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ABSTRACT
Spoken Language Understanding (SLU) is an essential part of
the spoken dialogue system, which typically consists of intent
detection (ID) and slot filling (SF) tasks. During the conversa-
tion, most utterances of people contain rich sentimental infor-
mation, which is helpful for performing the ID and SF tasks
but ignored to be explored by existing works. In this paper,
we argue that implicitly introducing sentimental features can
promote SLU performance. Specifically, we present a Multi-
task Learning (MTL) framework to implicitly extract and uti-
lize the aspect-based sentimental text features. Besides, we
introduce an Iteratively Co-Interactive Network (ICN) for the
SLU task to fully utilize the comprehensive text features. Ex-
perimental results show that with the external BERT repre-
sentation, our framework achieves new state-of-the-art on two
benchmark datasets, i.e., SNIPS and ATIS.

Index Terms— Spoken Language Understanding, Multi-
task Learning, Iteratively Co-Interactive Network, BERT,
Aspect-based Sentiment Information

1. INTRODUCTION

Spoken Language Understanding (SLU) is a critical compo-
nent in task-oriented dialogue systems and has been widely
exploited. It typically involves intent detection (ID) and slot
filling (SF) tasks. Examples of the SLU task are shown in Ta-
ble 1, given an utterance: “reserve for highly rated restaurant
in seychelles” from the SNIPS dataset, there are different slot
labels for each token and an intent for the whole utterance.

In the spoken dialogue system, we find that some utter-
ances contain rich sentimental information, and more impor-
tantly, such sentimental information is highly relevant to the
SLU task [1, 2, 3, 4, 5, 6, 7, 8]. For example, as can be seen
in Table 1, the utterances sampled from the SNIPS dataset
contain sentimental related tokens (i.e., highly rated and most
popular) which are also the key slots in the SF task. In addi-
tion, as for the End-to-End Aspect-based Sentiment Analysis
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Table 1: Utterances with intents and slots annotation (BIO
format) sampled from the SNIPS dataset.

Utter.1 reserve for highly rated restaurant in seychelles
Senti. O O B − POS I − POS O O O
Slots O O B − sort I − sort B − restaurnt type O B − country
Intent BookRestaurant

Utter.2 play the most popular album on GoogleMusic
Senti. O O B − POS I − POS O O O
Slots O O B − sort I − sort B −music item O B − service
Intent PlayMusic

(E2E-ABSA) task [9, 10], such tokens are usually treated as
users sentiment. For example, highly rated and most popular
are treated as positive sentiment in the E2E-ABSA task. Intu-
itively, the acquisition of sentimental information is effective
for identifying some special slots with sentimental tendencies.
In this paper, we argue that the SLU system can perform bet-
ter if we can effectively extract and utilize the sentimental
information as additional features. Specifically, we explore
the effect of external aspect-based sentimental features on the
SLU system by introducing an MTL framework, aiming to
extract implicit information from the E2E-ABSA task.

To make better use of the enriched representation, we in-
troduce an Iteratively Co-Interactive Network (ICN) for ID
and SF tasks, which can explicitly model relation and in-
teraction between the two tasks in the decoder stage with
co-interactive layers, aiming to force the two tasks to make
full use of the decoder information from the other one. We
conduct experiments on two benchmark datasets including
SNIPS [11] and ATIS [12]. The results show the effectiveness
of our framework by outperforming many existing methods
by a large margin. Moreover, BERT [13], a pre-trained lan-
guage model, is employed to further boost the performance
of our ICN and our proposed MTL framework, which outper-
forms the state-of-the-art model on SNIPS and ATIS by 0.7%
and 1.6% in terms of accuracy on ID task, 0.6% and 0.3% in
terms of F1 score on SF task, respectively.

To summarize, our contributions are as follows: 1) We
propose an MTL framework to extract sentimental informa-
tion as external features for the SLU model, which outper-
forms the existing SLU models; 2) We introduce an ICN for
the SLU task, which simultaneously models the relation and
interaction within SLU task in an explicit way; 3) Experimen-
tal results show that our proposed framework achieves signifi-
cant and consistent improvement on two benchmark datasets.
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Fig. 1: ab) Architecture of the proposed MTL framework with the E2E-ABSA module and the ICN; cde) Illustration of different
MTL implementations. Task A and Task B stand for the E2E-ABSA and the SLU task.

2. APPROACH

As can be seen in Figure 1, the MTL framework is employed
on the two modules: ICN and E2E-ABSA. In this section, we
first talk about the detail of ICN, then we discuss and show
the difference between our MTL strategy and others.

2.1. Iteratively Co-Interactive Network

Considering the traditional jointly training methods just
model the relationship between ID and SF by sharing pa-
rameters, [14] proposed to use the joint model with stack-
propagation framework, achieving significant results on the
SLU task. However, during forward propagation, only the
feature of ID is sent to SF, which reduces the interaction
of the two tasks. Thus, we proposed to model SLU task
with Iteratively Co-Interactive Layer (ICL) to mitigate such
shortcoming. In this way, the ICN consists of Self-Attentive
Encoder and the ICL.

2.1.1. Input Layer

We employ word embedding embword
i to the input sentence

as the model input layer. Besides, we explore embMTL
i and

embBERT
i to boost the performance of the baseline model.

Formally, the input representation of the ith token is:

xi = embword
i ⊕ embMTL

i ⊕ embBERT
i

where ⊕ is concatenation operator. The embMTL
i depends

on whether we use the proposed MTL framework or not. The
embBERT

i depends on whether we use BERT representation.

2.1.2. Self-Attentive Encoder

For easier comparison of effects, we follow [14] where the
ID and SF tasks share the same Self-Attentive encoder. We

use the Bi-LSTM [15] to capture the temporal features H and
self-attention mechanism [16] to extract the contextual infor-
mation C. Then, we concatenate these two representations
H⊕C as the final encoding representation E.1

2.1.3. Iteratively Co-Interactive Layer

Intent/Slot Decoder. We use unidirectional LSTM as the In-
tent Decoder L and Slot Decoder L. The hidden state and the
output vector at each decoding time step t is calculated as:

hi
t =

{
LSTM

(
hi
t−1,y

i
t−1 ⊕ et

)
, L = 1

LSTM
(
hi
t−1,y

i
t−1 ⊕ yj

t ⊕ et

)
, L > 1

yi
t = softmax

(
Wi

hh
i
t

)
, L >= 1

where (i, j) ∈ {(slot, intent), (intent, slot)}, hi
t−1 is hid-

den state in the previous time step i, et is the aligned encoder
hidden state, yi

t is the i decoder output distribution of the tth

token in the utterance, yj
t is the output of j decoder layer,

Wi
h are trainable parameters of the model, and yi

t−1 is the
previously predicted i decoder output distribution.

Label Prediction. Finally, the label of the tth token in the
utterance are predicted by: oit = argmax

(
yi
t

)
, where i ∈

{intent, slot}, yi
t is the i output distribution of the tth token

in the utterance, oit represents the i label of the tth token in the
utterance. The final intent oI is generated by voting from all

token intent results [14]: oI = argmax
T∑

t=1

NI∑
j=1

αj1
[
oIt = j

]
,

where T is the utterance length, NI is the number of intent
labels, αj denotes a 0-1 vector α ∈ RN of which the jth unit
is 1 and the others are 0, argmax returns the indices of the
maximum values in α.

1For more details of the Self-Attentive Encoder, please refer to [14].
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Table 2: Performance of different models and frameworks on the SNIPS and ATIS datasets.

Model
SNIPS ATIS

Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

Joint Seq (INTERSPEECH 2016) [17] 87.3 96.9 73.2 94.3 92.6 80.7
Attention BiRNN (SIGDIAL 2016) [2] 87.8 96.7 74.1 94.2 91.1 81.9
Slot-Gated Full Atten (NAACL 2018) [18] 88.8 97.0 75.5 94.8 93.6 82.2
Self-Attentive Model (EMNLP 2018) [19] 90.0 97.5 81.0 95.1 96.8 82.2
Bi-Model (NAACL 2018) [20] 93.5 97.2 83.8 95.5 96.4 85.7
SF-ID Network (ACL 2019) [21] 90.5 97.0 78.4 95.6 96.6 86.0
Joint BERT (arXiv 2019) [22] 97.0 98.6 92.8 96.1 97.5 88.2

Baseline (Stack-Propagation) 94.2 98.0 86.9 95.9 96.9 86.5
ICN 94.5 99.1 88.0 95.9 97.2 87.1
ICN + MTL (HPS) 95.9 99.1 89.7 96.1 97.6 87.9
ICN + MTL (FIR) 96.0 99.0 89.4 96.0 97.6 87.6
ICN + MTL (OIR) 96.2 99.1 90.2 96.2 98.0 88.2

Full model: ICN + MTL (OIR) + BERT 97.6 99.3 93.0 96.4 98.2 88.5

2.1.4. Multi-Level Supervision
Previous joint model [21] shows that when there are too many
decoder layers, only little available information may be ob-
tained at the bottom, which makes the interaction at the bot-
tom of the model insufficient and not conducive to the task.
Thus, we propose to use the multi-level supervision training
method in our ICN. Specifically, as can be seen in the Fig-
ure 1b, instead of calculating the cross entropy loss only in
the last layer, we give each decoder supervision by calculat-
ing loss at each decoder layer. In this way, the exchanged
information is explicit during the interaction and each layer
can generate the output of the task, which cannot be done by
the previous models; 3) In the inference phase, we can further
propose various inference methods including, directly using
the output of the last layer as the result, using the average or
max-pooling value of each layer as the result.

The ID objective in the ith decoder layer is defined as:

LI
i = −

T∑
t=1

NI∑
j=1

ŷj,I
t log

(
yj,I
t

)
where T is the utterance length, NI is the number of intent
labels, ŷj,I

t is the gold intent label. We get the SF objective
LS
i in the similar way.

Thus, given the number of iterative decoder layers L, the
final objective is computed as: L =

∑L
i=1

(
LI
i + LS

i

)
.

2.2. E2E-ABSA Module
Inspired by [9], our E2E-ABSA module consists of the self-
attentive encoder and E2E-ABSA layer from which we ex-
tract features, as can be seen in Figure 1a. Empirically we
employ a unidirectional LSTM as the E2E-ABSA layer.

2.3. Implementations of MTL
There are many MTL frameworks to train tasks simulta-
neously. We aim to utilize them to effectively exploit the
sentimental representation to improve the SLU performance.
As can be seen in Figure 1e, compared to other MTL meth-
ods, we regard E2E-ABSA as the auxiliary task and extract
the hidden output of it as the sentimental representation

embMTL which is fed into the input layer of the ICN to
be concatenated with the original SLU input. The details of
integration can be concluded as follows:
Hard parameter sharing (HPS) is the most commonly used
approach to MTL in neural networks. It is applied by sharing
the embeddings of input sentences and self-attentive encoder
between the E2E-ABSA module and the ICN.
Fixed implicit representations (FIR) means extracting the
outputs of the E2E-ABSA layer from a fixed pre-trained
model, then train the ICN with the extracted representations.
Online implicit representation (OIR) requires to give E2E-
ABSA module an initialization firstly by train it with the E2E-
ABSA dataset, then the parameters of both E2E-ABSA mod-
ule and ICN are updated for the same SLU objective.

3. EXPERIMENTS

3.1. SLU Datasets and E2E-ABSA Dataset
To evaluate the efficiency of our proposed MTL framework,
we conduct experiments on two benchmark datasets, the
widely used ATIS dataset [12] and custom-intent-engine
dataset called the SNIPS [11], which is collected by snips
personal voice assistant. Both evaluated datasets used in our
paper follow the same format and partition as in [14], and
three evaluation metrics are used to measure the performance
of our proposed model. Following the setup in [9], in the
E2E-ABSA module, we employ a commonly used review
dataset, LAPTOP, from the laptop domain in SemEval ABSA
challenge 2014 [23] but re-prepared in [24]. The statistics of
the datasets can be referred in [24, 14].

3.2. Settings
We adopt the Adam optimizer for optimizing the parameters,
with a mini-batch size of 16 and initial learning rate of 0.001.
The word embedding dimensionality d is set as 128 and 256
for the SNIPS and ATIS, respectively. According to the per-
formance on the validation set, we consistently set 2 as the
iteration number of the decoder layer in the SLU module un-
less otherwise specified.
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Table 3: Employ MTL framework to the SLU task with (w/)
and without (w/o) the ICN. ∆ stands for relative value where
we use the results w/ ICN to subtract the results w/o ICN.

∆ = w/ ICN - w/o ICN
SNIPS ATIS

Slot (∆) Intent (∆) Slot (∆) Intent (∆)

Baseline +0.3 +0.9 +0 +0.3
+ MTL (HPS) +0.2 +1.2 +0.3 +0.3
+ MTL (FIR) +0.3 +1.1 +0.2 +0.4
+ MTL (OIR) +0.4 +1.2 +0.2 +0.6

1 2 3 4 5
The number of iteration

86.25

86.50

86.75

87.00

87.25
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Fig. 2: Effect of the iteration number of decoder layer on two
datasets on ICN with multi-level supervision setting.

3.3. Main Results
Table 2 shows the experimental results of our approach on
the SNIPS and ATIS. We can see that the improvement of the
SLU task is mainly due to the ICN and MTL. Compare with
the baseline, where we employ the stack-propagation frame-
work with the self-attentive encoder, the ICN and all the MTL
implementations based on ICN have improvements on most
of or all the metrics, while our proposed OIR brings the most,
which confirms the effectiveness of the ICN and indicates that
the implicit sentimental information has the potential to im-
prove the ID and SF tasks. With BERT, our method achieves
the best results on SLU task.

3.4. Effect of the MTL and ICN
To explore the effectiveness of the ICN and MTL further, we
show the resulting variation after removing the ICN in Table 3
on different MTL implementations. The baseline model em-
ploys only one decoder layer to predict the intents and slots
without any MTL framework. We can see that:1) after em-
ploying the ICN, most of the tasks have improvement; 2)
nearly all the metrics have some promotions with the MTL
framework, and the proposed OIR seems to be a bit better
than the HPS and FIR. Thus, the ICN has the potential to
improve the SLU task through better utilizing the implicit
aspect-based sentimental features, especially under our pro-
posed MTL framework. And the ICN can enhance the infor-
mation interaction capabilities of ID and SF so as to make
fuller use of the extracted enriched representations.

3.5. Effect of the iteration number
Selecting a proper iteration number of ICL is important to
the SLU task. We explore the best number of decoder layers

Table 4: Experiment on whether to use multi-level supervi-
sion or not with 2 and 3 interative decoder layers.

SNIPS Slot (F1) Intent (Acc) Overall (Acc)

L=2, ICN 94.5 99.1 88.0
L=2, ICN w/o multi. 94.2 98.8 87.7
L=3, ICN 94.2 99.0 87.8
L=3, ICN w/o multi. 93.8 98.5 87.3

Table 5: Effect of using BERT as external features for SLU.

∆ = w/ BERT - w/o BERT
SNIPS ATIS

Slot (∆) Intent (∆) Slot (∆) Intent (∆)

ICN +0.1 +0.2 +0 +0.2
+ MTL (HPS) +0.9 +0.2 +0.1 +0.1
+ MTL (FIR) +1.2 +0.1 +0.3 +0.2
+ MTL (OIR) +1.4 +0.2 +0.2 +0.2

under the multi-level supervision setting without utilizing the
sentimental information. Sentence accuracy is applied as the
performance measure because it can reflect the model ability
from the overall perspective. As can be seen in Figure 2, the
two lines quickly reach the top when the iteration number is
2, then they decrease gradually.

3.6. Effect of multi-level supervision
In order to further explore the architecture of ICN, we conduct
experiments to see the model performance without employing
the multi-level supervision method. From Table 4, we can
see that, for the model with more than one decoder layer, the
multi-level supervision training method is useful.

3.7. Effect of BERT
As a successful pre-trained model, Bidirectional Encoder
Representation from Transformer [13, BERT] is employed to
boost the performance of our proposed MTL framework by
providing additional input features to the ICN. From Table 5,
all model settings have a certain degree of performance im-
provement with BERT, and the model trained using OIR with
BERT performs remarkably well on both two datasets. We
attribute this to the fact that BERT can provide great feature
representations which may contain a wealth of sentimental
features that are demonstrated to be helpful for SLU.

4. CONCLUSION

In this paper, we propose an MTL framework for the SLU
task. Our approach achieves the improvement by considering
the implicit sentimental information in the SLU task. Specif-
ically, we design a novel ICN to model the relationship be-
tween ID and SF tasks. Our proposed MTL approach is a
generic framework for leveraging sentimental information. It
is also extensible and can be adapted to promote the perfor-
mance of other NLP tasks with minimum modifications to
model implementations. Detail experiments and analysis are
performed on SNIPS and ATIS datasets to demonstrate the
effectiveness of our MTL framework and the ICN.
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girone, Thibaut Lavril, Maël Primet, and Joseph Dureau,
“Snips voice platform: an embedded spoken language
understanding system for private-by-design voice inter-
faces,” CoRR, vol. abs/1805.10190, 2018.

[12] Charles T. Hemphill, John J. Godfrey, and George R.
Doddington, “The ATIS spoken language systems pilot
corpus,” in HLT, 1990.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova, “BERT: pre-training of deep bidi-
rectional transformers for language understanding,” in
NAACL-HLT, 2019.

[14] Libo Qin, Wanxiang Che, Yangming Li, Haoyang Wen,
and Ting Liu, “A stack-propagation framework with
token-level intent detection for spoken language under-
standing,” in EMNLP/IJCNLP, 2019.

[15] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural Computation, 1997.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin, “Attention is all you need,”
in NIPS, 2017.

[17] Dilek Hakkani-Tür, Gökhan Tür, Asli cCelikyilmaz,
Yun-Nung Chen, Jianfeng Gao, Li Deng, and Ye-Yi
Wang, “Multi-domain joint semantic frame parsing us-
ing bi-directional RNN-LSTM,” in INTERSPEECH,
2016.

[18] Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li
Huo, Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-Nung
Chen, “Slot-gated modeling for joint slot filling and in-
tent prediction,” in NAACL-HLT, 2018.

[19] Changliang Li, Liang Li, and Ji Qi, “A self-attentive
model with gate mechanism for spoken language under-
standing,” in EMNLP, 2018.

[20] Yu Wang, Yilin Shen, and Hongxia Jin, “A bi-model
based RNN semantic frame parsing model for intent de-
tection and slot filling,” in NAACL-HLT, 2018.

[21] Haihong E, Peiqing Niu, Zhongfu Chen, and Meina
Song, “A novel bi-directional interrelated model for
joint intent detection and slot filling,” in ACL, 2019.

[22] Qian Chen, Zhu Zhuo, and Wen Wang, “BERT for
joint intent classification and slot filling,” CoRR, vol.
abs/1902.10909, 2019.

[23] Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Har-
ris Papageorgiou, Ion Androutsopoulos, and Suresh
Manandhar, “Semeval-2014 task 4: Aspect based senti-
ment analysis,” in SemEval@COLING, 2014.

[24] Xin Li, Lidong Bing, Piji Li, and Wai Lam, “A unified
model for opinion target extraction and target sentiment
prediction,” in AAAI, 2019.

7492

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 14,2021 at 08:20:13 UTC from IEEE Xplore.  Restrictions apply. 


		2021-04-30T07:30:35-0400
	Preflight Ticket Signature




