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AbstractÐAudio-text retrieval aims to retrieve instances that
best match a given instance from an audio modality to a text
modality and vice versa. Recent studies have mainly focused
on capturing the shared high-level semantic concepts between
these two modalities by synchronously updating the audio and
text encoders. We found that such a synchronous updating
strategy results in sub-optimal learned audio and text encoders
owing to the two encoders’ varying initial prior knowledge
level. Furthermore, we observed a big semantic gap between
the representation of audio and text encoders using the common
mini-batch sampling strategy. To tackle these issues, we present a
novel three-stage curriculum-based mutual learning framework
(3CMLF) to boost the performance. Our approach includes two
key components: (i) Inspired by the human learning process, we
provide a global curriculum-based hard sample mining strategy,
which can globally mine the easiest, median, and hardest negative
samples from the full training set and construct three training sets
respectively. (ii) We propose to train the text and audio encoders
under the three-stage cross-modal mutual learning framework
using the three constructed training sets. In the first stage,
we fix the weights of the text network, which are initialized
using a pre-trained Bidirectional Encoder Representations from
Transformers (BERT) model, and then update the audio encoder
based on the easiest training set. During the second stage, we
freeze the audio encoder and update the text network based on
the median training set. After these initial alignment stages, we
release all weights to be learned and fine-tuned on the hardest
training set. This three-stage process is crucial for allowing the
model to successfully differentiate the top retrieved instance from
a hard negative set and capture the correlation between the audio-
text modal. Notably, 3CMLF is adaptable to the majority of
current audio-text models as it requires no alteration to the model
architecture. Experimental results on the AudioCaps dataset show
that our method achieves a new state-of-the-art performance.

I. INTRODUCTION

For each given instance in text modality, audio-text retrieval

task aims to retrieve the best-matching audio instances from

a group of candidates and vice versa. With the vast increase

in the numbers of user-generated multimedia data from online

communities and application, it becomes difficult for users to

effectively and efficiently search for information of interest [1].

Under such circumstances, cross-modal retrieval has attracted

extensive attention in recent studies [2]±[8]. However, when

compared with visual-text and other cross-modal retrieval

tasks, audio-text retrieval has not received much attention in

the research area of multimedia, mainly owing to a lack of

appropriate datasets [9]. Therefore, early audio studies dealing

with cross-modal retrieval across audio and text modalities are

based on metadata, e.g., an audio tag, instead of a free-form

natural language query. Chechik et al. [10] addressed a system

that can retrieve sounds based on single-word audio tags. To

search for audio using an onomatopoeic query, Ikawa [11]

measured the distance between the sound and onomatopoeic

query within the shared latent spaces. Elizalde et al. [12]

associated audio with text by jointly learning the audio and

text representations using a twin network. Although it is

viabble to retrieve metadata from manually-curated database

[9], such tag-based sound retrieval frameworks have a limited

performance constrained by the audio tag format. Following

the publication of audio captioning datasets [13], [14], new

public benchmarks were addressed by Koepke et al. [9] for

audio retrieval task, using detailed free-form language as

searching queries. Because natural language queries are one

of the most recognized user interfaces commonly employed

in existing cross-modal search engines, free-form text-based

audio retrieval could contribute to a more flexible retrieval

between audio and text. According to Mei et al. [15], varied

metric learning objectives have considerably different effects

on audio-text retrieval based on free-form natural language.

The general idea behind these previous studies is to nar-

row down the gap in heterogeneity between audio and text

modalities by synchronously learning two functions [16], i.e.,

audio and text encoders, thereby transforming the data from a

multi-modal form into a common representation space, where

relevant data are closely spaced and irrelevant data are spaced

widely apart.

Despite the significant advancement achieved in prior stud-

ies, there are still a number of obstacles in constructing

an efficient audio-text retrieval model, which have not been

properly tackled in the past research. Most methods in the prior

studies synchronously update both the audio and text encoders,

and such a training strategy gives little attention to the different

levels of prior knowledge that audio and text encoders carry

at the initialization phase. For instance, the text encoder

used in our study is initialized using Bidirectional Encoder

Representations from Transformers (BERT) [17], which is pre-

trained from a massive set of unlabeled data and contains high-

level prior knowledge. Forcing BERT and the audio encoder

to be updated synchronously will result in an oscillatory

optimization during the early training. In addition, we found

that in the previous audio-text retrieval methods, their results in

R@10, which is denoted as the percentage of correct matching
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Fig. 1. Panorama of three-stage curriculum-based mutual learning framework (3CMLF), consisting of two primary parts: a global curriculum-based hard sample
mining strategy and a cross-modal mutual learning framework. In stage 1, training specializes on capturing specific low-level modality features, whereas training
in the later stage is meant to capture modal-invariant higher-level concepts in the representations

among the top-10 ranked retrieved results, is much higher than

their results in R@1. This indicates that the correct answer is

more likely to be included in the top-10 search results than in

the top-1 search results. Thus, learning a fine-grained cross-

modal correspondence is the key to effectively discriminating

these hard samples from the correct answer. Furthermore, we

observed that random sampling from the full training set might

bring difficulty for the audio and text encoders to learn the

proper representations. Specifically, data that share similar

details of the semantic content, are complicated for model to

distinguish at early training stage ( e.g., car engine roaring and

engine starting up).

To tackle the aforementioned constraints, we propose a

novel three-stage curriculum-based mutual learning framework

(3CMLF) to improve the performance of the audio-text re-

trieval task. The proposed framework consists of two essential

parts, a global curriculum-based hard sample mining strategy

and a cross-modal mutual learning framework.

Specifically, as the general framework of 3CMLF illustrated

in Fig. 1, we first develop a curriculum-based hard sample

mining strategy. We propose a training strategy inspired by

the process of humans’ acquiring knowledge, which progresses

from simple to more difficult samples during training. Using

pre-trained ancillary embeddings computed from a pre-trained

cross-modal deep embedding network [15], we calculate the

semantic similarity between the training data and globally mine

the easiest negative pairs to construct the first training set,

i.e., the easy training set, where the data within each batch

are semantically dissimilar. Similarly, we select the median

negative pairs and the hardest negative pairs respectively to

construct the second training set, i.e., the median training set,

and the third training set, i.e., the hard training set. We then

design three training sets to train the audio and text encoders

based on the three pre-constructed training sets. In the first

stage, we fix the weights of the pre-trained text encoder, which

are initialized employing the pre-trained BERT model, and

only update the audio encoder’s parameters training on the

constructed easy training set. In this way, the audio network

can learn to align itself to the initial text representations. In the

second stage, we then fix the audio encoder and only update

the parameters of the text encoder based on the median training

set. Finally, we jointly train the text and audio encoder network

on the hard training set.

In conclusion, there are three major contributions in this

article.

1) We introduce a global curriculum-based hard sample

mining approach targeted to the audio-retrieval task,

which can globally mine the hardest, median, and easiest

samples, and accordingly construct a three-stage training

set. We then explore the performance of our proposed

mining strategy. The results indicate that our global

curriculum-based hard sample mining strategy outper-

forms the local mining technique applied in the randomly

sampled mini-batch.

2) We propose a cross-modal mutual learning framework
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that enables the two sub-networks to learn from each

other, providing extensive assistance for the model to

capture the fine-grained semantic correspondence be-

tween the audio and text modals.

3) Extensive experiments are conducted on the mainstream

dataset AudioCaps. The experimental result indicate

that our proposed model achieves a new state-of-the-art

performance.

II. METHODS

A. Problem formulation

For the problem formulation of the audio-text retrieval, we

assume that D = {di}
N
i=1 = {(ai, ti)}

N
i=1 is a collection of N

examples of audio-caption pairs, where ai is the input audio

clip, and ti is the paired caption of the ith example in D.

We simply consider each audio clip to have only a single

paired caption. (ai, ti), consisting of an audio clip with its

corresponding caption, is considered as a positive pair, whereas

(ai, tj,j ̸=i) is a negative pair.

Because the audio and text feature vectors typically lie

within distinct representation spaces, it is not practical to

make a direct comparison between them for cross-modal

retrieval. [18]. Thus two encoders for audio and text modalities

are learned respectively using cross-modal learning: xi =
f (ai; Υa) ∈ R

d and yi = g (ti; Υt) ∈ R
d , where f

represents the audio encoder, g represents the text encoder

and d stands for the dimensionality of the embedding within

the joint embedding space. Υa and Υt denote the trainable

parameters of the f and g. The similarity between each audio-

caption pair (ai, tj) can be denoted as follows:

sij =
f (ai; Υa) · g (ti; Υt)

∥f (ai; Υa)∥2 ∥g (ti; Υt)∥2
(1)

Both of the encoders, f and g, are trained to increase the

similarity of positive pairs sii while at the same time decrease

the similarity of negative pairs sij .

B. Global curriculum-based hard sample mining

Curriculum learning addresses the question of how to use

prior knowledge regarding the difficulty of the training exam-

Fig. 2. Mini-batch constructed from different training sets

ples to sample each mini-batch non-uniformly and thereby in-

crease the learning rate and accuracy. The curriculum learning

paradigm is based on the premise that introducing the learner

with simple concepts first helps the learning process.

Following this insight, we propose a global curriculum-

based hard sample mining strategy that can globally mine

the easiest, median, and hardest samples and construct three

training sets accordingly. Intuitively, the model should learn

easier negative samples first, followed by progressively harder

negative samples as the training stage proceeds and the train-

ing process converges. To be specific, we adopt pre-trained

ancillary embeddings that are computed from the pre-trained

cross-modal deep embedding network proposed by Mei et al.

[15]. Each training sample is assigned an ancillary embedding,

which is used to construct the mini-batch with suitable sam-

ples accordance to different training stages. They are vectors

possessing the following properties:

1) As stated above, let D = {di}
N
i=1 = {(ai, ti)}

N
i=1

denotes the data, where ai represents an audio clip and

ti represents its paired caption. Each training sample di
in the dataset has a pre-trained ancillary embedding ei.
These embeddings are employed when generating mini-

batch.

2) Two easy negative samples’ ancillary embeddings are

widely apart based on the cosine similarity metric.

3) Two hard negative samples’ ancillary embeddings are

near to one another based on the cosine similarity metric.

In the different training stages (stage1, stage2, and stage3),

each mini-batch is accordingly constructed:

1) During the first stage of training, the motivation is

to make the data within a mini-batch as semantically

dissimilar as possible. Thus, we sample a collection of

mini-batches from the dataset D and attempt to minimize

the objective L:

L = argmin





M
∑

m=1

B
∑

i=1

B
∑

j ̸=i,j=1

Cos Sim (ei, ej)



 (2)

where M is the iteration and B is the batch size. As

illustrated in the top of Fig. 2, in the mini-batch, the

similarity scores between the samples’ ancillary embed-

dings are rather low.

2) During the second stage of training, we randomly sample

a collection of mini-batches from the dataset D.

3) During the third stage of training, the motivation is

to make the data within a mini-batch as semantically

similar as possible. We sample a collection of mini-

batches from the dataset D and attempt to maximize

the objective L. Once the mini-batch has been filled, it

includes a collection of hard samples, which is crucial for

the cross-modal mutual learning framework to produce

a discriminative high-level representation.

L = argmax





M
∑

m=1

B
∑

i=1

B
∑

j ̸=i,j=1

CosiSim (ei, ej)



 (3)
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C. Audio Encoder

Pre-trained audio neural networks [19], also known as

PANNs, are networks trained from AudioSet [20] (1.9 million

audio clips), demonstrating state-of-the-art performance in

audio tagging task. These networks demonstrate their trans-

ferability by successfully tackling six different audio pattern

recognition problems. Following the prior state-of-the-art ap-

proaches in audio-text retrieval, our experiments are performed

with the pre-trained ResNet-38 in PANNs, with a pooling layer

replacing the last two linear layers. The pooling layer consists

of (i) an average pooling along the frequency axis followed

by (ii) an average and a max pooling along the time axis.

The features from both pooling are summed together and fed

into a simple multi-layer perceptron (MLP) block, consisting

of two linear layers sandwiching a ReLU [21] activation layer.

Using the MLP block, we map the audio features into a shared

embedding space.

D. Text Encoder

The approach for pre-training large-scale language models

based on mass unlabeled data has recently made significant

strides in a number of NLP tasks [22]. BERT is pre-trained

on two tasks, namely next sentence prediction and masked-

language modeling, and delivers cutting-edge results for state-

of-the-art results for a broad range of NLP tasks, producing a

powerful contextualized word embedding. Following the prior

state-of-the-art approaches, we adopt the pre-trained BERT as

our text encoder in this study.

BERT takes a sequence of tokens as input, with the first

token always being [CLS], and returns the last hidden state

of [CLS] as the entire sequence’s representation. To map the

text representation into the shared embedding space, an MLP

block is also employed.

E. Cross-Modal Mutual Learning framework

As stated previously, we found that if we train both models

simultaneously, which means forcing BERT and the audio en-

coder to be updated synchronously will result in an oscillatory

optimization during the early training. To this end, we design

an effective cross-modal mutual learning framework to transfer

the fine-grained semantic knowledge between the two encoders

that have different levels of prior knowledge.

Our cross-modal mutual learning framework consists of

three stages. Specifically, in the first stage, the text encoder,

which is initialized using a pre-trained BERT, has higher levels

of prior knowledge than the audio encoder. Thus we fix the

parameters of the text encoder (teacher model) , and update

only the parameters of the audio encoder (student model) based

on the easy training set. This way the audio encoder can learn

to align itself to the initial text representation and reach a

higher knowledge level than text encoder. In the second stage,

we freeze the audio encoder (teacher model) and update the

text encoder (student model) in the same way based on the

median training set. After these initial alignment stages, we

release all weights to be learned and trained on the hardest

training set. The mutual learning between the two sub-network

in stage1 and stage 2 will further boost the jointly updating

process in stage 3. This three-stage process is crucial for

allowing the model to successfully capture the fine-grained

correspondence between the audio modal and the text modal,

leading to better model performance.

F. Loss Function

The normalized temperature-scale cross-entropy (NT-Xent)

loss [23] is a commonly used softmax-based loss function

for contrastive representation learning. In a previous study on

the audio-text retrieval task, the NT-Xent loss achieved better

performance than the commonly used triplet-based losses [24],

[25] and was more robust to different training settings [15].

Thus, in this study, the proposed 3CMLF is trained using the

NT-Xent loss, which is defined as:

L = − 1
B

(

∑B
i=1 log

exp(sii/τ)∑
B
j=1

exp(sij/τ)
+

∑B
i=1 log

exp(sii/τ)∑
B
j=1

exp(sji/τ)

)

,

(4)

where B is the batch size, and τ is the temperature hyper-

parameter. The NT-Xent loss function in this case contains two

term since the audio-text retrieval task includes both audio-

to-text retrieval and vice versa. The target of NT-Xent is to

maximize positive pair’s similarity with reagard to all negative

pairs in a mini-batch, bidirectionally.

III. EXPERIMENTS AND ANALYSIS

A. Dataset

In our research, We use AudioCaps dataset, which contains

about 49274 audio clips in the training set. There are 494 and

957 audio clips in the validation and test sets, respectively. All

audio samples in the AudioCaps dataset are approximately 10s

long. Each audio is human-annotated with a single reference

caption in the training set and five reference captions in the

validation and test sets.

B. Implementation Details

We extracted 64 dimensional Log mel-spectrograms, em-

ploying a 1024-points Hanning window with a 320-points

window hop size, as the input features. The proposed 3CMLF

is trained with batches of 32 for at most 50 epochs using

the Adam optimizer [26]. The learning rate is set to 1 ×

1e-4 and is decreased by 1/10th every 20 epochs. Following

the settings employed in the prior study, for NT-Xent, the

temperature hyper-parameter τ = 0.07. We set the dimension

of the joint embedding space to 1024. All tests are conducted

on the RTX3090 GPU.

C. Evaluation Metrics

The audio-text reatrieval performance is measured in terms

of recall at rank k (R@k), which is a commonly used cross-

modal retrieval evaluation metric. R@k is denoted as the

percentage of correct matching within the top-k ranked results.

We report the results for R@1, R@5, and R@10.
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TABLE I
COMPARISON BETWEEN DIFFERENT TRAINING STRATEGIES FOR 3CMLF AND OTHER PREVIOUS STATE-OF-THE-ART METHODS.

CHM DENOTES THE CURRICULUM-BASED HARD SAMPLE MINING. AUDIO ENCODER DENOTES THE TRAINING STRATEGY FOR THE

AUDIO ENCODER

Model
Audio

encoder

With

CHM

Text-to-Audio Audio-to-Text

R@1 R@5 R@10 R@1 R@5 R@10

CE [9] 23.6 56.2 71.4 27.6 60.5 74.7

MoEE [9] 23.0 55.7 71.0 26.6 59.3 73.5

ResNet38+BERT [15]
from scratch 24.5 56.9 71.6 30.8 59.8 75.8
pre-trained 33.7 69.5 82.4 38.7 71.6 83.8

3CMLF

from scratch No 26.5 60.1 74.5 31.9 63.8 76.6
from scratch Yes 28.0 60.5 75.1 33.0 65.0 78.1
pre-trained No 34.5 69.9 82.3 40.5 72.0 84.8
pre-trained Yes 34.9 70.7 82.9 41.4 72.9 85.4

TABLE II
ABLATION STUDY OF OUR PROPOSED 3CMLF AT DIFFERENT TRAINING STAGES

Model
Audio

encoder

Training

stage

Text-to-Audio Audio-to-Text

R@1 R@5 R@10 R@1 R@5 R@10

3CMLF

from scratch stage 1 9.4 30.1 43.1 9.8 29.8 44.0
from scratch stage 2 19.3 49.2 65.3 24.1 50.9 64.6
from scratch stage 3 28.0 60.5 75.1 33.0 65.0 78.1
pre-trained stage 1 18.1 48.9 65.2 21.5 51.3 67.2
pre-trained stage 2 29.2 65.4 79.9 35.1 67.1 79.6
pre-trained stage 3 34.9 70.7 82.9 41.4 72.9 85.4

TABLE III
EXPERIMENTAL RESULTS WITH DIFFERENT BATCH SIZES.

Model
Audio

encoder

Batch

size

Text-to-Audio Audio-to-Text

R@1 R@5 R@10 R@1 R@5 R@10

3CMLF

from scratch 16 24.2 57.3 72.6 29.7 60.6 74.3
from scratch 32 28.0 60.5 75.1 33.0 65.0 78.1
from scratch 64 27.1 59.1 73.5 32.0 64.6 78.2
pre-trained 16 28.2 64.9 80.9 35.4 64.9 80.2
pre-trained 32 34.9 70.7 82.9 41.4 72.9 85.4

pre-trained 64 33.1 68.3 81.8 38.7 70.5 83.1

D. Model Performance

Table I presents the detailed results of our experiment. It

can be demonstrated that the global curriculum-based hard

sample mining strategy can significantly enhance the model

performance and provide state-of-the-art outcomes. As Table

I shows, the proposed 3CMLF achieves a better result than

the baseline regardless of whether the audio encoder is pre-

trained or trained from scratch. In addition, it outperforms three

prior state-of-the-art approaches on text-to-audio task and vice

versa. Koepke et al. [9] addressed new benchmarks for audio-

text retrieval task. They adopted robust cross-modal video

retrieval approaches to audio-text retrieval task, including

MoEE and CE, and provided the baseline results. Following the

benchmark, the baseline model [15] used in our study explored

the impact of different metric learning objectives, leading to

state-of-the-art result on the AudioCaps dataset. Reproduced

experimental results are employed as the baseline model’s

performance.

E. Ablation study on different training stages

The application of global curriculum-based hard sample

mining to a cross-modal mutual learning framework is based

on the assumption that the audio and text encoders enjoy

different levels of prior knowledge at the initialization phase.

Thus, when both encoders are synchronously updated, it may

result in a sub-optimal training process. To prove this hypoth-

esis, we studied the model performance for different training

stages, and explored the influence of within-modality self-

instance discrimination and cross-modal discrimination. The

results are reported in Table II. In Table II, we can see that

when the transfer process is completed after stage 3, it results

in better representations than stage 1 and stage 2 owing to

the curriculum-based knowledge transfer between audio and

text. From these results, we can conclude that this three-stage

process is crucial for the model to successfully capture a fine-

grained high-level correspondence between audio-text modals.

In addition, the mutual learning framework, which enables

two sub-networks from different modalities to learn from each

other, effectively produces a better model.

F. Effects of different batch sizes

Further, we investigated how the model performance was

affected by different batch sizes. Table III shows the perfor-

mances of the models based on different training strategies

applied to the audio encoder. The performance of 3CMLF is

quite stable when the batch size is increased to 64. The model
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performance on audio-to-text retrieval and text-to-audio re-

trieval degrades considerably when the batch size is decreased

to 16. In addition, the strategy for constructing a mini-batch

should be modified to adapt to a different batch size.

IV. CONCLUSIONS

In this paper,we introduced an efficient model to capture the

high-level semantic correspondence between the audio and text

modals. We proved experimentally that the global curriculum-

based hard sample mining strategy and the cross-modal mutual

learning framework had a substantial effect on the performance

of the natural language based audio-text retrieval, in which

3CMLF outperformed the prior state-of-the-art methods and

demonstrated a steady performance with regard to different

training strategies and settings, leading to a new state-of-the-

art results.
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