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Abstract—Generating sound effects that people want is an im-
portant topic. However, there are limited studies in this area for
sound generation. In this study, we investigate generating sound
conditioned on a text prompt and propose a novel text-to-sound
generation framework that consists of a text encoder, a Vector
Quantized Variational Autoencoder (VQ-VAE), a token-decoder,
and a vocoder. The framework first uses the token-decoder to
transfer the text features extracted from the text encoder to a mel-
spectrogram with the help of VQ-VAE, and then the vocoder is used
to transform the generated mel-spectrogram into a waveform. We
found that the token-decoder significantly influences the generation
performance. Thus, we focus on designing a good token-decoder
in this study. We begin with the traditional autoregressive (AR)
token-decoder. However, the AR token-decoder always predicts
the mel-spectrogram tokens one by one in order, which may in-
troduce the unidirectional bias and accumulation of errors prob-
lems. Moreover, with the AR token-decoder, the sound generation
time increases linearly with the sound duration. To overcome the
shortcomings introduced by AR token-decoders, we propose a
non-autoregressive token-decoder based on the discrete diffusion
model, named Diffsound. Specifically, the Diffsound model predicts
all of the mel-spectrogram tokens in one step and then refines the
predicted tokens in the next step, so the best-predicted results can
be obtained by iteration. Our experiments show that our proposed
Diffsound model not only produces better generation results when
compared with the AR token-decoder but also has a faster genera-
tion speed, i.e., MOS: 3.56 v.s 2.786.

Index Terms—Autoregressive model, diffusion model, text-to-
sound generation, vocoder.

1. INTRODUCTION

SER controlled sound generation has a lot of potential
applications, such as movie and music productions, game
scene sound effects, and so on. With the development of virtual
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reality (VR) technology, it is very important to generate the
sound effects that users want. Research on sound generation
is very limited. Chen et al. [1], Zhou et al. [2] and Iashin and
Rahtu [3] proposed to generate sound related to a video. Liu et
al. [4] and Kong et al. [5] attempted to generate environmental
sound conditioned on a one-hot label. However, at the time of
this work, there are very limited published works on generating
sound from text descriptions. To the best of our knowledge, this
paper is among the first work in this direction. Text-to-sound
generation has a wide range of applications, e.g., adding back-
ground sound for speech synthesis systems. Nowadays, speech
synthesis systems have been applied to poetry or novel reading.
The user experience could be improved by adding background
sound to scenarios represented in text. Furthermore, many music
or movie designers are required to find a suitable sound for a
scene. A simple approach is that they describe the scene with
a sentence, and then use the text-to-sound model to generate
the corresponding sound. In this work, we focus on directly
generating audio based on human-written descriptions, such as
“An audience cheers and applauds while a man talks”. The state-
of-the-art methods [3], [4] in the sound generation both employ
a two-stage generation strategy, which first uses autoregressive
(AR) decoder to generate a mel-spectrogram conditioned on
a one-hot label or a video and then employs a vocoder (e.g.
MelGAN [6]) to transform the generated mel-spectrogram into
waveform. To improve the generation efficiency, they propose
to learn a prior in the form of the Vector Quantized Variational
Autoencoder (VQ-VAE) codebook [7], which aims to compress
the mel-spectrogram into a token sequence. With VQ-VAE,
the mel-spectrogram generation problem can be formulated as
predicting a sequence of discrete tokens from the text inputs.
Inspired by [3], [4], we propose a text-to-sound generation
framework, which consists of a text encoder, a VQ-VAE, a
token-decoder, and a vocoder. The diagram of the text-to-sound
framework is shown in Fig. 1. We found that the token-decoder
significantly influences the generation performance. Thus, we
focus on designing a good token-decoder in this paper.

We start by looking into the AR token-decoder. However,
we discovered that the AR token-decoder is unable to pro-
duce high-fidelity and high-relevance sound with text input.
Though the AR token-decoder has been widely adopted in sound
generation tasks in previous research [3], [4], it has two flaws:
(1) Mel-spectrogram tokens are always predicted in order (e.g.,
from left to right) by the AR token-decoder. Such unidirectional
predictions may restrict the sound generation performance to
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(a) The framework of our proposed text-to-sound generation.
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(b) An example of autoregressive
spectrogram tokens generation

(¢) An example of non-autoregressive spectrogram tokens generation.

Fig. 1. (a) shows the diagram of the text-to-sound generation framework
includes four parts: a text encoder that extracts text features from the text
input, a token-decoder that generates mel-spectrogram tokens, a pre-trained
spectrorgam decoder that transforms the tokens into mel-spectrogram, and a
vocoder that transforms the generated mel-spectrogram into waveform. We
explore two kinds of token-decoders, an autoregressive (AR) token-decoder and
a non-autoregressive token-decoder (Diffsound). (b) and (c) show the examples
of AR token-decoder and non-AR token-decoder.

be sub-optimal since the information of a specific sound event
location may come from both the left and the right context; (2)
During the inference phase, incorrectly predicted tokens from
previous steps propagate to subsequent tokens, resulting in ac-
cumulated prediction errors. Another issue in the text-to-sound
generation is lacking text-audio pairs. The largest public avail-
able text-audio dataset is AudioCaps [8], which only includes
about 49 K text-audio samples. In contrast, lashin and Rahtu [3]
trains their model using VGGSound dataset [9], which has over
200 K audio-video pairs.

To address the weaknesses of the AR token-decoder, we
propose a non-autoregressive token-decoder based on diffu-
sion probabilistic models (diffusion models for short) [10],
[11], [12], [13], named Diffsound. Instead of predicting the
mel-spectrogram tokens one by one in order, Diffsound model
predicts all of the mel-spectrogram tokens simultaneously, then
it revises the previous predicted results in the following steps,
so that the best results can be obtained by iterations. In each
step, the Diffsound model leverages the contextual information
of all tokens predicted in the previous step to estimate a new
probability density distribution and uses this distribution to
sample the tokens in the current step. Due to the fact that
Diffsound model can make use of the contextual information
of all tokens and revise any token in each step, we speculate
that it can effectively alleviate the unidirectional bias and the
accumulated prediction error problems. We adopt the idea from
diffusion models, which use a forward process to corrupt the
original mel-spectrogram tokens in 7" steps, and then let the
model learn to recover the original tokens in a reverse process.
Specifically, in the forward process, we define a transition matrix
that denotes probability of each token transfer to a random token
or a pre-defined MASK token. By using the transition matrix, the
original tokens &g ~ ¢(x() transfer into a stationary distribution
p(axr). In the reverse process, we let the network learn to

recover the original tokens from & ~ p(x ) conditioned on the
text features. Fig. 1(c) shows an example of non-autoregressive
mel-spectrogram tokens generation.

To address the problem of lacking text-audio pairs, we propose
to let the Diffsound model learn knowledge from the AudioSet
dataset [14] and then fine-tune the pre-trained Diffsound model
on a small-scale text-audio dataset (e.g., AudioCaps). AudioSet
is the largest available dataset in the audio field, but it only
provides the event labels for each audio clip. To utilize the
AudioSet dataset, we propose a mask-based text generation
strategy (MBTG) that can generate a text description according
to the event labels so that a new text-audio dataset is built.
Furthermore, we observe a phenomenon: it is easier to gener-
ate audio that only includes one single event than audio that
includes multiple events. To help the Diffsound model learn
better, we mimic the human learning process by letting the
Diffsound model learn from easy clips and gradually advance
to complex clips and knowledge. Specifically, we propose a
curriculum learning strategy in our pre-training stage, that is,
we first select the audio clips that only include one event
(easy sample) to the training set, and gradually add the audio
clips that include multiple events (hard sample) to the training
set.

Human evaluation of sound generation models is an expensive
and tedious procedure. Thus, objective evaluation metrics are
necessary for sound generation tasks. We explore three objective
evaluation metrics: Frechet Inception Distance (FID) [15], KL-
divergence [3] and audio caption loss. We demonstrate that these
metrics can effectively evaluate the fidelity and relevance of the
generated sound. Furthermore, we also use the Mean Opinion
Score (MOS) to assess our methods.

Experiments show that our text-to-sound generation frame-
work can generate high-quality sound, e.g., MOS: 3.56 (ours)
v.s 4.11 (ground truth), and our proposed Diffsound model has
better generation performance and speed compared to the AR
token-decoder, e.g., MOS: 3.56 v.s 2.786, and the generation
speed is five times faster than the AR token-decoder. Our main
contributions are listed as follows:

1) For the first time, we investigate how to generate sound
based on text descriptions and offer a text-to-sound gener-
ation framework. Furthermore, we propose a novel token-
decoder (Diffsound) based on a discrete diffusion model
that outperforms the AR token-decoder in terms of gener-
ation performance and speed.

2) To solve the problem of lacking text-audio pairs in the text-
to-sound generation task, we propose a mask-based text
generation strategy (MBTG), which helps build a large-
scale text-audio dataset based on the AudioSet dataset.
We demonstrate the effectiveness of pre-training the Diff-
sound on the AudioSet, which gives the insight to improve
the performance of the generation model under a data
deficiency situation.

3) We initially explore three objective evaluation metrics for
the text-to-sound generation task. We show that these
metrics can comprehensively evaluate the generated
sound’s relevance (i.e., how well the audio content relates
to the text descriptions), as well as its fidelity (i.e., how

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on May 08,2023 at 02:46:03 UTC from IEEE Xplore. Restrictions apply.



1722

closely the generated audio clip resembles actual environ-
mental sound).

II. RELATED WORK
A. GAN-Based Content Generation

In the past few years, Generative Adversarial Networks
(GANSs) have shown promising results in image generation [16],
[17], [18], speech synthesis [6], [19], [20] and music genera-
tion [21]. GAN-based models are capable of synthesizing high-
fidelity images/sounds. However, they suffer from well-known
training instability and mode collapse issues, which lead to a
lack of sample diversity. Most related to our work is RegNet [1],
which aims to generate sound conditioned by visual information.
Itis noted that RegNet only generates sounds on a single domain
dataset (e.g., dog bark or drum), which means that it struggles on
complex scenes with multiple sound events. Furthermore, Iashin
and Rahtu [3] have demonstrated that using an autoregressive
generation model can produce better results than RegNet.

B. Autoregressive Models

AR models [22], [23] have shown powerful generation capa-
bility and have been applied for image generation [7], [24], [25],
[26], [27], [28], [29], speech synthesis [30] and sound genera-
tion [3], [4]. To generate high-resolution images, VQ-VAE [7],
[27], VQGAN [24] and ImageBART [31] train an encoder to
compress the image into a low-dimensional discrete latent space.
After that, the AR models learn from low-dimensional discrete
latent space directly, which greatly reduces the time complexity
and improves the performance. Liu et al. [4] and Iashin and
Rahtu [3] also apply the similar idea to generate sound, and
achieve good generation performance.

C. Diffusion Probabilistic Models

Diffusion generative models were first proposed in [11] and
achieved strong results on image generation [13], [31], [32],
[33] and speech synthesis [34], [35], [36], [37]. Diffusion mod-
els with discrete state spaces were first introduced by Sohl-
Dickstein et al. [11], who considered a diffusion process over
binary random variables. Hoogeboom et al. [38] extended the
model to categorical random variables with transition matri-
ces characterized by uniform transition probabilities. Jacob et
al. propose Discrete Denoising Diffusion Probabilistic Models
(D3PMs) [12], which further improve and extend discrete diffu-
sion models by using a more structured categorical corruption
process to corrupt the forward process. D3PMs [12] and VQ-
Diffusion [13] have applied discrete diffusion models to image
generation.

III. PROPOSED TEXT-TO-SOUND FRAMEWORK

The overall architecture of the proposed text-to-sound frame-
work is demonstrated in Fig. 1(a), which consists of four parts
including a text encoder, a VQ-VAE, a token-decoder, and a
vocoder. The detailed design of each part will be introduced in
this section.
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Fig. 2. The overall architecture of VQ-VAE, which consists of four parts:
an spectrogram encoder that extracts the representation £ from the mel-
spectrogram, a codebook that contains a finite number of embedding vectors,
a spectrogram decoder that reconstructs the mel-spectrogram based on mel-
spectrogram tokens, and a discriminator that distinguishes the mel-spectrogram

is original or reconstructed. Q(.) denotes a quantizer that maps each features
£;; into its closest codebook entry 2y, to obtain the mel-spectrogram tokens.

A. Text Encoder

The first step in the text-to-sound generation task is designing
a good text encoder to extract the sound event information
from the context while other information should be excluded.
In this study, we employed the pretrained BERT [39] and
the text encoder of a pretrained Contrastive Language-Image
Pre-Training (CLIP) model [40] to extract the text features (a
vector to represent the contextual information). Our experiments
indicated that using CLIP model can bring better generation
performance. One possible explanation is that CLIP is trained by
contrastive learning between the representations of images and
text, the use of multi-modality information may make the text
representations computed from CLIP contain more semantics
related to sound events e.g., “dog barks and birds sing”. Note
that the text encoder is fixed in our training process.

B. Learning Discrete Latent Space of Mel-Spectrograms via
VO-VAE

In this part, we introduce the vector quantized variational
autoencoder (VQ-VAE) [7] to simplify the process of decoder
generates the mel-spectrograms.

Most of the text-to-speech (TTS) methods [34], [35], [41]
directly learn the mapping from text to wave samples or raw
spectrogram pixels for the reason that the synthesized speech’s
content relies on the words of text. Unlike TTS, there is no direct
correspondence between text and sound in the sound generation
task. To this end, the text-to-sound task needs to extract the
event information from the text input and then generate the cor-
responding events. Considering a sound may consist of multiple
events and each event has its own unique characteristics. We
propose to use the VQ-VAE to learn a codebook to encode the
characteristic of events, and then generate the mel-spectrogram
based on the codebook following Liu et al. [4] and Iashin and
Rahtu [3].

As Fig. 2 shows, a mel-spectrogram can be approximated
by a sequence of mel-spectrogram tokens. Thus, the mel-
spectrogram generation problem transfers to predicting a se-
quence of tokens. In the following, we will introduce the details
of VQ-VAE.
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VQ-VAE is trained to approximate an input using a com-
pressed intermediate representation, retrieved from a discrete
codebook. VQ-VAE consists of a spectrogram encoder F,,
a spectrogram decoder D and a codebook Z = {z;} | €
RExn: containing a finite number of embedding vectors, where
K is the size of the codebook and n, is the dimension of
codes. Given a mel-spectrogram s € R % the input s is firstly
encoded into a small-scale representation (encoder E,, con-
sists of multiple convolution and pooling layers) 2 = E,,(s) €
RE'*L'xn: \where F', I/ and n, represent the down-sampled
frequency, the time dimension and the feature dimension. Then
we use a vector quantizer Q(-) which maps each time-frequency
vector £2;; € R"= into its closest codebook entry zj, to obtain a
discrete spectrogram token sequence = € ZF %% as follows:

r=Q(2):= <arg min ||2;; — z||3 for all (i, 5) in (F”, L’))
z

FAAS

ey
The mel-spectrogram can be approximately reconstructed
via the codebook Z and the spectrogram decoder i.e., § =
D, (Q(2)). Note that the spectrogram tokens are quantized latent
variables in the sense that they take discrete values. The encoder
E,q, the spectrogram decoder D, and the codebook Z can be
trained in an end-to-end manner via the following loss function:

Lyqvar = ||s = 81 +[|SG[Eug(s)] — Il ()
+ 118G 2] — Euq(s)ll3 3

where SG || is the stop-gradient operation that acts as an identity
during the forward pass but has zero gradients at the backward
pass. To preserve the reconstruction quality when upsampled
from a smaller-scale representation, we follow the setting of
VQGAN [24], which adds a patch-based adversarial loss [42] to
the final training loss

Ly = Lvqvar + *a(log(D(s)) +1og(1 — D(8))) (4

where D is a discriminator (it consists of several convolution lay-
ers), which aims to distinguish the mel-spectrogram is original
or reconstructed. A4 is a hyper-parameter to control the weight
of adversarial loss.

C. Token-Decoder

The token-decoder in our framework is used to transfer the text
features into the discrete mel-spectrogram token sequence. An
autoregressive token-decoder is first investigated in this paper.

Specifically, given the text-audio pairs, the inputs of the token
encoder are extracted from the text description with the text
encoder. Following [3], the discrete mel-spectrogram tokens © €
ZF' %I obtained from a pretrained VQ-VAE are first reshaped to
a token sequence & € Z* "L and then used as the training tar-
get. By using the AR token-decoder, the decoding process can be
viewed as an autoregressive next-token prediction: Given tokens
Z«;, the decoder learns to predict the distribution of possible
next tokens, i.e., p(Z;|Z<;,y) to compute the likelihood of the
full representation as p(|y) = [ [, p(%:|€<:, y). The decoderis
trained with a cross-entropy (CE) loss, comparing the probabil-
ities of the predicted mel-spectrogram tokens to those obtained
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from the ground truth. Due to the wrongly predicted results of
previous steps influencing the current step, “teacher-forcing”
strategy [31] is used to guarantee the stability of training. The
“teacher-forcing” strategy uses ground truth tokens as previous
step prediction results. After the token decoding process, the
mel-spectrogram can be computed by the pretrained VQ-VAE
spectrogram decoder. In the inference stage, we can set L’ to
determine the duration of the generated sound.

In the AR token-decoder, the adoption of the “teacher-
forcing® training strategy can cause a mismatch between model
training and inference. During training, we use the previous
ground truth tokens to predict the current token, while during
inference, we use the predicted tokens. The accuracy of the
predicted tokens can be affected by the “accumulated errors” in
previous predicted tokens in inference [43]. Such mismatches
can cause the model’s performance to be sub-optimal. In ad-
dition, the prediction of the current token only depends on the
previous tokens in the AR decoder, which ignores the future con-
text information. Such “unidirectional bias” can also lead to sub-
optimal model performance. To this end, a non-autoregressive
token-decoder based on a discrete diffusion model is proposed.
(Details will be given in Section IV.)

D. Vocoder

The vocoder aims at transforming the generated mel-
spectrogram into waveform w. This type of vocoder is a hot
research topic. Griffin-Lim [44], WaveNet [45], MelGAN [6],
and HiFi-GAN [46] are very popular vocoders for speech syn-
thesis task. The Griffin-Lim method is a classic signal processing
method that is very fast and easy to implement. However,
Griffin-Lim produces low-fidelity results when operating on
mel-spectrograms [3]. WaveNet provides high-quality results
but remains relatively slow in generation time. In this study,
considering its generation efficiency and quality, we employ
MelGAN which is a non-autoregressive approach to reconstruct-
ing the waveform. MelGAN has been widely used in speech
synthesis fields. However, many pre-trained MelGAN models
are trained on speech or music data, so they are not suitable
for environmental sound generation. We train a MelGAN on a
large-scale audio event dataset (AudioSet) [14], which contains
527 unique sound events.

1V. DIFFUSION-BASED DECODER

In this section, we introduce our proposed non-autoregressive
token-decoder based on discrete diffusion model, named Diff-
sound. As discussed in Section III-C, Diffsound model is pro-
posed to address the unnatural bias and accumulation of errors
issues in AR decoders. In the following, we first introduce the
diffusion models. Then we discuss the details of the training and
inference of the Diffsound model. Lastly, we discuss how to use
the pre-training strategy to further improve the performance of
the Diffsound model.
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A. Diffusion Probabilistic Models

Diffusion probabilistic models (diffusion models for
short) [11] have proved to be a powerful generation model in
the image and speech fields [13], [32]. In this section, we briefly
introduce some basic principles of the diffusion models.

1) Vanilla Diffusion Model: A diffusion model con-
sists of two processes: the forward process with steps
t€{0,1,2,...,T} and the reverse process t¢c {T,T —
1,...,1,0}. The forward process corrupts the original data @
into a noisy latent variable 7 which belongs to a stationary
distribution (e.g., Gaussian distribution), and the reverse process
learns to recover the original data o from .

a) Forward Process: Given the audio data xq, the forward
process aims to corrupt the data @y ~ ¢() into a sequence of
increasingly noisy latent variables 1.7 = x1, s, . . ., 7. Each
of noisy latent variables x; has the same dimensionality as x.
The forward process from data x( to the variable 7 can be
formulated as a fixed Markov chain

q(x1.r|wo) = I]:q @y |Ti1) )
Following [11], Gaussian noise is selected in each step, so that
the conditional probability distribution can be ¢(x¢|x:—1) =
N(zy; /1= Byxy_1, B ), where B, is a small positive constant.
According to the pre-defined schedule 51, 35, . . ., B (detials are
given in Section VII), the forward process gradually converts
original xy to a latent variable with an isotropic Gaussian
distribution of p(xr) = N(0, I) when T is enough large [11].
Based on the properties of Markov chain [10], the probability
distribution ¢(x¢|x) can be written as

N(mh @$07 (1

where oy =1 — 3; and @y = H’;:l 0.

b) Reverse Process: The reverse process converts the la-
tent variable 1 ~ N(0,I) into xy, whose joint probability
follows:

a)I) (6)

q(as|wo) =

Po(To.T) (—1|xt) (7

ven I

where py(+) is the distribution of the reverse process with learn-
able parameters 6. The posterior q(x;_1|®, To) can be derived
according to Bayes formula as follows:

Q(mt|$t—1> 930)(](33:&71|?130)
q(@¢|wo)

®)

Q(th—1|$t,$0) =

In order to optimize the generative model py(xy) to fit the data
distribution g(x), one typically optimizes a variational upper
bound on the negative log-likelihood [10]:

Loy = Eqy(a) | Drcilg(@r o) |p(@r)

T
+ " Bytuifen [Drcrla(@e e, o) lIpo(@: -1 |2)] |

t=1
9

2) Discrete Diffusion Model: One limitation of vanilla dif-
fusion model is that, for original data x, in discrete space,
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e.g., for any element z{) in xo, 2 € {1,2,..., P}, we cannot
corrupt the x( by adding Gaussian noise in the forward process
since the range of z( belongs to P different discrete values. To
solve this issue, discrete diffusion model [11], [12] is proposed.
In discrete diffusion model, a transition probability matrix is
defined to indicate how x transits to x; for each step of forward
process. Assuming that g € Z" and zk € {1,2,..., P}. Itis
worth noting that & denotes a vector with N scalar elements.
To better illustrate the transition probability matrix, we will use
x( to denote any one scalar element in x( in the following.
The matrices [Q,]i; = q(z; = ilx;—1 = j) € RP*F defines the
probabilities that ;_; transits to x;. Then the forward process
for the whole token sequence can be written as:

Q(30t|3€t71) = CT(xt)QtC(CL‘tA)

where c() denotes a function that can transfer a scalar element
into a one-hot column vector. The categorical distribution over
x4 is given by the vector Q,c(x;_1). Due to the property of
Markov chain, one can marginalize out the intermediate steps
and derive the probability of z; at arbitrary timestep directly
from x( as follows:

q(z4]z0) = ¢ (¢)Q,c(x0), with Q, = Q, ... Q,

Therefore, q(x;—1|x¢, xo) can be computed based on (11):

(10)

a1

q($t|33t—1, xO)Q(xt—l |$o)
q(xt|zo)

_ (CT(xt)th(It—l)) (ET(It—l)ath(SCO)) (12)

¢! (2¢)Qyc(xo)

Q($t71|3€t79€0) =

B. Non-Autoregressive Mel-Spectrograms Generation via
Diffsound

In contrast to the AR token-decoder, which predicts the mel-
spectrogram tokens one by one, we expect the Diffsound model
to predict all of the tokens in a non-AR manner. Specifically, the
Diffsound model can predict all of the tokens simultaneously,
then refine the predicted results in the following steps so that the
best results can be obtained through iterations. In other words,
we expect the predicted results can be improved through 7'-
step iterations. In contrast, AR decoder needs IV steps to get
results, where N denotes the number of tokens (in practice,
N > T). The Diffsound model can make use of the contextual
information of all tokens and revise any token in each step. We
speculate that it effectively diminishes the unnatural bias and the
accumulated prediction error problems. To realize the process,
we adapt the idea from discrete diffusion model [11], [12], [13],
which designs a strategy to corrupt the original mel-spectrogram
token sequence o ~ ¢(xo) into a totally meaningless sequence
xr ~ p(xr) in T steps, and then let network learn to recover
the original sequence x( based on the text information in 7'
steps. Fig. 1(c) shows an example of the forward and reverse
processes. In the inference stage, the reverse process is used to
help generate mel-spectrogram tokens. We randomly sample a
token sequence 7 from p(x ), and then let the network predict
anew mel-spectrogram token sequence based on 1 and the text
features. According to the previous description in Section I'V-A,
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the key point of training a discrete diffusion model is to design
a suitable strategy to pre-define Markov transition matrices Q),.

As discussed in Section III-B, the codebook of VQ-VAE
encodes the time-frequency features of sound events. According
to this property, we propose three strategies to corrupt the mel-
spectrogram tokens. Firstly, changing the context by randomly
replacing the original token. Secondly, masking the context
by introducing an extra mask token. However, we find that
changing the context by randomly replacing tokens results in the
reverse process being hard to learn. We speculate that one of the
reasons is that a mel-spectrogram token may be replaced with a
completely unrelated category token, e.g., a token representing
the dog barking may be replaced by a token representing the
man speaking. Furthermore, we conjecture that there is a context
relationship between adjacent tokens; if we only use the mask
token, the model may tend to focus on the mask token and
ignore the context relationship. Thus, we propose to combine
the changing and masking context strategies. We define three
transition matrices according to the three strategies, respectively:
Uniform transition matrix, mask transition matrix, and mask and
uniform transition matrix.

In the following, we first introduce the three transition ma-
trices. Then we discuss the noise schedule strategy and loss
function. Lastly, we introduce the reparameterization trick and
fast inference strategy.

1) Uniform Transition Matrix: Uniform transition matrix
was first proposed by Sohl-Dickstein et al. [11] for binary ran-
dom variables, e.g., variable zero can transfer to one or zero with
a uniform distribution. Hoogeboom et al. [38] later extended
this to categorical variables. The core idea is that each variable
can transfer to all the pre-defined categories with a uniform
distribution. In practice, the transition matrix Q, € R¥*¥ can
be defined as

ap + 5 By s By
Be ag+ 53 - By
Q= : : . ) (13)
Bt B oy + Py

where 3; € [0,1] and oy =1 — K ;. This transition matrix
denotes that each token has a probability of K 3, to be resampled
uniformly over all the K categories, while with a probability of a;
toremain the previous value at the present step. As Section [V-A2
described, we could calculate ¢(z¢|z) according to formula
(1), g(z¢|z0) = ¢ (z¢)Q;c(z0). However, when the number
of categories K and time step 7' is too large, it can quickly
become impractical to store all of the transition matrices Q,
in memory, as the memory usage grows like O(K?2 T). Inspired
by [13], we find that it is unnecessary to store all of the transition
matrices. Instead we only store all of @, and 3, in advance, be-
cause we can calculate g(xz¢|z¢) according to following formula:

Q.c(xg) = ae(zo) + By (14)

where @; = [[\_, o, B; = (1 — @;)/K. When T is enough
large, @, is close to 0. Thus, we can derive the stationary
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Algorithm 1: Training of the Diffsound Model.
Require:

A transition matrix @, the number of timesteps 7',
network parameters 6, training epoch N, text-audio
dataset D, the encoder of VQ-VAE E,,,.

l1:fori =1to N do
2 for (text, audio) in D do
3 s = get_mel_spectrogram(audio);
4: xo = E,4(s), y =TextEncoder(text);
5: sample ¢ from Uniform(1,2,3,...,7);
6.
7
8

sample x; from g(x¢|x() based on formula (20);
estimate pg (i1 (¢, Y);
calculate loss according to formula (22)-(25);

9: update network 6;
10: end for
11: end for

12: return network 6.

distribution p(xr) as:

p(wT) — [BTaET7 e 7ET]

where 31 = 1/K. The Proof can be found in Appendix A.

2) Mask Transition Matrix: Previous work [13], [38] pro-
posed introducing an additional absorbing state, such that each
token either stays the same or transitions to the absorbing state. In
this study, we add an additional token [MASK] into the codebook
(the index is K + 1) to represent the absorbing state, thus the
model is asked to recover the original tokens from the mask
tokens. The mask transition matrix Q, € RUH)*(K+1) jg

(15)

3, 0 0 --- 0
0 B 0 -+ 0

Q=|0 0 B - 0 (16)
Lye v e oo 1

where ~y; € [0, 1]. The mask transition matrix denotes that each
token either stays the same with probability §; = (1 — ;) or
transitions to an additional token [MASK] with probability ;.
Similarly, we only store all of 7, and 3, in advance, and we
calculate g(x¢|xq) according to following formula:

@tc(xo) = Btc(xO) +7e(K +1).

where 7, = 1 — B, and 8, = [[;_; B:. According to Markov
transition formula, when 7T is enough large, 3, is close to 0.
Thus the stationary distribution p(zr) can be derived as:

p(xr) =10,0,...,1].

The Proof can be found in Appendix B.

3) Mask and Uniform Transition Matrix: As in the previous
discussion, we speculate that using the uniform transition matrix
brings the reverse process is hard to learn. Using the mask
transition matrix may make the model tend to focus on the
mask token and ignore the context information. To combat
these problems, a simple idea is to combine mask and uniform

A7)

(18)
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Algorithm 2: Inference of the Diffsound Model.

Require:

Time stride A;, the number of timesteps 7', input text, the
decoder of VQ-VAE G, network 6, stationary
distribution p(xr);

:t =T, y =TextEncoder(text);

: sample x; from p(x7);

: while ¢ > 0 do

x; < sample from pg(xi_a, [T, Y)

L (t—Ay)

: end while

s return G(x;).

transition matrices. Specifically, each token has a probability
of 7, to transition to [MASK] token, a probability of K /3; be
resampled uniformly over all the K categories and a probability
of ay =1 — Kf; — v to stay the same token. The transition
matrices Q, € REH*(K+D) jg defined as

ay + B B By - 0
Be ar+ B¢ B
Q= : : : (19)
Yt Vi veocor 1

According to previous discussions, we can calculate g(z+|zo)
according to following formula:

Q,c(x0) = are(zo) + (7, — By)e(K + 1) + ;.

where @ = [[i_; as, 7, = 1 — [[i_,(1 — ) and B, = (1 —
a; —7,)/ K. Similarly, when T is enough large, @ is close to
0. Thus the stationary distribution p(zr) can be derived as

p(CCT) = [BTaB’IW e

where B7 = (1 - 77)/K.

4) Noise Schedule: Noise schedule is used to pre-define the
value of transition matrices (pre-define o, Bt, and 7, in our
study). Many noise schedules have been proposed, such as the
linear schedule, the consine schedule [47], and the mutual-
information-based noise schedule [12]. In this study, we adapted
the linear schedule for all of the experiments.

5) Loss Function: Similar to the training objective of a
continuous diffusion model (9), we also train a network
po(@i_1|xs, y) to estimate the posterior transition distribution
q(x¢—1|xt, o). The network is trained to minimize the varia-
tional lower bound (VLB).

T-1
Loy = Z [DKL[Q($t71|wta1’0)|\p0($t71|$t,y)ﬂ

t=1

(20)

] 2L

+ Dgr(q(xr|x0)||p(2T)) (22)

where p(r) is the stationary distribution, which can be derived
in advance. Note that we add conditional information y to
po(xi_1|xs,y) in (22). The completed training algorithm is
summarized in Algorithm 1.
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6) Reparameterization Trick: Recent works [13], [47]
found that approximating some surrogate variables, such as
po(&ol|xt,y) gives better results comparing with directly pre-
dicting the posterior q(x:—1|®¢, o). In this study, we fol-
low the reparameterization trick proposed in [13], which
lets the Diffsound model predict the noiseless token distri-
bution py(&o|x:,y) at each reverse step, and then compute
po(xi—1|xs, y) according to the following formula:

K
po(@i 1|z, y) = Y a(@i |z, @o)po(dol@r,y).  (23)
ii:[):l
Based on the formula (23), an auxiliary denoising objective
loss is introduced, which encourages the network to predict
Do (530 |wt7 y)

Ly, = —logpe(xo|xs, y). (24)

Experimental results indicate that combining £, and L,,;;, could
get better performance. Thus our final loss function is defined
as:

L= )\Exo + Evlb (25)

where A is a hyper-parameter to control the weight of the
auxiliary loss L.

7) Fast Inference Strategy: We can see that the inference
speed of the Diffsound model is related to the number of
timesteps, 7'. By leveraging the reparameterization trick, we
can skip some steps in the Diffsound model to achieve a faster
inference. Usually, we sample the spectrogram tokens in the
chain of xp,xr 1,27 2,...,x9. Thus, we can use a larger
time stride A; by sampling the spectrogram tokens in the chain
of Tp,x1T_A,, TT_2A,,- .., To. Similar to (23), with the fast
inference strategy, pp(@:—a, |2+, y) can be computed as:

K
po(Tt-n,|Tt,y) = Z q(@e-n,|Te, Zo)pe(Tole, y). (26)
#o=1
Note that we make sure the last step is @ in our experiments.
We found this strategy makes the inference stage more efficient,
which only causes little decrease to quality. The whole inference
algorithm is summarized in Algorithm 2.

C. Pre-Training Diffsound on AudioSet Dataset

Recently, image generation has got great success, one of
the reasons is that they collect large-scale text-image data,
e.g., CogView [25] collects more than 30 million high-quality
(Chinese) text-image pairs. However, collecting large-scale text-
audio pairs is time-consuming. AudioSet [14] is the largest
open-source dataset in the audio field, but it only provides the
event labels for each audio. To utilize these data, we propose a
mask-based text generation method to generate text descriptions
according to event labels.

1) Mask-Based Text Generation Method (MBTG): Our
method is based on our observation of how humans write text
descriptions for audio: Humans first listen to the audio to find
out which events happen, and then they add some detailed
descriptions to compose a sentence. For example, if the label is
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Algorithm 3: Pre-Training the Diffsound Model on Au-
dioSet.
Require:
The audio and its corresponding label { A, L}, the
number of training epoch n, initial network parameters
0;
1: Count the number of sound events for each audio-label
pair;
2: Split { A, L} into two subset according the number of
events, {Asps, Lsps}, {Ames, Lmes):
:for i =1tondo
for (EllldiO7 l) in {ASE57 LSE'S} do
text = MBTG(!);
Train the model € according to (text, audio);
end for
: end for
O9:fori=1t02-ndo
10:  for (audio,!) in {Arrs, Lyps} do
11: text = MBTG(]);

e A A

12: Train the model # according to (text, audio);
13:  end for
14: end for

15: return Diffsound 6.

“dog barks, man speaks”, one can generate the text description
like that “a dog is barking when a man is speaking” or “a dog
barks after a man speaks over”. The first sentence indicates that
the events of dog barking and man speaking are simultaneously
happening. The latter shows that we first listen to a man speaks,
and then a dog barks. Although the keywords are the same, the
generated two texts correspond to different audio due to different
detailed descriptions. It means that automatically generating text
descriptions according to the label information is a tough task.
Instead of generating specific text, we propose to use ‘[MASK]’
token to replace the detailed description. We can generate text
descriptions like that “[MASK] [MASK] dog bark [MASK]
man speaking [MASK]”. We expect the model to learn the
relationship of events rather than directly obtain it from the text
description. The generation algorithm is easy to implement. We
randomly insert m € {1,2} mask tokens on either side of the
label.

2) Curriculum Learning Strategy: We found that it is easier
to generate audio that only includes a single event than to audio
that includes multiple events. To help the Diffsound model
learn better, we mimic the human learning process by letting
the Diffsound model learn from easy samples, and gradually
advance to complex samples and knowledge. Thus, a curriculum
learning [48] strategy is proposed. Specifically, we rank the
AudioSet according to the number of events in the audio, and
then we split the AudioSet into two subsets: one only includes
the audio of a single event (we refer to it as the Single Event Set
(SES)), and the other includes the audio of multiple events (we
refer to it as the Multiple Event Set (MES)). We first train the
Diffsound model on the SES in the first few epochs. After that
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we train the Diffsound model on the MES. The whole algorithm
is summarized in Algorithm 3.

V. DATASET AND DATA PRE-PROCESSING

AudioSet [14] and AudioCaps [8] dataset are used in our
experiments. In the following, we first introduce the AudioSet
and AudioCaps datasets, then we discuss the details of data
pre-processing.

A. AudioSet

Anontology comprising 527 sound classes is used in the large-
scale audio dataset known as AudioSet. More than 2 million 10
seconds audio snippets from YouTube videos are included in
the AudioSet collection. There are roughly 1.9 M audio clips
in our training set because some audio clips can no longer be
downloaded. Each audio clip may have one or more labels for
the presented audio events.

B. AudioCaps

AudioCaps is the largest audio captioning dataset currently
available with around 50 k audio clips sourced from AudioSet.
AudioCaps includes three sets: training, validation, test sets.
There are 49256, 494, and 957 audio clips in our training,
validation and test sets. Each audio clip in the training set
contains one human-annotated caption, while each contains five
captions in the validation and test set. We use the AudioCaps
training set to train our models. We evaluate our methods on the
AudioCaps validation set.

C. Data Pre-Processing

All audio clips in the two datasets are converted to 22.05 k Hz
and padded to 10 seconds long. Log mel-spectrograms extracted
using a 1024-points Hanning window with 256-points hop size
and 80 mel bins are used as the input features. Finally, we can
extract a 860 x 80 mel-spectrogram from 10 seconds audio.

VI. EVALUATION METRIC

In this study, we investigate Humans Mean Opinion Score
(MOS) and objective assessment metrics.

A. MOS

We randomly choose 15 sets of generated sound clips by AR
token-decoder and Diffsound model. Each set includes one text
description, one real sample, 1-2 generated sounds by AR token-
decoder, and 1-2 generated sounds by the Diffsound model. We
let 10 people give the grades for these sounds in three aspects:
relevance, fidelity, and intelligibility. Note that the test person
never knows whether the sound is real or generated. We ask
people to give 05 grades on the three aspects. Finally, we use
the average score of the three aspects as the MOS.

B. Objective Assessment Metrics

Human evaluation of the performance of the sound generation
model is an expensive and tedious procedure. Thus, designing a
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proper evaluation metric that can measure the gap between gen-
erated and real samples is very important for the generation task.
In this paper, we employed three objective quality assessment
metrics: Fréchet Inception Distance (FID), Kullback-Leibler
(KL) divergence, and Audio Caption Loss. We also conducted
a group of ablation experiments to validate that our proposed
metrics are effective.

1) FID: Fréchet Inception Distance (FID) [15] is often used
to evaluate the fidelity of the generated samples in the image
generation domain. Iashin and Rahtu [3] also use FID as one
metric to evaluate the generated sound. FID is defined by the dis-
tance between the distributions of the pre-classification layer’s
features of InceptionV3 [49] between fake and real samples,
and InceptionV3 is usually pre-trained on ImageNet [50]. The
mathematics definition of FID as follow:

I, — my |2+ Tr (C,,+Cf—2(ccf)%) 27)

where m, and mj denote the mean of features extracted from
real and generated samples. C,. and C; are the covariance
matrix of features extracted from real and generated samples.
T'r denotes the trace of the matrix.

Considering the difference between images and spectrograms,
we adapt the InceptionV3 architecture [49] for the spectrogram
and train the model on the AudioSet dataset [14]. Specifically, we
modify the input convolutional layer and change the number of
channels from 3 to 1. We do not use the max pooling operations,
in order to preserve spectrogram resolution at higher layers. We
train the InceptionV3 on the Audioset with a batch size of 64
mel-spectrograms using Adam optimizer, the learning rate is
3 x 1073 with weight decay is 1 x 1073,

2) KL: For the text-to-sound generation task, one important
thing is to evaluate the relevance between generated samples
and text descriptions. Considering a sound comprises of mul-
tiple events, we can use a pre-trained classifier (pre-trained
InceptionV3 on the AudioSet dataset) to get the probability of
generated and real samples, and then calculate Kullback-Leibler
(KL) divergence between the two probability distributions.

3) Audio Caption Loss: Text-to-sound generation task can be
seen as a reverse audio caption [51], [52] task. Intuitively, if the
generated sample has high fidelity and relevance with text de-
scription d, the generated sample can be translated to d using an
audio caption system, and the difference between d and d should
be small. Thus we propose to turn to the metrics in audio caption
field for the text-to-sound generation task. Specifically, we first
train an audio caption transformer (ACT) [53] on AudioCaps
dataset [8]. We follow the basic model structure proposed in [53].
The difference is that we use a 860 x 80 log-mel-spectrogram
as input. Then we use SPICE [54] and CIDEr [55], which are
common evaluation metrics for audio caption tasks, to evaluate
the quality of generated samples. The SPICE score guarantees
the generated captions are semantically close to the audio, while
the CIDEr score guarantees captions are syntactically fluent.
The higher SPICE and CIDEr scores indicate better generation
quality.
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Fig. 3. FID and KL are evaluated for (a): add Gaussian noise, (b): mask part
of audio content, (¢): mix with other interfere sound. The first row is the simple
visualization of how the spectrograms changed when different disturbance level
is used. The disturbance level rises from zero and increases to the highest level.
We can see that the FID and KL scores capture the disturbance level very well.

C. The Effectiveness of FID and KL

We try to validate whether the FID and KL scores can measure
the gap between the generated and real samples. To realize this,
we randomly choose a set of audio X, from the AudioCaps [8]
validation set and try to generate a new set X ; from three
different aspects, respectively: add Gaussian noise, mask part
of the audio content, and add interfering sound. Finally, we
calculate the FID and KL scores between X, and X s to verify
whether the FID and KL metrics are sensitive to these factors.
The visualization results are shown in Fig. 3.

1) Add Gaussian Noise: Intuitively, if the generated sample
contains too much noise, which may not be very well. Thus, we
add Gaussian noise to X, to generate a new set X ¢, and then
we calculate the FID and KL scores between X, and X ¢. As
Fig. 3(a) shows, the FID and KL scores gradually increase when
we add more noise, which indicates that FID and KL metrics are
sensitive to extra noise.

2) Mask Part of Audio Content: If the generated sample only
contains part of the acoustic information compared to the real
sample, the generated sample is suboptimal. Thus, we mask part
of the audio content to generate a new set X r. As Fig. 3(b)
shows, when we gradually increase the proportion of masked
parts, FID and KL scores also increase.

3) Add Interfering Sound: The generated sound should not
contain irrelevant acoustic information with the text description.
We randomly choose an interfering audio from the AudioCaps
training set, and then we directly mix the interfering sound with
X, tobuildanew set X ;. According to Fig. 3(c), we can see that
the FID and KL scores gradually increase when the interfering
sound increases.

VII. EXPERIMENTAL SETUP

A. Implementation Details

Our proposed text-to-sound generation framework is not
trained end-to-end. We train each part separately. For text en-
coder, we directly use the pre-trained BERT or CLIP models. We
firsttrain VQ-VAE and vocoder. Then we train the token-decoder
with the help of the text encoder and pre-trained VQ-VAE. Note
that the VQ-VAE and text encoder are fixed when we train the
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token-decoder. In the following, we will introduce the details of
network structure and training strategy.

1) VQ-VAE: In this study, our VQ-VAE’s spectrogram en-
coder E,,, spectrogram decoder G, and discriminator D follow
the setting of VQ-GAN [3], [24], which is a variant version of
VQ-VAE [7]. For codebook Z, the dimension of each vector n,
is set as 256, and the codebook size K is set as 256. VQ-VAE
converts 860 x 80 spectrogram into 53 x 5 tokens. We train
our VQ-VAE model on AudioCaps and AudioSet datasets. We
find that training on AudioSet can achieve better performance.
Unless specifically stated, we default to using the VQ-VAE pre-
trained on AudioSet. The learning rate is fixed and determined
as a product of a base learning rate, a number of GPUs, and a
batch size. In our experiments, the base learning rate is set as
1 x 107%, and Adam optimizer [56] is used. We train VQ-VAE
with batches of 20 mel-spectrograms on 8 Nvidia V100 GPUs.
The training takes about 9 days on the AudioSet. To stabilize the
training procedure, we zero out the adversarial part of the loss
in formula (4) (set Ag = 0) for the first 2 training epochs, after
that the adversarial loss is used, and L4 = 0.8.

2) Autoregressive Token-Decoder: Inspired by the success in
autoregressive sound generation [3], [4], we follow the SOTA
backbone of the video-to-sound generation task, and employ a
transformer-based network to learn the mapping from text to
the spectrogram tokens. Specifically, the autoregressive token-
decoder is a 19-layer 16-head transformer with a dimension of
1024. We use one dense layer to map the text features into the
transformer’s hidden dimension space (1024), so that the text
features can be forward into the transformer. The output of the
transformer is passed through a K-way softmax classifier. The
base learning rate is 1 x 1075, and the AdamW optimizer [57]
is used. The batch size is set as 16 for each GPU. The model is
trained until the loss on the validation set has not improved for 2
consecutive epochs. Training the autoregressive token-decoder
takes about 2 days on 8 Nvidia P40 GPUs.

3) Diffsound Model: For a fair comparison with the autore-
gressive token-decoder under similar parameters, we also built
a 19-layer 16-head transformer with a dimension of 1024 for
the Diffsound model. Each transformer block contains a full
attention, a cross attention to combine text features and a feed-
forward network block. The current timestep ¢ is injected into
the network with Adaptive Layer Normalization [5S8](AdalLN)
operator.

a) Noise Schedule Setting: For the uniform transition ma-
trix, we linearly increase Bt from 0 to 0.1, and decrease @; from
1 to 0. For the mask transition matrix, we linearly increase 7,
from O to 1, and decrease Bt from 1 to 0. For the mask and
uniform transition matrix, we linearly increase 7, and 3, from
0to 0.9 and 0.1, and decrease &; from 1 to O.

b) Training Details: For the default setting, we set
timesteps 7' = 100 and loss weight L = 1le — 4 in formula (25).
The mask and uniform transition matrix is used, because we
find it can get the best generation performance. We optimize
our network using AdamW [57] with 5, = 0.9 and 35 = 0.94.
The basic learning rate is 3 x 107, and batch size is 16 for
each GPU. We train the Diffsound model on the AudioCaps,
which takes about 2 days on 16 Nvidia V100 GPUs (the number
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TABLE I
THE MEAN OPINION SCORE COMPARASION BETWEEN AR AND DIFFSOUND
MODELS. GT DENOTES THE GROUND TRUTH SOUND

Model Relevance!  FidelityT Intelligibility?  MOST
GT 4.307 4.167 3.873 4.116
AR 2.747 2.7 2913 2.786

Diffsound 3.833 3.487 3.36 3.56

The bold entities indicate the best performance.

of training epochs is set to 400). If we pre-train the Diffsound
model on the AudioSet, we use 32 Nvidia V100 GPUs, which
takes about 8 days (the number of training epochs is set to 200).

4) Vocoder: We rely on the official implementation of the
MelGAN [6]. During training, the model inputs a random
sequence of 8192 audio samples (the sample rate is 22050).
The vocoder is trained for 200 epochs with a batch size of
256 mel-spectrograms on one P40 GPU for approximately 20
days. Considering the time complexity, we do not use all of the
AudioSet data, we randomly choose 40% audio clips to train the
MelGAN.

5) The Duration of the Generated Sound: Consider that each
of the clips from the AudioCaps dataset contains 10 seconds of
audio. We fixed the duration of the generated sound to 10 seconds
to ensure a fair comparison of generated and real sound. As a
result, the number of generated mel-spectrogram tokens is fixed
at 265 for both the AR token-decoder and the Diffsound model
(10 seconds audio corresponding to 80 x 860 mel-spectrogram,
and the spectrogram encoder in the VQ-VAE model includ-
ing 16 downsampling operation for both time and frequency
dimensions, thus 10 seconds audio can be approximated to
5 x 53 = 265 tokens).

VIII. RESULTS AND ANALYSIS

In this section, we conduct experiments to verify the effective-
ness of our text-to-sound generation framework. Table I shows
the MOS comparison between the generated and real sound.
We can see that our text-to-sound generation framework could
achieve good MOS performance (the MOS both large than 2.5)
regardless of whether the token-decoder is AR or Diffsound
model. Let’s start with a detailed comparison between the AR
token-decoder and our proposed Diffsound model. Then we
conduct ablation studies for the Diffsound model.

A. The Comparison Between the AR Decoder and Diffsound

1) Subjective and Objective Metrics: Table I shows the sub-
jective metrics (MOS) comparison between the AR token-
decoder and Diffsound model. We can see that our Diffsound
model significantly improves the MOS compared to the AR
token-decoder, e.g., MOS 3.56 v.s 2.786. Due to many audio
clips including background noise, the intelligibility of Ground
Truth is relatively low. Table II shows the objective metrics
comparison between the AR decoder and the Diffsound. Firstly,
by comparing rows 1 and 2, we can see that using the CLIP model
as the text encoder brings better generation performance than
the BERT model. Secondly, we can see that using the VQ-VAE
trained on the AudioSet dataset brings better generation quality
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TABLE IT

THE OBJECTIVE METRICS COMPARISON BETWEEN AR DECODER AND
DIFFSOUND

Model CB TE FID] KL| SPICET CIDErt

AR Caps BERT 18.01 6.8 0.055 0.1

Caps CLIP 17.94 598 0.082 0.2

AudioSet  CLIP 16.87 531 0.088 0.22

Diffsound Cgps CLIP 13.47 495 0.093 0.28

AudioSet  CLIP 9.76 4.21 0.103 0.36

CB denotes that we train the codebook on audioset or audiocaps (caps for short)
datasets. TE denotes the type of text encoder.
The bold entities indicate the best performance.

than on the AudioCaps dataset, we speculate that training on a
large-scale dataset can improve the ability of VQ-VAE. Lastly,
by comparing the AR token-decoder and Diffsound model, we
can see that the Diffsound model gets better performance on all
of the metrics, e.g., FID 9.76 v.s 16.87, KL 4.21 v.s 5.31, CIDEr
0.36 v.s 0.22. In summary, the objective and subjective metrics
both indicate the effectiveness of our Diffsound model.

2) The Generation Speed: Generation speed is also an im-
portant metric to evaluate the generation model. To investigate
the generation speed between AR token-decoder and Diffsound
model, we conducted a group of ablation experiments, and the
results are shown in Table III. Note that we conducted these
experiments on a single Nvidia P40 GPU. We fix the generated
sound duration as 10 seconds. We only calculate the time to
generate the mel-spectrograms and ignore the vocoder’s costs
due to the vocoder is the same for all models. Firstly, we can see
that using the AR token-decoder to generate a mel-spectrogram
needs about 23 seconds, but using our Diffsound model only
takes about 5 seconds. Moreover, our Diffsound model also has
better generation performance. Secondly, the generation speed
of our Diffsound model can be further improved by using less
number of timesteps 7" and larger time stride A, but decreases the
generation quality. The fastest generation speed is obtained when
the number of timesteps 7" = 25 and A; = 7. The Diffsound
model only needs 0.53 seconds to generate a mel-spectrogram,
which is 43 times faster than the AR token-decoder with a similar
FID score.

3) Visualization: Fig. 4 shows some generated samples by
the Diffsound model and AR token-decoder. We can see that the
Diffsound model can generate a scene with complete semantics
compared to the AR token-decoder, e.g., Fig. 4(a) shows that the
sound generated by AR token-decoder only includes the man
speaks event and the crickets sing is missing. Furthermore, as
Fig. 4(b) and (c) show, our Diffsound model has better detailed
modelling ability than the AR token-decoder.

B. Ablation Study for Diffsound Model

1) Impact of Different Transition Matrices for Diffsound
Model: In this section, we explore the impact of three transition
matrices on Diffsound model: uniform transition matrix, mask
transition matrix, mask and uniform transition matrix. Table II
presents the results of Diffsound model with three different
transition matrices. We can see that the best results are obtained
when the mask and uniform matrix is used and ¥ = 0.9. From
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Birds and insects make noise
during the daytime

A man speaks as crickets sing A person is snoring while sleeping
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Fig. 4. The visualization of generated samples by the Diffsound model and
AR token-decoder. The first line is the text input. The second line is the
mel-spectrograms of real audio. The last two lines are the mel-spectrograms
of generated audio by Diffsound model and AR token-decoder.

Diffsound

L O

AR

(@) (b)

Table IV, it can be observed that using the combined mask
and uniform transition matrix outperforms using the uniform
transition matrix. One possible explanation is that: using a
uniform transition matrix may make the reverse process hard
to learn; and only using the mask transition matrix may make
the model tend to focus on the mask token and ignore the context
information.

2) Impact of the Final Mask Rate 71 for the Mask and
Uniform Transition Matrix: We conduct ablation studies to in-
vestigate the impact of the final mask rate (71) on the mask and
uniform transition matrix. Results are shown on Table IV (lines
2-6). Experiments show that using 7, = 0.9 outperforms other
settings.

3) Number of Timesteps: We conduct ablation studies to in-
vestigate the impact of the number of timesteps 7" of the training
and inference stages for the Diffsound model, with the results
shownin Table V. In this study, considering the generation speed,
we set the maximum number of timesteps 7" as 100 in both
training and inference. We can see that using more number of
timesteps in the training and inference stage could get better
performance. However using more number of timesteps will
cost more time in the inference stage. Furthermore, we can find
that it still maintains a good performance when dropping 75
inference steps (e.g., training step is 100, but inference step is
25), which gives us a direction to boost the generation speed.

C. The Effectiveness of Pre-Training the Diffsound Model on
AudioSet

In this section, we validate whether pre-training the Diff-
sound on the AudioSet dataset can improve the generation
performance. Note that considering the time complexity, we
only use about 45% AudioSet training set. Table VI shows
the experimental results. We can see that using the pre-trained
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TABLE III
THE GENERATION SPEED COMPARISON BETWEEN THE AR DECODER AND DIFFSOUND

Token-decoder  Timestep (1)  Time stride Ay FID () KL (}) SPICE (1) CIDEr () Speed(spec/s) ()
AR - - 16.87 5.31 0.054 0.16 23.24
7 16.76 4.68 0.088 0.25 0.53
25 5 16.51 4.7 0.088 0.26 0.59
3 12.54 4.38 0.099 0.32 0.72
1 10.91 4.2 0.104 0.34 1.49
7 15.26 4.66 0.094 0.29 0.67
. 5 14.04 4.54 0.092 0.28 0.82
Diffsound 30 3 11.06 425 0.102 0.32 115
1 10.48 4.24 0.104 0.35 2.77
7 11.87 4.35 0.103 0.34 1.02
100 5 12.71 4.44 0.095 0.30 1.28
3 10.13 43 0.103 0.35 1.86
1 9.76 4.21 0.103 0.36 4.96

Timesteps T denotes the start step in inference stage. Time stride A, > 1 indicates that we use fast inference strategy.

The bold entities indicate the best performance.

TABLE IV
ABLATION STUDY FOR THREE DIFFERENT TRANSITION MATRICES

TABLE VII
CHOOSE HIGH-RELEVANCE SOUND WITH TEXT DESCRIPTION BASED ON
AuUDIO CAPTION LOSS

D Matrix Mask rate  FID], KL] SPICE]  CIDEr|

I U 0 10.14 431 0.101 035 Token-decoder Top_k  FID]  KL] _ SPICE]  CIDEr(
2 01 1063 447 0093 0.29 10 1687 531 0.088 0.22
3 0.3 10.64 435  0.099 0.34 AR 5 1628 522 0.094 0.26
4 MU 0.5 1075 431 0.096 0.32 2 1572 5.3 0.145 0.41
5 0.7 984 437  0.102 0.34 10 976 721 0.103 036
6 0.9 976 421  0.103 0.36 Diffsound 5 9.83 4.03 0.164 0.52
7 M I 115 446  0.103 0.34 2 1014 3.86 0.218 0.71

Furthermore, we also discuss the effect of the final mask rate y; on mask
and uniform matrix. U denotes the uniform matrix, M denotes the mask
matrix.

The bold entities indicate the best performance.

TABLE V
ABLATION STUDY ON TRAINING AND INFERENCE STEPS

Training step
25 50 100
Inference 25 12.22 | 11.58 | 1091
step 50 - I1.08 | 10.48
100 - - 9.76

Each column uses the same training steps while
each row uses the same inference steps. We only
report the FID in this table.

The bold entities indicate the best performance.

TABLE VI
THE EFFECTIVENESS OF PRE-TRAINING THE DIFFSOUND ON AUDIOSET. CL
DENOTES THE CURRICULUM LEARNING STRATEGY

Token-decoder PR CL _FID] KL| SPICE] CIDErT
X X 976 421 0.103 0.36
Diffsound v X 878 415  0.101 0.35
v v 827 411  0.105 0.36

PR denotes the pre-training strategy.
The bold entities indicate the best performance.

Diffsound model can improve the generation performance in
terms of FID and KL (such as lowering the score of FID and
KL from 9.76 and 4.21 to 8.78 and 4.15). We can see that when
pre-training and curriculum learning strategies are both used,
the best performance is obtained (such as FID score of 8.27, KL
score of 4.11, and SPICE score of 0.105), which shows that the
curriculum learning strategy is also important. We believe that
performance can be further improved when we use more data.

Top_k denotes that we keep the top k samples according to the SPICE
and CIDEr scores. We totally generate 10 samples for each text examples.
The bold entities indicate the best performance.

D. Choose High-Relevance Sound With Text Description
Based on Audio Caption Loss

Due to the random sample process in the inference stage of
the Diffsound model and AR token-decoder, the generated sound
may be different in multiple sampling processes even using the
same text description. We generated 10 samples for each text
in this study. To quickly choose high-relevance samples with
the input text, we can rank the samples according to the sum
of their SPICE and CIDEr scores, and then we only keep a
subset of them. As Table VII shows, if we only keep the top
2 samples for each text, the AR method’s KL score will improve
from 5.31 to 5.03, and the Diffsound method’s KL score will
improve from 4.21 to 3.86. We conjecture that this strategy can
help us quickly choose high-relevance samples with the text
description. Furthermore, we also observe that the FID score of
the Diffsound will slightly increase when top_k from 10 to 2. We
think one of the reasons is that the Diffsound model generates
some high-fidelity samples but these samples are irrelevant to
the text description.

IX. CONCLUSION

In this work, we present a framework for text-to-sound gen-
eration tasks, and propose a novel non-autoregressive token-
decoder (Diffsound) based on discrete diffusion model, which
significantly improves the generation performance and speed
compared to the AR token-decoder. We also explore a simple
pre-training strategy to further improve the performance of
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Diffsound model. To effectively evaluate the quality of generated
samples, we designed three objective evaluation metrics for
this task. Both objective and subjective metrics verified the
effectiveness of Diffsound model.

This work still has some limitations that need to be addressed
in our future work, e.g., our generation framework is not end-
to-end, we separately train the VQ-VAE, the token decoder, and
the vocoder, which may not be optimal. In the future, we will
explore an end-to-end sound generation framework.

APPENDIX A
THE PROOF OF FORMULA (14)

We use mathematical induction to prove formula (14). We
have following conditional information:

t
5t S [0, 1},0[15 =1- Kﬂt,@t = Hai,Bt = (1 —@t)/K
i=1

_ (23
Now we want to prove that Q,c(xg) = @;c(zg) + 3,. Firstly,
when t = 1, we have:

Quetan) = {F1 FO0 2o

which is clearly hold. Suppose the formula (14) holds at step ¢,
then for ¢ = ¢ + 1, we have:

§t+1c($0) = Qt+1atc(x0)-

Now we consider two conditions:
1) when x = x in step ¢t + 1, we have two situations in step
t, that is, z = xg and x # x, so that we have:

Qi 1¢(20) () = (@ +B;) (argp1+Bis1)+ (K — 1) B Brsa
=1+ 0 Ber1+ B + KBy Bria
= W1+ 0 Bra1+ B+ (1 — @) i

11—« 1—«
(=), U =om)

=01 +By1-

(29)

= Q41+
(30)

2) when x # z( in step t 4 1, we also have two situations in
step ¢, that is, x = x and x # xg, so that we have:

Qi1 1¢(w0)(2) = B +Bena) + BB (K — 1)+ Bega
= Bi(ars14Bes1+ B (K — 1)) +a Brya

=B + 0B

_ (- | (1 —aqa)

K K

=B 3D

The proof of formula (14) is completed.

Furthermore, we can see that when t is enough large,
@; is close to 0. The formula (14) changes to Q,c(z¢)
1/K. Thus we can derive the stationary distribution p(xr) =
1/K,1/K,...,1/K].
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APPENDIX B
THE PROOF OF FORMULA (17)

We also use mathematical induction to prove formula (17).
We have following conditional information:

t
Y €018 =1 =77 =1- B, B = [[ B (32
=1

Now we want to prove that Q,c(zo) = B,¢(xo) + F,c(K + 1).
Firstly, when ¢ = 1, we have:

Qmmw={ﬁ’

which is clearly hold. Suppose the formula (17) is hold at step
t, then for t = t + 1, we have:

Qt-{-lc(x()) = Qt+1§tc($0)

Now we consider two conditions:
1) when z = z( in step ¢ + 1, we only have one situation in
step ¢, that is, © = x¢, so that we have:

Qt+1c(x0)(z) = Bt+15t

= 5t+1-

Tr = X9

r=K+1 (33)

(34)

2) when z = K + 1 in step ¢t + 1, we have two situations in

step ¢, that is, © = xp and * = K + 1, so that we have:
Qi1¢(70)(2) =7 + Bivest
=1—-0; + By
=1 _Bt(l — Ve+1)
=1- Bt+1
=Tip1- (35)

The proof of formula (17) is completed.
Similarly, when ¢ is enough large, 3, is close to 0. The
formula (17) can be written as Q,c(xo) = 7,¢(K + 1), where

%, = 1. Thus we can derive the stationary distribution p(x7) =

[0,0,...,1].
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