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ABSTRACT

Intent detection and slot filling are two main tasks in natural
language understanding (NLU). These two tasks are highly
related and often trained jointly. However, most previous
works assume an utterance only corresponds to one intent,
ignoring that it can include multiple intents. In this paper, we
propose a novel Self-Distillation Joint NLU model (SDJN)
for multi-intent NLU. Specifically, we adopt three orderly
connected decoders and a self-distillation approach to form
an auxiliary loop that establishes interrelated connections be-
tween multiple intents and slots. The output of each decoder
serves as auxiliary information for the next decoder, and the
auxiliary loop completes via the self-distillation. Further-
more, we formulate multiple intent detection as a weakly su-
pervised task and handle it with multiple instance learning
(MIL), which exploits token-level intent information to pre-
dict multiple intents and guide slot decoder. Experimental
results indicate that our model achieves competitive perfor-
mance compared to others.

Index Terms— Multiple intent detection, slot filling,
multiple instance learning, self-distillation.

1. INTRODUCTION

Natural language understanding (NLU) plays a pivotal role in
task-oriented dialogue systems. It aims to understand user’s
current goal by constructing semantic frames and typically
consists of two sub-tasks, intent detection (ID) and slot fill-
ing (SF) [1]. As shown in Figure 1, intent detection is often
regarded as a classification task [2–4] while slot filling is re-
garded as a sequence tagging task [5, 6].

Taking a deeper look at the example shown in Fig-
ure 1, intent “BookRestaurant” is highly related to slot
“B−restaurant type”. This observation inspires many works
[7–12] to jointly model the ID and SF. Despite these works
have made remarkable success, they assume that each utter-
ance only contains one intent, ignoring the fact that users may
express multiple intents in an utterance to communicate more
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Slots:

Book a restaurant in donelly and then play some James Cleveland

B-restaurant_type B-city I-artistB-artist 

Intents: BookRestaurant ,   PlayMusic

NLU Semantic Frame:

Fig. 1. NLU semantic frame.

efficiently. Therefore, it is inappropriate for directly applying
aforementioned single intent NLU models due to their inca-
pability to 1) correctly identify multiple intents from a single
utterance, and 2) effectively build the interactions between
multiple intents and slot labels.

Unlike previous single intent NLU methods, [13] first ex-
plored the multi-task framework to jointly model the multiple
intent detection and slot filling. An intent-slot graph inter-
action layer was proposed in [14] to capture the interaction
between multiple intents and each token. Though achieving
promising performance, their models still suffer some issues.
First, [13] adopts utterance context vectors to detect multiple
intents. Such utterance-level representations may miss out on
fine-grained information that could be crucial to distinguish-
ing intents. Second, they only consider the unidirectional in-
teraction, namely using intent to guide slot prediction, while
slot can also offer important information for intent prediction.

In this paper, we propose a Self-distillation Joint NLU
model (SDJN) to address the above issues. For the first issue,
we argue that it is necessary to discover multiple intent signals
by preserving fine-grained token-level information. However,
it is hard to assign precise intent label to each token. To al-
leviate this problem, we reformulate multiple intent detection
as a weakly supervised task and handle it with multiple in-
stance learning (MIL) [15, 16]. In our case, we consider the
tokens in the utterance as instances in MIL and the whole ut-
terance is regarded as a bag. An aggregation layer is used
to combine instance predictions and assign the overall intent
labels. It allows the model to utilize token-level representa-
tion to predict intent and offer slot decoder the token-aligned
intent information. For the second issue, we argue that it is
essential to form an auxiliary information transmitting loop
to better achieve the synergy effect between multiple intents
and slots. To achieve this, we extend the basic idea of self-
distillation network [17] into multi-task setting. Specifically,

7612978-1-6654-0540-9/22/$31.00 ©2022 IEEE ICASSP 2022

IC
A

SS
P 

20
22

 - 
20

22
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

8-
1-

66
54

-0
54

0-
9/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

39
22

.2
02

2.
97

47
84

3

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on May 31,2022 at 02:31:54 UTC from IEEE Xplore.  Restrictions apply. 



Self-Attentive Encoder

MIL Intent Decoder

Final Slot DecoderInitial Slot Decoder

FC layer FC layer 

Softmax 
Sigmoid

Softmax 

 !
" #!

"  #$
"

 #%
"  $

"  %
"

&! &$ &%

Distillation loss

SDJN 

Student Teacher

'!
( '$

(
'%
(

Attention-based 

aggregation layer

MIL Intent Decoder

)

*!
+ *$

+ *%
+

Token-level

decoder

,! ,$

Fig. 2. The architecture of SDJN model and the MIL Intent Decoder

in our proposed SDJN, three decoders are developed and con-
nected in series, including Initial Slot Decoder, MIL Intent
Decoder, and Final Slot Decoder. The output of each decoder
will serve as auxiliary information for the next one. With
the intent information provided by MIL Intent Decoder, Fi-
nal Slot Decoder tends to generate better slot hidden states
compared to Initial Slot Decoder. Thus, we consider Final
Slot Decoder as the teacher model and impart its knowledge
back to Initial Slot Decoder, leading to a complete informa-
tion transmitting loop. Such workflow could further establish
the interrelated connections between multiple intents and slot
information.

To summarize, the contributions of this paper are: (1)
We formulate multiple intent detection as a weakly super-
vised problem and approach it with MIL where token-level
information is utilized. (2) A self-distillation approach is pro-
posed for improving joint modeling, allowing the model to
exploit the interrelated connection between multiple intents
and slot information in depth. (3) We evaluate our approach
on two public multi-intent datasets (i.e., MixATIS and MixS-
NIPS [14]). The experimental results demonstrate the effec-
tiveness of our approach, which outperforms all comparison
methods.

2. APPROACH

In this section, we introduce our SDJN model in detail. The
architecture of the model is illustrated in Figure 2. SDJN
model consists of a shared encoder, three decoders, and a self-
distillation process.

2.1. Self-attentive Encoder

Following the self-attentive encoder in [10,14], we use a bidi-
rectional LSTM (BiLSTM) [18] with self-attention mecha-
nism [19] as encoder to model temporal and contextual infor-
mation from the utterance. The BiLSTM generates a series
of context-sensitive hidden states H . Self-attention is expres-
sive for both local and long-range dependencies, it outputs a

context-aware featureA. The final encoding representationE
is the concatenation of H and A, which is given by the outputs
of BiLSTM and the self-attention mechanism:

E = H ⊕A (1)

2.2. Initial Slot Decoder

For Initial Slot Decoder, it aims to decode initial slot fillings
that will be used for guiding intents. We use a unidirectional
GRU [20] for Initial Slot Decoder. The input feature of Initial
Slot Decoder is E = {e1, ..., en}. At every decoding step t,
the decoder state h′St can be formalized as:

h′St = f(h′St−1, y
′S
t−1, et) (2)

where h′St−1 is the previous decoder state, y′St−1 is the previous
emitted slot prediction and et is the aligned encoder hidden
state. The decoder state h′St will further be utilized to generate
initial slot filling of the the utterance O′S = {o′S1 , ..., o′sn }
with softmax.

2.3. MIL Intent Decoder

In this study, we approach multiple intent detection with MIL.
Under MIL, the input utterance X = {x1, ..., xn} is regarded
as a bag and the goal is to map each instance which is token
xt to intent label. The overall intents of the utterance will be
the combination of token intents.

As shown in Figure 2, we concatenate encoding represen-
tation E and the initial slot information O′S to form the slot
reinforce representation RS = {rS1 , ..., rSn} as the input of
MIL Intent Decoder. The MIL Intent Decoder consists of two
components, as shown in Figure 2: a GRU-based token-level
decoder and an aggregation layer. With the decoder state hIt
from token-level decoder, we use an attention-based predic-
tion weighting module as aggregation layer:

wt = softmax(wdh
I
t + b) (3)

c =
∑
t

wth
I
t (4)
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The wd is the trainable parameters and wt is the weight for
each token. The aggregation layer rewards the tokens that
provide meaningful intent information. The overall intent dis-
tribution oI = {oI1, ..., oINI

} is calculated by c, the weighted
sum of hidden representation HI = {hI1, ..., hIn}, with a sig-
moid activation. Since it is a multiple intent detection task,
we apply a threshold 0 < tI < 1.0 to obtain intents I =
{I1, ..., Im}.

2.4. Final Slot Decoder

Final Slot Decoder is composed of two modules. A vanilla
slot decoder that is identical to Initial Slot Decoder. And
following [14], we incorporate the adaptive intent-slot graph
interaction layer. First, we concatenate the encoding rep-
resentation E with hidden representation HI from MIL In-
tent Decoder to form intent reinforce representation RI =
{rI1 , ..., rIn}. The vanilla slot decoder adopts rIt to generate
decoder state hSt which goes through the graph interaction
layer. The graph interaction layer adopts the graph attention
network (GAT) [21] to model the interrelation of intents and
slots at the token level. Specifically, the slot hidden state
hSt from vanilla slot decoder and predicted multiple intents
I = {I1, ..., Im} are used as the initialized representation
at t time step H̃ [0,t] = {hSt , φemb(I1), ..., φ

emb(Im)} where
φemb(·) represents the embedding matrix of intents. Within
the graph, the slot node representation in the l-th layer is cal-
culated as:

h̃
[l,t]
i = σ(

∑
j∈Ni

α
[l,t]
ij W

[l]
h h̃

[l−1,t]
j ) (5)

h̃
[l,t]
i can be understood as node i in the l-th layer of the graph.
Ni is the first-order neighbors of node i, Wh is the trainable
weight matrix, αij is the normalized attention weight and σ
represents the nonlinearity activation function. Through L-
layer of adaptive intent-slot graph interaction, we adopt the
final slot hidden state representation h̃[L,t]

0 at t time step for
slot filling:

ySt = softmax(Wsh̃
[L,t]
0 ) (6)

oSt = argmax(ySt ) (7)

where oSt is the final predicted slot label of the t-th word in
the utterance.

2.5. Self Distillation and Joint Training

In SDJN model, we propose a knowledge distillation ap-
proach within a joint training model by taking advantage of
multi-task. The teacher model is Final Slot Decoder while the
student model is Initial Slot Decoder. We select Final Slot De-
coder as the teacher model for the following reasons. On the
input wise, Final Slot Decoder incorporates the token-level
intent information to form intent reinforce representation for
better decoding. On the structure-wise, Final Slot Decoder

has an adaptive intent-slot graph interaction layer to correlate
intent information with slots explicitly. Therefore, Final Slot
Decoder is able to generate better output. To perform the dis-
tillation method, as illustrated in Figure 2, Final Slot Decoder
provides the hint for Initial Slot Decoder. A hint is defined
as the output of the hidden layers from the teacher model,
whose aim is to guide the student model [23]. Specifically,
we leverage the hidden state from Initial Slot Decoder and
Final Slot Decoder to calculate the representative distance.
The relation is obtained through the computation of the MSE
loss. The implicit knowledge in Final Slot Decoder imparts
to Initial Slot Decoder, which induces h′St to fit h̃[L,t]

0 :

LMSE
∆
= − 1

n

n∑
t=1

(h′St − h̃
[L,t]
0 )2 (8)

The parameters of the models are optimized jointly. We use
the NLLloss and BCEWithLogitsLoss for slot filling and mul-
tiple intent detection respectively. The total loss is:

Ltotal = α · LMSE + β · LNLL + λ · LBCE (9)

with three hyper-parameters α, β, and λ to balance them.

3. EXPERIMENTS

3.1. Datasets

We conduct our experiments on two public multi-intent NLU
datasets. They are the cleaned version of MixATIS [14] and
MixSNIPS [14]. MixATIS dataset is collected from ATIS
dataset [24] and MixSNIPS dataset is from SNIPS dataset
[25]. MixATIS and MixSNIPS datasets have 13162, 759, 828
utterances and 39776, 2198, 2199 utterances for training, val-
idation, and testing respectively.

3.2. Experimental Setup

We set the self-attentive encoder hidden units as 256, dropout
rate as 0.4, threshold ti as 0.5 empirically with Adam opti-
mizer for both datasets. For batch size, we set 16 and 64 for

Table 1. Slot filling and multiple intent detection results on
two multi-intent datasets. *: the improvement of SDJN model
over all baselines is statistically significant with p < 0.05 un-
der t-test.

Model
MixATIS MixSNIPS

Slot Intent Overall Slot Intent Overall
(F1) (Acc) (Acc) (F1) (Acc) (Acc)

Slot-Gated [8] 87.7 63.9 35.5 87.9 94.6 55.4
Bi-Model [22] 83.9 70.3 34.4 90.7 95.6 63.4
SF-ID [9] 87.4 66.2 34.9 90.6 95.0 59.9
Stack-Propogation [10] 87.8 72.1 40.1 94.2 96.0 72.9
Joint Multiple ID-SF [13] 84.6 73.4 36.1 90.6 95.1 62.9
AGIF [14] 86.7 74.4 40.8 94.2 95.1 74.2

SDJN 88.2* 77.1* 44.6* 94.4 96.5* 75.7*
SDJN + BERT 87.5 78.0 46.3 95.4 96.7 79.3
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Table 2. Ablation study on MixATIS. We try two types of distilled knowledge sources. (1) “Soft”: soft targets with the temperature
setting “Temp” under. (2) “Hint”: the output of the hidden layers from the teacher model. “Implicit” represents that decoders only
share the same encoder, while “Explicit” means the output of one decoder will serve as auxiliary information for the next Decoder.

SDJN Components MixATIS

Initial Slot MIL Intent Final Slot Soft Soft Hint Implicit Explicit Slot (F1) Intent (Acc) Overall (Acc)Decoder Decoder Decoder Temp=2 Temp=4

(a) " " " 86.5 73.1 36.7
(b) " " " 88.0 75.9 42.0
(c) " " " 86.8 74.2 40.9
(d) " " " " 88.1 76.1 43.0
(e) " " " " " 87.5 77.4 43.5
(f) " " " " " 88.3 76.3 43.1
(g) " " " " " 88.2 77.1 44.6

MixATIS and MixSNIPS. The hyper-parameters of loss are
empirically set as α: β: λ= 1: 0.7: 0.6 for MixATIS and α: β:
λ= 1.25: 1: 1 for MixSNIPS. We evaluate the performance of
slot filling with F1 score, intent detection with accuracy, and
the NLU semantic frame parsing with overall accuracy that
represents all metrics are correct in the utterance.

3.3. Main Results

The main results from the experiments are shown in Table 1.
As we can see, our model outperforms all baselines on both
datasets. For Slot (F1) score, our model outperforms the best
baseline, AGIF, 1.5% and 0.2% on MixATIS and MixSNIPS,
showing the advantages of adopting fine-grained multiple in-
tent information for slot filling. For Intent (Acc), our model
outperforms the top score baseline 2.7% and 0.5% on Mix-
ATIS and MixSNIPS respectively, showing the effectiveness
of leveraging MIL and using slot information to guide intent
prediction. For overall (Acc), the improvements are 3.8% and
1.5% on MixATIS and MixSNIPS respectively. It indicates
that SDJN model can better correlate the relation between
multiple intents and slots and further improve the whole NLU
semantic frame parsing. The experiment results imply that
our model benefits the NLU performance from the auxiliary
loop and distillation method. We also investigate the effect
of the pre-trained model by substituting the Self-attentive en-
coder into BERT [26]. The SDJN+BERT shows significant
improvement, suggesting the effectiveness of a strong pre-
trained model in multi-intent NLU tasks.

3.4. Ablation Study

Effect of each Decoder. We analyze how three decoders
work with an ablation study on the MixATIS dataset as il-
lustrated in Table 2 with rows (a)(b)(c)(d). The experiments
are conducted by gradually adding each decoder and whether
to adopt explicit interactions between slots and intents. As
shown in Table 2, with the slot information from the Initial
Slot decoder, row (b) outperforms row (a) on every metric sig-
nificantly. The increment of 5.3% on overall accuracy shows
that the MIL Intent Decoder benefits a lot from the aligned

token-level slot information. Comparing row (b) and row (d),
with the Final Slot decoder adding on to row (d), the results
again show improvements. This ablation study suggests that
each decoder contributes improvements and considering the
cross-impact between slots and intents brings better results.

Effect of Distillation Approach. To further examine the
effectiveness of our distillation approach, we show the abla-
tion study on rows (d)(e)(f)(g) in Table 2. As shown, all rows
with distillation approach (rows (e)(f)(g)) outperform row (d)
from 0.1% up to 1.6% in overall accuracy. It suggests the
gain of the proposed self-distillation approach. We find it in-
teresting that while both using soft targets as a knowledge
source, row (e) with Temp=2 shows better performance in
multiple intent detection and overall accuracy while row (f)
with Temp=4 shows better performance in slot filling. Com-
paring the distilled knowledge source, row (g) which uses
hint as knowledge source outperforms rows (e)(f) that both
use the soft target as a knowledge source 1.1% and 1.5% re-
spectively in overall accuracy. We argue that the soft targets
mainly rely on the output of the last layer of the decoder and
fail to address the intermediate-level supervision which is im-
portant for representation learning. On the other hand, hint
offers intermediate-level supervision and enables the model
to learn better representation. Therefore, row (g) has a more
balanced performance in slot filling and multiple intent detec-
tion, which further leads to a better result in overall accuracy.

4. CONCLUSIONS

In this work, we propose a Self-distillation Joint NLU model
by taking advantage of multi-task information. In addition,
we approach multiple intent detection as a weakly super-
vised task with MIL. Experiments on two public multi-intent
datasets show that SDJN achieves performance gains over
strong baselines.
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