric function. Note that in the origin
PN paper, the authors only used the euclidean distance as D, but
in our experiments the cosine distance will also be evaluated for
a more comprehensive comparison.

2.4. Semantic Transportation Prototypical Networks

During past years, although a lot of few-shot learning meth-
ods have been proposed, Prototypical Networks still work as
a strong baseline. This claim could be demonstrated in [19]
because, with the same experimental setting, Prototypical Net-
works perform better than many few-shot TC methods discov-
ered over the last few years. Besides, [19] also proved that
there are two key factors that determine PN’s performance: data
representation and the distance metric. Therefore, inspired by
these insights, we propose Semantic Transportation Prototypi-
cal Network (STPN) model for few-shot intent detection task,
which is illustrated in Figure 2. STPN is the upgrade version
of origin PN, taking both two influential factors into consider-
ation. For one thing, instead of computing the similarity be-
tween sentence-level representations, our STPN tends to utilize
the discriminative information of words, which are more diverse
and expressive. For another thing, we replace the distance met-
ric with EMD to transport semantic information and retrieve a
better matching result.

Our approach first decomposes the input sentences into lo-
cal representations and then, obtains the optimal matching cost
from EMD to measure the distance between input sentences.
Concretely, we use pre-trained language model as the sentence
embedding matrix Q € RT*¢, where T and d denote the sen-
tence length and embedding dimension. Each row of sentence
embedding matrix is the embedding vector of the correspond-
ing word in sentence and can be seen as the local word feature.



Distance Metric

39S Moddns
Beiany sse|d

J18p0oou3

Query

P€ € R™; embedding matrix of prototype for class ¢
Q € R™¢: embedding matrix of query

Dist(Q,P%) = Z %01
51, d; : weight of word w; or word w; ]

%, : optimal matching flow item
¢;j + matching flow cost

Loss

Figure 2: Semantic Transportation Prototypical Networks.

Thus, the similarity between two sentences can be measured by
the semantic matching cost between local feature collections.

Following the origin EMD equation in (1), we obtain the
cost unit by computing the pairwise cosine similarity between
local word features u; and v; from two sentences:

u; v;
(il [[[v;]]

Cij = 1-— (4)
where fewer semantic matching cost are needed for similar
words. Next, the semantic weight of word is computed, with
larger weight word playing a more important role in the com-
parison, and smaller ones hardly influencing the matching re-
sult. This can be interpreted as the key word matching mecha-
nism and is consistent with human intuitions: people can sepa-
rate similar short sentences with their semantic overlap words.
The semantic overlapping degree of the words is computed by
our proposed Mutual-Semantic mechanism, shown as (5) and
(6). We perform dot product between local word feature in sen-
tences to generate the semantic relevance of words:

T
1
S = max(f Z u; v;,0) Q)
j=1

where max(+) ensures the weight to be non-negative and d; can
be obtained in the same manner. Then, the weights are normal-
ized to make sure collections in both side share the same size:

3 TSZ‘

i= =7
Zj:l Sj

Finally, the optimal matching flows X is acquired by solving

EMD and the similarity score s between query sentence and
prototype sentence can be computed by (7).

T T
s(Q.P) = cijdi;

i=1 j=1

(6)

N

3. Experiments
3.1. Datasets

We evaluate our approach on NLUE, a dialogue intent detec-
tion dataset and Huffpost [22], a traditional text classification
dataset. NLUE is released by [11] and we utilize a subset of
utterances covering 64 intents. The vocab size is 2074 and its
average sentence length is 6. We randomly choose 30 intents as
training data and 8 intents as validation data, while the remain-
ing 26 intents are considered as test data. HuffPost headlines
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consists of news headlines published on HuffPost between 2012
and 2018. [22] split these headlines into 41 classes. The vocab
size is 8218 and its average sentence length is 11. The sentences
of huffpost are less grammatical than formal sentences.

3.2. Baselines and Implementation Details

Based on the fundamental works from [19], where PN shows
the best performance on TC task, we set up various combina-
tions of word embedding techniques, sentence representations
and distance metric for PN as baselines.

Word Embedding Techniques. We use three pre-trained lan-
guage models, fastText [23], GloVe [24] and BERT [8], as the
embedding matrix to help encode sentences.

Sentence Representations. We evaluate three sentence-level
representations and a word-level representation. AVG repre-
sents an example as the mean of all its word embeddings. IDF
represents an example as the weighted average of its word em-
beddings, in which weights are given by the inverse document
frequency over all dataset. CNN, followed by [25], retrieves
the representation by applying 1D convolution over the input
words. Word-level representation(WORD) gives up the assem-
bling operation and represents an example with a matrix, whose
row is the embedding of the corresponding word.

Distance metric. Cosine similarity(cos) and Euclidean Dis-
tance(12) are two commonly used distance metric.
Implementation Details. Baselines are the combination of
aforementioned models. All parameters are optimized using
Adam with a learning rate of 0.001. During meta-training,
we sample 100 training episodes per epoch with an early stop
strategy: when the validation loss fails to improve for over 10
epochs. Finally, we evaluate the model performance based on
1000 testing episode. The average accuracy is reported over 5
different random seeds and each seed is run over 5 times. Our
code implementation is partly based on the work of [26].

3.3. Results and Analysis

We first evaluate our model in 5-way-1-shot and 5-way-5-shot
intent detection tasks on NLUE. The experiment results are
shown in Table 1. Compared to all baselines with different set-
tings, our model achieves the best performance. For 1-shot set-
ting, our model improves accuracy at most by 6.6% and 2.0%
at most for 5-shot setting. The empirical results demonstrates
that our model is indeed effective in few-shot intent detection
task, and the word-level representation based distance metric is
more consistent to human cognition. And the significant im-
provement in 1-shot experiment indicates our model is more
competitive in extremely low resource settings.

Further more, we conduct the same experiments on Huff-
post to explore the generalization of our approach. Our ap-
proach achieves at most 1.4% accuracy improvement in 5-way-
5-shot and at most 4.2% in 5-way-1-shot. The results on Huff-
post in Table 1 indicates our proposed method not only works
for ID task, but also can be adapted to general TC tasks.

For both datasets, we evaluate different word embedding
techniques, such as fastText, GloVe and BERT. According to
Exp. A to F, the baselines shows a trend that models using fast-
Text and BERT are usually more competitive to the ones using
GloVe, while other settings are the same. However, it is oppo-
site when checking in our model, which can be seen in Exp.
J. Specifically, GloVe can bring our model at least 0.5% per-
formance improvement in 5-shot setting on NLUE and at most
4.5% improvement in 1-shot on NLUE. We postulate that fast-
Text and BERT are likely to containing more contextual infor-



Table 1: Experiments on 5-way-1-shot and 5-way-5-shot classification. In column Rep., SENT means sentence-level representation,
like [CLS] in BERT. A dash(-) means the setting is not available. Specially, the results with a dash in CNN row are limited to the data
because NLUE contains one word sentences and CNN is not compatible.

Method NLUE - 5 shot NLUE - 1 shot Huffpost - 5 shot Huffpost - 1 shot
Exp. ID Rep. Dist. fastText GloVe BERT fastText GloVe BERT fastText GloVe BERT fastText GloVe BERT
A AVG  cos 573 53.6 543 441 423 446 414 403 399 323 320 315
B AVG 12 66.9 67.1 674 49.4 496 512 48.6 474 475 342 325 332
C CNN  cos - - - - - - 383 383 373 307 304 30.1
D CNN 12 - - - - - - 414 420 460 320 321 333
E IDF cos 58.5 56.1 56.8 454 434 444 424 415 396 329 326  31.7
F IDF 12 679 695 673 497 48,6 506 488 484 493 341 325 332
G SENT  cos - - 50.1 - - 41.4 - - 40.4 - - 31.6
H SENT 12 - - 66.4 - - 48.9 - - 49.6 - - 33.6
I WORD WRD 499 520 50.6 358 384 38.6 353 348 39.1 264 270 303
J WORD EMD 699 714 67.8 552 562 51.7 493 498 500 359 368 358
mation than GloVe, and GloVe provides more word-level infor- 2 . 2
mation. So, GloVe is more consistent to our approach which 15 | * s
utilize word information to make sample comparison. D: B - 0s | 097 -
We also study two different distance metric, cosine simi- B | | 0 :
larity and Euclidean distance, which are commonly used. Uni- booy @ tray, Tor e "oy Tain ke,

formly, models using Euclidean distance performs better and at
least 1.3% accuracy improvement is achieved in 5-way-1-shot
on Huffpost. Mathematically, cosine similarity and Euclidean
distance can be given by (8) and (9):

u’v
Cos(u,v) =1—cos(u,v) =1— N (8)
Bul(u,v) = [[u— vl|> = [Ae@ — AFJ2
©)

= VXA (2C0s(1, v) + (Au — Av)?)
where Ay and Ay denote the norm of the vector and, U and v
is the direction vector. From (9), we can see that cosine simi-
larity can be obtained in Euclidean distance in some way. So,
we surmise that Euclidean distance is usually better than cosine
similarity because it gives both the norm and angle information.

3.4. Ablation Study

We conduct ablation study on our proposed method. The results
are shown with the Exp. 7 and J in Table 1 and our approach
outperforms in all settings. WRD distance metric is given by
[27] to improve the research in semantic textual similarity task.
WRD also uses EMD algorithm, while the weighting factor and
the transportation cost are given by the norm and angle of local
word feature vector. We re-implement WRD following its pa-
per. The difference between WRD and our distance metric is
the input parameters for EMD, which is the weight of words.
The experiment result shows that the semantic weight gener-
ated by our Mutual-Semantic mechanism is interpretative and
consistent to the explanation in section 2.4.

3.5. Visualization

We visualize the weights and optimal flow to illustrate how our
approach gives a good matching similarity. Figure 3a and Fig-
ure 3b show an example sentence pair with same label transport
ticket and their word semantic weights generated by our ap-
proach. The semantic overlap between words is given by Figure
3c, and deeper color means less semantic overlap degree. Figure
3d represents the number of weights transported to correspond-
ing position to construct the semantics of support sentence, with
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Figure 3: Weights and EMD result generated by our approach.

deeper color giving higher flow. As we can see, our approach
gives more attention to the label related key words, e.g. book,
train and reserve, and the semantic transportation between them
given by EMD is consistent to our recognition.

4. Conclusion

We propose a new few-shot intent detection method, Semantic
Transportation Prototypical Networks (STPN), which utilizes
word-level representation of instance, and matches key word se-
mantic of sentences. Also, we adopt EMD as a distance metric,
providing an innovation of matching similarity measurement.
Our proposed Mutual-Semantic mechanism, generating word
semantic weights for EMD, enriches key word semantic infor-
mation and reduces the noise signal from unrelated word. The
comprehensive experiments indicate the effectiveness and gen-
eralization of our approach.
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