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Abstract
Recently, end-to-end speaker extraction has attracted increas-
ing attention and shown promising results. However, its per-
formance is often inferior to that of a blind speech separation
(BSS) counterpart with a similar network architecture, due to
the auxiliary speaker encoder may sometimes generate ambigu-
ous speaker embeddings. Such ambiguous guidance informa-
tion may confuse the separation network and hence lead to
wrong extraction results, which deteriorates the overall perfor-
mance. We refer to this as the target confusion problem. In this
paper, we conduct an analysis of such an issue and solve it in
two stages. In the training phase, we propose to integrate metric
learning methods to improve the distinguishability of embed-
dings produced by the speaker encoder. While for inference, a
novel post-filtering strategy is designed to revise wrong results.
Specifically, we first identify these confusion samples by mea-
suring the similarities between output estimates and enrollment
utterances, after which the true target sources are recovered by a
subtraction operation. Experiments show that performance im-
provement of more than 1 dB SI-SDRi can be brought, which
validates the effectiveness of our methods and emphasizes the
impact of the target confusion problem1.
Index Terms: speech separation, end-to-end speaker extrac-
tion, target confusion problem, metric learning, post-filtering

1. Introduction
Speech separation, also referred to as the cocktail-party prob-
lem, is considered to be one of the fundamental problems in
speech processing areas [1]. Although easy for human beings,
the same task is still challenging for machines.

A target speaker extraction (TSE) model normally consists
of two parts: a speaker encoder, which maps the enrollment
utterance of the target speaker to an embedding, and a separa-
tion network, which extracts target speaker’s speech from the
mixture under the guidance of the injected speaker embedding.
In particular, these two components are jointly trained from
scratch in end-to-end speaker extraction. Many studies devel-
oped their models based on state-of-the-art separation network
architectures from speech separation (e.g. TCN [2][3][4] and
DPRNN [4][5]), and achieved considerable performance.

However, our preliminary experiments as well as recent re-
search [5] show that, the performances of end-to-end speaker
extraction are prone to long-tail distributions, which is depicted
in Figure 1. As a result, end-to-end speaker extraction is often
slightly inferior to its BSS counterpart when a similar separa-
tion network is adopted [3][5], despite the assistance of an ad-
ditional speaker encoder and enrollment utterances. Such a gap
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1A demo is available at https://zhazhafon.github.io/demo-confusion/

Figure 1: The target confusion problem in a two-speaker sce-
nario. The scatter diagram on the right is the performance dis-
tribution in terms of SI-SDRi on the test set of Libri2Mix, each
axis corresponds to a speaker. s1, s2 > 5dB denotes that SI-
SDRi of both s1 and s2 are above 5 dB, while s1/s2 < 5dB
means that either of them is below 5 dB. Spectrograms on the
left are from a data sample where target confusion happens. On
the top is the observed mixture. Spectrograms in the second row
are the ground truths for each target speaker, and those in the
last row are the output estimates of each target source.

originates from an issue which we term as the target confusion
problem in this paper, where the speaker embedding provides an
ambiguous guidance, and thus the separation network targets at
a wrong speaker (i.e. the interferer). This is illustrated in the
red dashed box in Figure 1. Intuitively, there are two possible
causes for this phenomenon. One is the utterance bias, that is,
the target speaker’s speech (either the source or the enrollment)
in the data sample deviates from its speaker cluster; The other is
the embedding bias, which means the output of speaker encoder
does not represent the guidance information accurately.

In previous studies, multi-class cross-entropy (CE loss)
was proposed specially for the speaker encoder in end-to-
end speaker extraction, and joint training is carried out to-
gether with the reconstruction loss through a multi-task learning
[2][3][6][7]. However, such a classification paradigm does not
optimize similarities explicitly, which may produce suboptimal
embeddings for end-to-end speaker extraction.

In this paper, we first conduct an analysis of the target
confusion problem, emphasizing the importance of distinctive
speaker embeddings for end-to-end speaker extraction. Then
we explore three different metric learning methods, namely,
triplet loss, prototypical loss and generalized end-to-end loss,
and integrate them into the end-to-end training of a deep speaker
extraction model. The key behind this is that speaker extraction
is an open-set setting and we need speaker embeddings with
large inter-speaker and small intra-speaker distances. Finally,
to further eliminate target confusion during inference, we pro-
pose a post-filtering strategy to revise the wrong results. To be
specific, we first identify confusion samples by comparing the
similarities between the target source estimate and the enroll-
ment utterance, then the true target source can be recovered by
a subtraction operation. Experiments show that our methods
improve the baseline by more than 1 dB in terms of SI-SDRi.
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Figure 2: Similarity analysis in embedding space. cos(ei, sj) denotes the cosine distance between the speaker embedding of enrollment
utterance ei from speaker i and that of the source sj from speaker j. Speaker 1 is set to be the target by default in (a)(c), and speaker
2 the interferer. Dashed line in red denotes a border where two similarities are equal in (a)(c), while in (b)(d) it delimits a margin.
Samples indicated by pink stars, whose SI-SDRi metrics are significant negative values, are very likely to have confused the target,
which is confirmed by our listening test as well as a previous research [8]. All data are from the test set of Libri2Mix with no discard.

2. Target confusion problem
2.1. Target speaker extraction

Given an enrollment utterance e, speaker extraction is to extract
target speaker’s voice ŝ out of a speech mixture y. To make it
simple, a two-speaker anechoic setup is considered in the fol-
lowing (i.e. y = s1 + s2). Either of the speakers in the mixture
can be set as the target speaker, and the other the interferer.

2.2. Target confusion problem

As depicted in Figure 1, end-to-end speaker extraction model
tends to come across with the target confusion problem during
inference, that is, the model extracts the interfering speaker in-
stead of the target speaker, and hence generate a wrong result.
This leads to a situation that end-to-end speaker extraction even
performs inferior to its BSS counterpart when a similar sepa-
ration network is used, despite the assistance of an additional
speaker encoder and enrollment utterances. Intuitively, target
confusion problem may originate from two aspects:
utterance bias Considering the variability of speech, an utter-
ance may deviate from its speaker cluster where it belongs to,
and even tend to an interfering speaker cluster. Such variabil-
ity comes from many uncontrollable factors of the speech like
emotion, intonation, prosody and even speed. We refer to this
as utterance bias. Note that this may occur in the source signal
s as well as the enrollment utterance e.
embedding bias On one hand, the network architecture of
speaker encoders for end-to-end speaker extraction are gener-
ally simpler compared with those used in speaker recognition
tasks [9][10][11], which results in limited capability in speaker
characteristics modeling. On the other hand, SI-SDRi is usually
set as the only loss function in the end-to-end training, which
does not guarantee well distinguishable speaker embeddings;
These bring about the embedding bias, that is, the speaker em-
bedding is not distinctive enough, such that it does not represent
the target speaker accurately, or it fails to distinguish the target
speaker from the interferer.

We conduct an experiment for a further analysis and com-
parison. In Figure 2(a)(b), similarities between speakers are
measured by a pretrained ECAPA-TDNN [11], which is a state-
of-the-art speaker embedder used in speaker verification with
an equal error rate (EER) of less than 1%. As shown in Fig-
ure 2(a), 99.7% of the enrollment utterances are closer to their
target sources instead of the interfering speech in the embed-
ding space. And in Figure 2(b), for more than 98.9% of our
test cases, the two aforementioned similarities have a margin of
more than 0.1. Most interestingly, only 2.4% of target confusion
samples, which is denoted with pink stars, lie beyond the border
in Figure 2(a), and only 6.4% of them out of the 0.1 margin in

Figure 2(b).
Things turn out to be very different when we come to the

speaker encoder in an end-to-end trained TSE model. TD-
SpeakerBeam was adopted for the evaluation, in which the
speaker encoder is composed of an encoder layer and a convolu-
tion block [3]. For a certain amount of samples, the enrollment
utterances are much closer to the interferers instead of their tar-
get speakers, as shown in Figure 2(c). It is worth noting that
more than 45.1% of target confusion samples lie above the bor-
der where two similarities are equal. And in Figure 2(d), 65%
of target confusion samples lie out of the 0.1 margin.

Comparing above observations we can draw some conclu-
sions. First, while utterance bias may exist in some situations
where speakers’ voices are very similar, it is much less signifi-
cant than expected, at least in our test case; Second, a consider-
able amount of target confusion samples are caused by speaker
embeddings that are not distinguishable enough. We argue that
embedding bias is underestimated.

3. Methods
3.1. Metric learning for end-to-end speaker extraction

In this section, we introduce how to integrate practical metric
learning methods with the end-to-end training of a speaker ex-
traction model. The essence behind this is to generate speaker
embeddings with large inter-speaker and small intra-speaker
distance through explicit optimization in the metric space, so
that it does not confuse the target and the interferer. Three dif-
ferent metric learning methods are explored in the following,
including triplet loss [12], prototypical loss [13][14] and gener-
alized end-to-end loss [15][16].
Multi-task learning A multi-task learning framework is
adopted to combine the reconstruction loss and the metric learn-
ing loss:

L = βLML +
1

N

N∑

n=1

Ln (1)

where N denotes the batch size, Ln and LML are loss functions
for waveform reconstruction and metric learning. β is a hy-
perparameter. The negative scale-invariant signal-to-distortion
ratio is used as reconstruction loss [17].
Triplet loss (TL) A triplet (u, v, w) consists of an anchor u, a
positive v and a negative w. The triplet loss forces the encoder
to reserve a margin between the distance of the anchor-positive
pair (u, v) and that of the anchor-negative pair (u,w):

lTL(u, v, w) = max(0, d(u, v)− d(u,w) + α) (2)

where d(a, b) denotes the L2 distance between L2-normed em-
beddings of utterance a and b. α is the margin, which is a hy-
perparameter. We propose two schemes to form the triplet. In
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the first scheme TL1(st, et, ef ), target source st is set as the
anchor, while the enrollment utterance of target speaker and in-
terferer are intuitively set as the positive and negative respec-
tively; In the second scheme TL2(st, ŝt, ef ), target estimate ŝt
replaces the enrollment et as the positive. At last, the loss is
averaged over the batch: LTL = 1

N

∑N
n=1 lTL(un, vn, wn).

Prototypical loss (PL) In prototypical loss, utterances of
speaker k are divided into a support set Sk and a query set Qk.
The prototype rk, i.e. the speaker centroid, is calculated as the
mean of speaker embeddings from Sk:

rk =
1

|Sk|
∑

xs∈Sk

Enc(xs) (3)

where Enc() denotes the speaker encoder which maps an utter-
ance xs to an embedding. The likelihood that an utterance xn in
the batch belongs to its speaker zn is calculated with a softmax
over all I speakers in the training set:

pPL(xn, zn) =
e−d(Enc(xn),rzn )

∑I
i e

−d(Enc(xn),ri)
(4)

Following the setup in TL, two different schemes are investi-
gated: PL1(xn = et) and PL2(xn = ŝt). Speech for Sk are
from the whole training set, while those for Qk are all from the
current batch. Finally, negative logarithm is applied to Eq. (4)
for a maximum likelihood estimation (MLE):

LPL =
1

|Qk|
∑

xq∈Qk

−log(pPL(xq, zq)) (5)

Generalized end-to-end loss (GL) Different from PL, GL uti-
lizes two kinds of speaker centroids:

ck(xn) =

{
1

|Ck|
∑

xc∈Ck
Enc(xc), xn ̸∈ Ck

1
|Ck|−1

∑
xc∈Ck,xc ̸=xn

Enc(xc), xn ∈ Ck

(6)
where Ck is an utterance bank of speaker k where speech is
from the whole training set, xn is an utterance in the batch
whose similarity to be measured. Similar to PL, likelihood is
calculated with a softmax:

pGL(xn, zn) =
ew·cos(Enc(xn),czn (xn))+b

∑I
i e

w·cos(Enc(xn),ci(xn))+b
(7)

where w and b are learnable weights. Following the previous,
we investigate two settings: GL1(xn = et) and GL2(xn =
ŝt). At last, negative logarithm is applied for a MLE:

LGL =
1

N

N∑

n

−log(pGL(xn, zn)) (8)

3.2. Post-filtering strategy

To further improve the robustness of the system, we propose
a post-filtering strategy (PF ) to first identify and then rectify
those target confusion samples during inference. Specifically,
our pipeline has three steps. The model trained with the afore-
mentioned methods first consumes the speech mixture ym and
an enrollment utterance em to generate a target source estimate
ŝ′m; Secondly, ŝ′m is evaluated in two dimensions: one is its
similarity with the target speaker, denoted as π, and the other is
that with the interferer, denoted as ϕ. Considering that ground-
truth sources are not available during inference, speaker clusters
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Figure 3: Configuring the post-filtering strategy on validation
set. (a) Distribution of data samples in a space spanned by π =
L2(ŝ1, e1) and ϕ = L2(ŝ1, e2), where L2(a, b) denotes the
L2 distance between two L2-normed embeddings of utterance a
and b. Rectangular and linear decision borders are depicted by
black and blue dashed lines respectively. (b) Target confusion
samples identified by our methods are illustrated with purple
stars. All data are from the dev set of Libri2Mix with no discard.

are estimated by their enrollment speech, as illustrated in Figure
3(a). Then a decision border to classify target confusion sam-
ples can be easily obtained by solving an optimization problem
in a M -sample discrete space spanned by π and ϕ. For this we
propose two objective functions. One is a rectangular border
PF rec:

max
Π,Φ

M∑

m=1

grec
m (Π,Φ) (9)

grec
m (Π,Φ) =

{
l(sm, y − f(ym|em)), π > Π, ϕ < Φ

l(sm, f(ym|em)), otherwise

(10)
where Π and Φ are threshold parameters for π and ϕ respec-
tively. l is a SI-SDRi metric [18], and f is the TSE model
which produces a target source estimate normalized w.r.t. the
input mixture ym, given an enrollment utterance em. The other
is a linear border PF lin, such that:

max
µ,λ

M∑

m=1

glin
m(µ, λ) (11)

glin
m(µ, λ) =

{
l(sm, y − f(ym|em)), ϕ < µπ + λ

l(sm, f(ym|em)), otherwise
(12)

where µ and λ are parameters to be tuned. There are many
training-free ways to solve Eq. (9)-(12), e.g. brute-force search-
ing. Note that the test set is assumed to be inaccessible for the
tuning, and parameters are configured only using the validation
set where ground-truth sources are available. Lastly, target con-
fusion samples can be identified during inference, by threshold-
ing on π and ϕ with tuned parameters Π and Φ (or with µ and
λ), as depicted in Figure 3(b). Under the two-speaker anechoic
setup introduced in Section 2.1, those identified samples are in-
verted by being subtracted from the mixture y, after which the
true target source is recovered:

ŝm = ym − ŝ′m (13)

where ŝm is the final output after the post-filtering. More com-
plex scenarios like multiple speakers (#spk ≥ 3) or noisy en-
vironment will be explored in the future.

4. Experiments
4.1. Preparation

TD-SpeakerBeam [3] is adopted for our experiments. It is cho-
sen such that we can fairly compare it with a blind speech sep-
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Figure 4: Joint distributions of two speakers’ SI-SDRi performance on the test set of Libri2Mix. In each mixture audio, two speakers
are set to be the target in turns. (a)(b)(c) are the joint distributions, and (d)(e)(f) are their corresponding statistical histograms.

aration counterpart Conv-TasNet [17]. These two models have
similar network architectures, except for that TD-SpeakerBeam
has an additional speaker encoder and an embedded adaptation
layer. We validate our methods on the popular LibriMix [19]
dataset. The train-100 subset is used for training, dev subset
for configuring the post-filtering as well as for the validation set
during training, while test is used for the final evaluation. All
speech audios are in 8 kHz. During training, both input mix-
tures and enrollment speech are randomly truncated to 3 sec-
onds, while full-length audios are used for testing.

4.2. Results

We compare the proposed training methods with three baselines
on the sep clean task of Libri2Mix: (1) NS: negative SI-SDR
as the only training target; (2) CE: multi-task learning with a
mulit-class cross-entropy loss for speaker classification and a
negative SI-SDR loss for waveform approximation; (3) BSS:
a blind speech separation model (Conv-TasNet) trained with
permutation-invariant training [20][21].

SI-SDRi(dB) PESQ params

NS 12.86 2.75 -
CE 13.05 2.78 β=0.2
BSS 13.40 2.74 -

TL1 13.31 2.82 β=0.2, α=1
TL2 13.36 2.83 β=0.2, α=1

PL1 13.46 2.85 β=0.2, |Sk|=5
PL2 13.46 2.85 β=0.1, |Sk|=5

GL1 13.47 2.85 β=0.1
GL2 13.44 2.83 β=0.1

NS + PF rec 13.13 2.76 Π=0.4, Φ=0.4
NS + PF lin 13.14 2.76 µ=0.4, λ=0.2
CE + PF rec 13.31 2.79 Π=0.5, Φ=0.5
CE + PF lin 13.32 2.79 µ=0.4, λ=0.2
PL2 + PF rec 13.82 2.85 Π=0.8, Φ=1.0
PL2 + PF lin 13.88 2.86 µ=0.6, λ=0.3

Table 1: Comparing the overall performance.

Results are presented in terms of SI-SDRi [18] and PESQ
[22] in Table 1. For the sake of space, only the best results are
reported, together with their hyperparameters. As illustrated in
the first and the third row, the TSE model is inferior to its BSS
counterpart by 0.54 dB in terms of SI-SDRi, which is consis-
tent with our statements in Section 1. By observing row four
to row nine, we can see that all metric learning methods pro-
mote the performance and outperform the CE baseline. The
performance difference between scheme 1 and scheme 2 is mi-
nor. Among proposed training methods, TL performs the worst

(13.36 dB SI-SDRi). PL and GL achieve similar results, im-
proving the performance by 0.6 dB and 0.61 dB SI-SDRi re-
spectively, and both of them outperform the BSS baseline.

For the post-filtering strategy, threshold parameters are
tuned on dev set in advance and set to be constant during in-
ference. Note that the threshold parameters should not be too
precise (e.g. one decimal place would be fair enough) to avoid
overfitting on the validation set. As shown in the last six rows in
Table 1, both PF rec and PF lin further improve the performance
of our methods as well as baselines. An example2 is depicted in
Figure 5. Interestingly, applying PF on the basis of proposed
training methods brings more gain in SI-SDRi than simply ap-
plying it to the baselines, and it further advances our results by
0.36 dB and 0.42 dB. This is due to that proposed training meth-
ods provide more reliable speaker embeddings and thus form a
more distinctive decision border in the subspace spanned by π
and ϕ, which is vital for the post-filtering.

We visualize some of the results in Figure 4. The proposed
methods significantly alleviate the long-tail distribution in end-
to-end speaker extraction. The best performance is achieved by
PL2+PF lin, with a SI-SDRi of 13.88 dB and a PESQ of 2.86.

Figure 5: Spectrograms from a data sample. In the first col-
umn are the original estimates from the deep model, in the sec-
ond column are final outputs after post-filtering, and the ground
truths are in the last column. As shown in the blue dashed box,
target confusion is rectified by proposed methods.

5. Conclusions
In this paper, we conduct an analysis of what we refer to as the
target confusion problem in end-to-end speaker extraction, and
proposed to solve it with metric learning methods and a post-
filtering strategy. Experiments show that our methods promote
the performance by more than 1 dB SI-SDRi. Our methods are
compatible with any off-the-shelf TSE models since they add
no modification to the network architecture. In future work, we
plan to extend our methods to more complicated scenarios, for
example, multi-talker (#spk ≥ 3) and noisy extraction.

2More audio examples are available at our demo webpage:
https://zhazhafon.github.io/demo-confusion/
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