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ABSTRACT
Image captioning has attracted extensive research interests in re-
cent years. Due to the great disparities between vision and language,
an important goal of image captioning is to link the information
in visual domain to textual domain. However, many approaches
conduct this process only in the decoder, making it hard to under-
stand the images and generate captions effectively. In this paper,
we propose to bridge the gap between the vision and language do-
mains in the encoder, by enriching visual information with textual
concepts, to achieve deep image understandings. To this end, we
propose to explore the textual-enriched image features. Specifically,
we introduce two modules, namely Textual Distilling Module and
Textual Association Module. The former distills relevant textual
concepts from image features, while the latter further associates
extracted concepts according to their semantics. In this manner,
we acquire textual-enriched image features, which provide clear
textual representations of image under no explicit supervision. The
proposed approach can be used as a plugin and easily embedded
into a wide range of existing image captioning systems. We conduct
the extensive experiments on two benchmark image captioning
datasets, i.e., MSCOCO and Flickr30k. The experimental results and
analysis show that, by incorporating the proposed approach, all
baseline models receive consistent improvements over all metrics,
with the most significant improvement up to 10% and 9%, in terms
of the task-specific metrics CIDEr and SPICE, respectively. The
results demonstrate that our approach is effective and generalizes
well to a wide range of models for image captioning.

CCS CONCEPTS
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language generation.
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1 INTRODUCTION
Different from the low-level vision tasks, e.g., image denoising [19]
and image super-resolution [52], vision-and-language tasks, such
as image captioning [8] and visual question answering [4], belong
to the category of high-level vision tasks. In particular, for the task
of image captioning, there are great disparities between source
(vision) and target (language) domains. For example, under the
unsupervised learning setting in image captioning, Feng et al. [10]
shows that the image captioning system needs to take extra su-
pervised information (i.e., textual concepts [9, 33, 49]) as input to
ensure the relevance of the generated descriptive sentence to the
input image. The reason is that the textual concepts can be ob-
ject words (e.g., car), attribute words (e.g., wooden) or relationship
words (e.g., sitting), which carry important visual information in
the language domain. To the contrary, in image denoising, Krull
et al. [19] shows that the systems only need to take the original
image as input. This phenomena indicates that there are indeed
great disparities between visual and textual domains. As a result,
in image captioning, where the image representations are used for
text-oriented purposes, it is often desirable to translate the implicit
low-level visual information to explicit high-level textual informa-
tion [43]. It also suggests that the systems should 1) first link the
image modality to the text modality, then 2) generate a semanti-
cally and grammatically correct descriptive sentence based on such
textual guided visual information.

However, existing systems [3, 27, 47] entangle these two steps in
one single model, i.e., the decoder. And due to the large disparities
between vision and language domains, the decoders in such models
have to devote most of their capabilities on conducting the step
1), and thus be distracted from finishing step 2) with high quality.
Especially, the decoders, e.g., LSTMs [12] and Transformers [39], are
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effective at propagating information across the decoding process
and generating a semantically and grammatically correct descrip-
tive sentence, and is not good at conducting step 1). As a result,
ignoring the possibility to construct two separate models to disen-
tangle the two steps makes it hard for these systems to understand
the images and generate captions efficiently. In this work, we argue
that exploring another separate model to perform the step 1) is
helpful to bridge the gap between vision and language domains
and improve the performance.

To achieve that, we propose to conduct the step 1) in the encoder
by enriching image features with textual concepts. Specifically, we
provide complete semantics information for the image features. In
implementations, our approach consists of a Textual Distilling Mod-
ule (TDM) and a Textual Association Module (TAM). Take Figure 2
for example, the TDM focuses on distilling textual concepts to the
corresponding visual objects, like “woman”, “tennis”, “field”, “stand-
ing” and “playing” in the red box. Since the textual concepts are
single words and only represent a fraction of a semantics, we further
introduce the TAM to group related concepts to form a complete se-
mantics. For instance, we group three separated concepts “woman”,
“tennis” and “playing” into a phrase “woman playing tennis”. In
this manner, we can connect visual objects to well-organized tex-
tual concepts and in turn generate textual-enriched image features.
Such a process is essential in the encoder to bridge the gap between
vision and language domains, and is able to obtain textual-enriched
image features generally not explicitly learned by existing systems.
It is worth noticing that since we enrich the image features with
textual concepts in the encoder, the textual-enriched image features
can be easily integrated into existing image captioning models. An
example for equipping with our approach in baseline models is
illustrated in Figure 1.

Overall, the contributions of this paper are as follows:
• For achieving a deep image understanding efficiently, we
introduce a novel approach to bridge the gap between vi-
sion and language domains in the encoding process, which
provides a solid bias for image captioning.

• We implement the proposed approach by enriching the im-
age features with textual concepts. First, we introduce the
Textual Distilling Module to distill relevant textual concepts
for each visual object; Then, we introduce the Textual Asso-
ciation Module to group these concepts according to their
semantics, and enrich the image features with grouped tex-
tual concepts.

• The textual-enriched image features are able to bring consis-
tent performance gains to existing models. According to our
experimental results on the Flickr30k and MSCOCO datasets,
after equipping textual-enriched image features, the baseline
models receive up to 10% gain in CIDEr and 9% gain in SPICE.
Besides, we further validate the importance of modeling the
relationships between vision and language domains, rather
than simple incorporating them.

2 RELATEDWORK
In this section, we will introduce the related work from three as-
pects: 1) image captioning; 2) image representations and 3) dense
captioning.

Textual Exploring Network

Textual Exploiting Network

Caption

Image

Image
Features
Extractor

Textual
Concepts
Extractor

Caption Generator
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Decoder

Encoder

Caption
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Figure 1: Illustration of how to use our approach on the
baseline image captioning systems. (a) The data flow in the
baseline model and (b) the data flow in the baseline w/ pro-
posal model. It is worth noticing that we focus on bridging
the gap between the vision and language domains in the en-
coding process, which means when training the baseline w/
proposal model, the proposal is trained together with base-
line. Especially we preserve the original experimental set-
tings and training strategy.

2.1 Image Captioning
In recent years, a large number of neural systems have been pro-
posed for image captioning [3, 41, 44, 46, 47]. The state-of-the-art
approaches [3, 11] incorporate the attention mechanism [6, 44]
to translate low-level image representations (Region-CNN image
features) to high-level textual information (image captions) [43].
However, these state-of-the-art systems do not use image concepts
(textual concepts) to guide caption generation, making it difficult
for the decoder to generate textual captions directly from low-level
image features.

In order to provide high-level image representations to the de-
coder, Wu et al. [43], You et al. [50] and Yao et al. [49] proposed
to use a set of textual concepts as textual features. However, 1)
these textual concepts are not associated with image features; 2)
the relationships among the individual textual concepts are not
well explored. In brief, textual concepts are not fully explored in
above mentioned methods. In our approach, we consider both the
association of textual concepts with image features and the rela-
tionship between the concepts, which achieves a better textual
understanding of images.

2.2 Image Representations
In vision-and-language tasks, such as image captioning [8], visual
question answering [4], visual storytelling [13] and referring ex-
pressions [17], it is vital to understand the input images effectively
and generates fine-grained image representations. In the literature,
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Figure 2: Illustration of the proposed approach. The image features is captured by Faster-RCNN [35] and the textual concepts
are extracted by a textual concepts extractor [9]. The Textual Distilling Module then adaptively distill the related textual
concepts for each region feature. The Textual Association Module focuses on associating the distilled textual concepts of the
image features to come up with some phrases, and form a unified textual-enriched image representation. The color Pink and
Green denote the caption generated by the vanilla image features and the textual-enriched image features, respectively, based
on the Up-Down model [3]. As we can see, the textual-enriched image features helps the baseline model to generate more
complete and coherent captions.

a number of neural approaches have been proposed to obtain image
representations in various forms. The most-widely used methods
are to extract image features using CNNs or Region-CNNs, where
the former split an image into a uniform grid of visual regions
and the latter produce object-level image features based on pre-
dicted bounding boxes. For image captioning, Fang et al. [9], Liu
et al. [28], Wu et al. [43], You et al. [50] augmented the information
source with textual concepts that are given by a concept extractor,
which is trained to find the most frequent words in the captions. Re-
gardless of the type of image representations, relationships among
the individual parts of representations (regions or concepts) are
not defined, which should be essential to a deep understanding of
images. Recently, Yao et al. [47] and Liu et al. [26, 27] explored the
visual relationships among the individual parts of representations,
which provides a solid basis for downstream tasks. Specifically, Yao
et al. [47] and Liu et al. [26, 27] attempted to use graph networks
and attention mechanism to explore visual relationships, respec-
tively. The graph-based approaches explicitly model the spatial and
semantic relationships of visual information, while the attention-
based methods accomplish that in implicit ways. Besides, Liu et al.
[25] focused on exploring the textual relationships among the indi-
vidual textual concepts to perform the unpaired image captioning
task. In our approach, we not only explored both the relationship
between the concepts, but also considered the association of textual
concepts with image features.

It is worth noticing that several pre-trained vision-and-language
models [1, 21, 30, 36–38, 56] have been proposed to learn task-
agnostic joint representations of vision and language (a.k.a. vision-
language representations) for various tasks. However, most existing
systems only use the region-of-interests (RoIs) / video frames as

the image / video features and do not consider to learn such joint
representations by incorporating the textual concepts. As a result,
there are still huge gaps between the vision and language domains.

2.3 Dense Captioning
Our approach also relates to the effort of dense captioning [15, 45].
However, compared with our approach, the major difference lies in
the training labels. These dense captioning methods [15, 45] explic-
itly provide a series of region captions for training, while our model
does not require such additional ground truth labels. Instead, we
learn the regional textual information implicitly from the complete
descriptions of images without explicit region alignment. Therefore
our approach can be directly applied to existing image captioning
models.

3 APPROACH
As shown in Figure 2, there are three main steps to generate text-
enriched image representations: (1) Image encoder and textual
concepts extractor: this step extracts image features and textual
concepts from images; (2) Textual distilling module: this module
distills related textual concepts for visual objects in images; (3) Tex-
tual association module: this module is necessary since the distilled
textual concepts are independent and do not associate with each
other, e.g., the three words riding, boy and bike should be associ-
ated together as a phrase boy riding bike to represent a complete
semantics. With the above steps, we are able to generate textual-
enriched image features, which can improve the performance of
image captioning task and increase the model interpretability at the
same time. In the following sections, we will describe these three
steps in detail.
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3.1 Image Encoder and Concept Extractor
Given an image, we extract two types of information: image features
and textual concepts. For the image features, we apply the Region-
CNN model, which is pre-trained on Visual Genome [18] and is
proposed by Anderson et al. [3], and acquire av ∈ Rd vector; For
the textual concepts, which contain rich visual semantics, and have
been used to provide explicit high-level semantic information of
an image [43]. Following the previous works [20, 27, 28, 49], we
apply the concept extractor proposed by Fang et al. [9], which
is built upon a weakly-supervised approach of Multiple Instance
Learning [53]. In particular, the concept extractor is trained on
the MSCOCO caption dataset for 1,000 visual concepts. Given the
input image, this extractor will output a set of words as textual
concepts. The extracted textual concepts can be either objects (e.g.
bike, tree), attributes (e.g. green, young), or relationships (e.g. riding,
wearing), representing explicit high-level information of the image
[43, 50]. For each image, only the topm = 20 textual concepts are
selected. We represent the extracted textual concepts with a set of
vectors: T = {w1,w2, . . . ,wm } ∈ Rm×e where wi ∈ Re refers to
the embedding of the ith concept.

3.2 Textual Distilling Module
In previous step, we manage to detect objects in the image and
represent each object with a image featurev , we also acquire tex-
tual concepts from this image. Textual Distilling Module targets
to find the most relevant textual concepts from the set T for each
image featurev . To achieve this, we apply the attention mechanism
[31, 44]. According to the attention mechanism, we feed the im-
age feature and the concept embeddings into a single layer neural
network to generate the attention scores S ∈ Rm :

S = wStanh(W S ,vv ⊕W S ,TT
T) (1)

whereW S ,v ∈ Rm×d ,W S ,T ∈ Rm×e andwS ∈ Rm are the learn-
able parameters.1 According to the computed attention scores S ,
we select top-k related textual concepts as the textual enrichments
of the current input region feature v . This is done by selecting k
largest scores and recording their index positions in the S to form
a set P [54], where k is a hyper-parameter. Then, we update the
value of each position Si in the attention scores S by the formula
below:

Sk (i) =

{
S(i), if i ∈ P
−∞, if i < P (2)

After that, a softmax function is applied on Sk ∈ Rm to generate
the attention distribution αk ∈ Rm over them textual concepts:

αk = softmax(Sk ) (3)

Based on the attention distribution, the top-k most relevant textual
concepts can be computed as below:

T k = αk ∗T (4)

Since we assign −∞ to the textual concepts attention scores that
are unrelated to the current region featurev , the attention weights
would be 0 after the application of the softmax function, ensur-
ing our intention of keeping top-k textual concepts. By using this
method, we can distill the most relevant k textual concepts, and
1For conciseness, all the bias terms of linear transformations in this paper are omitted.

T k ∈ Rm×e is taken to be the resulting textual enrichment of the
region feature.

3.3 Textual Association Module
As shown in Figure 2, through the Textual Distilling Module, we
can relate the textual concepts with image features. However, these
extracted textual concepts are single words and represent only a
fraction of semantics. Therefore, when we finished the identifica-
tion of associated single-word textual concepts, we combine them
together to come up with some phrases, and further form a com-
plete semantics. Such a complete semantics can be used to enhance
the textual representations of image features, which is essential for
a deep understanding of images.

To form a complete semantics, we proceed as follows: 1) com-
bine independent semantics representation vectors to a unified
semantics representation vector; 2) associate multiple aspects of
the extracted top-k textual concepts with multiple vector represen-
tations (as shown in Figure 2). We accomplish the above two steps
simultaneously by applying the self-attention mechanism provided
by Lin et al. [23]. The self-attention mechanism is defined as:

A = softmax(W Atanh(W A,TT
T
k )) (5)

U = AT k (6)

whereW A,T ∈ Rm×e andW A ∈ Rn×m are learnable parameters.
n is the number of different association aspects. It means that in
order to extract multiple aspects of the extracted top-k textual
concepts to form n phrases, we repeat the above steps n times with
different learnable parameters. In particular, similar to the Textual
Distilling Module, for each ai ∈ A, we also apply the top-r attention
mechanism to extract each phrase. Through the Textual Association
Module, we can establish the connections of each individual textual
concept to enhance the power of overall textual information.

3.4 Textual-Enriched Image Features
Next, we combine the original region featuresv ∈ Rd along with
the corresponding textual information U ∈ Rn×e of v to get the
textual-enriched image features:

vT = LayerNorm(W vv +WU MeanPooling(U )) (7)

whereW v ∈ Rd×d andWU ∈ Rd×e are learnable parameters;
LayerNorm stands for Layer Normalization [5].

To sum it up, we first apply Textual Distilling Module to extract
the most relevant textual concepts, which are further associated
with each other by Textual Association Module. In this way, we
can extract the textual representations of the image features, and
further generate textual concepts enriched image representations,
providing a good prior for the following image-based text genera-
tion task.

4 EXPERIMENTS
In this section, we first describe two benchmark datasets and the
settings, as well as some widely-used metrics. Then we evaluate the
proposed approach from three perspectives: (1) the effectiveness of
applying our proposed textual-enriched image features to existing
works; (2) the effect of incorporating extra information. (3) the
online leaderboard performance.
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Table 1: Performance on theMSCOCOKarpathy test split [16]. All values in this paper are reported in percentage (%). Higher is
better in all columns. All the baselines enjoy a comfortable improvement with the proposed approach. Additionally, we report
the performance of the current published state-of-the-art models ORT [11] and HIP [48], as we can see, the Transformer w/
proposal outperforms the ORT and HIP substantially in major metrics, which proves our arguments and demonstrates the
effectiveness of our approach.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

ORT [11] 80.5 - - 38.6 28.7 58.4 128.3 22.6
HIP [48] - - - 39.1 28.9 59.2 130.6 22.3

NIC [41]

Baseline 77.9 60.1 46.3 34.2 26.2 55.7 112.3 19.7
w/ proposal 79.5 63.9 50.1 37.1 27.8 58.1 120.9 21.0

Adaptive [31]

Baseline 79.5 62.0 48.7 35.9 27.3 56.1 117.6 20.3
w/ proposal 80.1 64.2 49.9 37.5 27.9 57.9 121.4 21.3

Up-Down [3]

Baseline 79.8 63.7 49.5 36.3 27.7 56.9 120.1 21.4
w/ proposal 80.7 65.1 50.4 37.9 28.4 58.5 124.8 22.5

Transformer [39]

Baseline 80.7 65.6 51.2 39.2 28.9 58.9 129.4 22.4
w/ proposal 81.0 66.1 51.5 39.6 29.2 59.1 131.9 22.7

Table 2: Performance on the Flickr30k Karpathy test split.
B-n, M, R, C and S are short for BLEU-n, METEOR, ROUGE-
L, CIDEr and SPICE, respectively. The GVD [55] is the pub-
lished state-of-the-artmodel on Flickr30k dataset. Aswe can
see, we outperforms the state-of-the-artmodel substantially
in terms of CIDEr, which further demonstrates the effective-
ness of our approach.

Methods Flickr30k

B-1 B-4 M R C S

GVD [55] 69.9 27.3 22.5 - 62.3 16.5

Adaptive [31]

Baseline 70.5 26.7 21.0 48.1 57.1 14.6
w/ proposal 71.8 27.9 21.6 49.3 62.7 15.9

NBT [32]

Baseline 71.4 27.8 21.7 48.8 60.2 15.6
w/ proposal 73.3 29.5 22.0 49.7 65.6 16.3

4.1 Datasets, Metrics and Settings
In this section, we will give a detailed introduction of our used
datasets, metrics and settings for evaluation.

4.1.1 Datasets. Our reported results are evaluated on the popular
Flickr30k [51] and MSCOCO [8] datasets, which contain 31k im-
ages and 12k images, respectively, and each image in the datasets
is annotated with 5 sentences. The results are reported using the
widely-used publicly-available splits in the work of Karpathy and

Li [16]. The MSCOCO validation and test set contain 5,000 images
each, and the number is 1,000 images for Flickr30k. Following com-
mon practice [3, 29, 31, 41], we replace caption words that occur
less than 5 times in the training set with the generic unknown word
token <UNK>, resulting in a vocabulary of 9k words for MSCOCO
and 7k words for Flickr30k.

4.1.2 Metrics. The metrics SPICE [2], CIDEr [40], BLEU [34], ME-
TEOR [7] and ROUGE [22] are used in our tests for performance
evaluation. They are widely used and could be reported by the
MSCOCO captioning evaluation toolkit [8]. In particular, SPICE [2]
is based on scene graph matching, and CIDEr [40] is built upon on
n-gram matching. They both incorporate the consensus of a set of
references for an example. BLEU [34] and METEOR [7] are orig-
inally proposed for machine translation evaluation. ROUGE [22]
is designed for measuring the quality of summaries. Among them,
SPICE and CIDEr are specifically designed to evaluate image cap-
tioning systems and will be the main considering metrics.

4.1.3 Experimental Settings. For fair comparisons, we use the RCNN-
based image features provided by Anderson et al. [3]. Specifically,
Anderson et al. [3] uses the Faster R-CNN [35], which is pre-trained
on Visual Genome [18] dataset, to detect objects. For textual con-
cepts, we use the textual concepts prediction model pre-trained by
Fang et al. [9] for 1,000 words. The caption words and the textual
concept words share the same embeddings. For our proposal, d and
e stands for the hidden size and the word embedding size of the
baseline decoder, respectively. The number of textual concepts in
the entire image is set to 20, which meansm = 20. Based on the
average performance of all the baselines on the validation set, for
the value of k , r and n, we select 10, 4, 10 for them, respectively.
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Table 3: Evaluation of representative systems which further take the textual concepts as input. The proposed approach can
further improve the already strong baselines in all metrics. The significant improvements come from the textual-enriched
image features rather than the simple incorporation of extra features. Besides, it also shows the importance of enriching
image features with textual concepts.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

ATT-FCN [50]

Baseline 78.3 61.7 48.3 35.7 27.4 57.3 117.8 20.7
w/ proposal 79.4 64.0 49.9 36.6 28.1 58.0 120.1 21.1

LSTM-A3 [49]

Baseline 78.6 62.5 48.6 35.7 27.1 56.3 116.2 20.1
w/ proposal 79.7 63.7 50.1 36.7 28.0 57.5 119.1 20.6

LSTM-A4 [49]

Baseline 78.2 61.9 48.8 35.9 27.3 56.5 113.9 20.3
w/ proposal 79.4 64.4 50.1 36.8 28.0 57.5 121.3 22.2

LSTM-A5 [49]

Baseline 78.4 62.8 48.9 36.5 27.5 57.1 116.8 20.5
w/ proposal 79.9 64.4 49.7 36.5 27.7 57.7 119.6 21.8

Since our focus is to provide textual-enriched image features, we
preserve the original parameter settings, and training strategy for
all the baselines.

4.2 Baselines
We experiment with two types of baseline models that only use
image features and further incorporate textual concepts:

4.2.1 Models based only on image features. For the baselines, we
replace the original image features with our textual-enriched image
features to evaluate the performance gain. We consider NIC [41],
Adaptive [31], Up-Down [3], Transformer [39] and NBT [32] mod-
els, which depend entirely on image features to generate image
captions.

4.2.2 Models further incorporate textual concepts. We further val-
idate our approach on models that incorporate both visual and
textual concepts information. This is to verify whether the im-
provements are due to our modeling towards image features and
textual concepts, rather than the introduction of additional textual
concepts.

LSTM-A [49] uses a series of models (LSTM-A3,4,5) to combine
image features and textual concepts. We will study the effect of our
method on them. LSTM-A3 feeds the textual concepts in the first
decoding step and the image feature in the second step. LSTM-A4
provides the textual concepts for the decoder at the beginning and
leave image features for the subsequent steps. In contrast to LSTM-
A4, LSTM-A5 reverse the order by first providing image features to
the decoder. We will also study ATT-FCN [50], which uses semantic
attention mechanism to further incorporates textual concepts.

4.3 Experimental Results
In this section, we first compare the proposal with representative
models. Next, we study the effects of incorporating textual features

to demonstrate that the significant improvements come from the
unified textual representations rather than the simple incorporation
of extra features, i.e., textual concepts.

4.3.1 Comparisons with Representative Models. We compare our
proposal with some representative models on Flickr30k dataset
and MSCOCO dataset. The results on MSCOCO Karpathy test split
and Flickr30k Karpathy test split are reported in Table 1 and 2, re-
spectively. By using our proposed textual-enriched image features,
improvements of up to 10% and 9% in terms of CIDEr and SPICE
can be achieved, respectively, demonstrating the effectiveness and
generalization capabilities of our method to a wide range of models.
The improvements on SPICE scores, which correlate the best with
human judgment [2], suggest that staring from bridging the gap
between vision and language domains point of view helps a lot to
generate coherent and human-like captions. Specifically, our pro-
posed approach of using textual-enriched image features is able to
obtain significant improvements, when applied to the Transformer
captioning model. The applied captioning model outperforms cur-
rent published state-of-the-art models ORT [11] andHIP [48], which
further demonstrates the effectiveness of our approach.

4.3.2 Effect of Incorporating Extra Information. To verify whether
the significant improvements that our proposal brings to the repre-
sentative baseline models are due to the introduction of additional
textual concepts, we validate our approach on some models that
further incorporate textual concepts. As shown in Table 3, improve-
ments of 6% and 9% with respect to CIDEr and SPICE are achieved
respectively when applying the proposal to the models that employ
both image features and textual concepts. The experimental results
demonstrate that the improvement comes from the textual-enriched
image features rather than simple incorporation of textual concepts.
It is worth noticing that LSTM-A4, which feeds the image features
to the decoder at every time step, performs poorly compared to
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Table 4: Leaderboard performance on the online MSCOCO evaluation server. c5 means comparing to 5 references and c40
means comparing to 40 references. We outperform all the published works in major metrics.

MSCOCO BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

LSTM-A [49] 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0
Up-Down [3] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
CAVP [24] 80.1 94.9 64.7 88.8 50.0 79.7 37.9 69.0 28.1 37.0 58.2 73.1 121.6 123.8
RFNet [14] 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 37.2 58.2 73.1 122.9 125.1
GLIED [27] 80.1 94.6 64.7 88.9 50.2 80.4 38.5 70.3 28.6 37.9 58.3 73.8 123.3 125.6
GCN-LSTM [47] - - 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
SGAE[47] 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5
HIP [48] 81.6 95.9 66.2 90.4 51.5 81.6 39.3 71.0 28.8 38.1 59.0 74.1 127.9 130.2

Ours 80.9 95.7 65.7 90.4 51.2 82.2 39.3 72.2 29.5 39.0 59.2 74.6 129.0 131.6

Table 5: Results of quantitative analysis of our approach based on two baselines, i.e., LSTM-A4 [49] and Up-Down [3]. For a
better understanding of the differences, we further list the breakdown of SPICE F-scores. TDM and TAM stands for Textual
DistillingModule and Textual AssociationModule, respectively.We can see that the w/ TDMhas a higher Attributes and Color
scores than the baselines, and the TAM brings significant improvements in Relations and Count. As we can see, incorporating
the proposal (i.e., w/ TDM + TAM) directly on the baselines, leads to overall improvements.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

All Objects Attributes Relations Color Count

LSTM-A4 [49]

Baseline 78.2 61.9 48.8 35.9 27.3 56.5 113.9 20.3 37.7 8.8 6.0 6.9 7.9
w/ TDM 78.8 63.5 49.6 36.2 27.7 57.1 118.0 21.3 38.9 10.2 5.9 11.1 9.8
w/ TDM + TAM 79.4 64.4 50.1 36.8 28.0 57.5 121.3 22.2 39.9 11.2 7.0 11.8 15.4

Up-Down [3]

Baseline 79.8 63.7 49.5 36.3 27.7 56.9 120.1 21.4 39.1 10.0 6.5 11.4 18.4
w/ TDM 80.8 64.8 49.9 36.9 28.0 57.6 122.4 22.1 39.7 10.6 6.2 12.7 18.5
w/ TDM + TAM 80.7 65.1 50.4 37.9 28.4 58.5 124.8 22.5 40.8 10.8 8.6 13.8 21.0

LSTM-A3, which only conditions the decoding on the image fea-
tures at the first two steps. This can be attributed to the weakness of
the image features without textual enriching, as the error brought
by the vanilla image features may accumulate with each step of the
RNN-based decoder [42, 49].

In Table 5, which shows sub-category scores of SPICE, the pro-
posed approach does especially well in attributes and relations,
which requires semantic and deep understanding of images. From
the results we can see that employing the textual-enriched image
features provides a solid basis for describing images. In all, the base-
line scores are promoted by up to 10% and 9% in terms of CIDEr
and SPICE, respectively, verifying the effectiveness of the proposed
method. It also indicates that our approach are less prone to the
variations of model structures, hyper-parameters (e.g., learning rate
and batch-size), and learning paradigms.

4.3.3 Online MSCOCO Evaluation. For online evaluation2, we sub-
mit an ensemble of seven “Transformer w/ proposal” models to
the leaderboard and compare with the published state-of-the-art
2https://competitions.codalab.org/competitions/3221

methods. As shown in Table 4, compared with the state-of-the-art
models, our approach achieves the best results in major metrics,
which further demonstrates the effectiveness of our approach.

5 ANALYSIS
In this section, incremental studies are conducted to verify the
effectiveness of each component in the proposal. Furthermore, some
examples are given to show the effect of our approach.

5.1 Quantitative Analysis
We select the LSTM-A4 [49] and Up-Down [3] to conduct a series
of studies to investigate the contribution of each component in the
proposed approach and the results are shown in Table 5.

5.1.1 Effect of Textual Distilling Module. As shown in Table 5, we
can find that the Textual Distilling Module promotes all baselines
over almost all sub-categories. As expected, the Textual Distilling
Module is good at distilling related textual concepts in the cur-
rent region features, especially in Attributes and Color, which is
verified by the significant improvements of Attributes scores and
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Table 6: Examples of the captions generated by different methods. The first and second lines are the ground truth and the
captions generated by Up-Down. The third and fourth lines are caption results by adding TDM and the full proposal with the
both TDM and TAM modules, respectively. From the generated captions, we can find that the w/ TDM helps the baseline to
generatemore detailed captions in attributes and colors for each object. The Full Model helps the baseline to generate captions
that are more comprehensive in relations and objects.

Reference
a man with suit holding
an umbrella walking
down street in the rain.

a toddler looking up and
smiling while pulling a
pink bag.

a man flying through the
air while riding a
skateboard.

a bunch of flowers are
on a clear glass table.

Baseline a man holding an umbrella
in the rain.

a boy standing in front of
a suitcase.

a man doing a trick on a
skateboard in the air.

a vase of flowers sitting
on top of a table.

w/ TDM a man in a black suit
holding a blue umbrella.

a young boy standing in
front of a pink suitcase.

a boy doing a trick on a
skateboard in the air.

a bunch of flowers in a
vase sitting on table.

Full Model
a man in a black suit
walking on street in the
rain with an umbrella.

a young boy in a red coat
standing in front of a pink
suitcase.

a boy doing a trick on a
skateboard in the air with
a forest nearby.

a bunch of flowers in a
vase sitting on table in
front of a window.

Color scores. The reason is that the image feature usually contains
a specific object, and the Textual Distilling Module tends to distill
the most relevant attributes and colors to depict the specific object.
However the Textual Distilling Module is less accurate in associat-
ing the textual concepts, resulting in the impaired performance in
Relations.

5.1.2 Effect of Textual Association Module. As expected, Table 5
shows that the Textual Association Module is good at associating
the distilled textual concepts as an unified representation, which
is demonstrated by the increased scores in Relations and Count.
With the abundant and enriched textual information introduced by
our approach, a variety of baseline models turn the image features
into the deep and textual-enriched image understandings, result-
ing in significant performance improvements, which validate the
effectiveness of our approach.

5.2 Qualitative Analysis
We show the captions generated by the Up-Down baseline model,
the baseline w/ TDM and the baseline w/ TDM + TAM (Full Model)
to analyze the strength of our proposal intuitively. Table 6 shows
the baseline model could already generate fluent and descriptive
sentences of the input images. However, the conveyed informa-
tion is rather limited. The w/ TDM is good at describing objects,
bringing more details in attributes and colors, but is less specific in
relations. The TAM portrays the relations and brings more objects
by associating textual concepts. As a result, the generated captions
of the full model is more complete and coherent, which further
proves our arguments and demonstrates the effectiveness of our
approach.

6 CONCLUSIONS
We focus on bridging the gap between vision and language domains
by enriching image features with textual concepts, which provides
a solid basis for describing images. We explore the textual represen-
tations of image features to describe salient image regions on the
textual level. We propose the Textual Distilling Module and Textual
Association Module to explore the abundant and enriched textual
information for achieving a deep image understanding. Extensive
experiments on the widely-used Flickr30k and MSCOCO image
captioning datasets validate the effectiveness of our method. Our
proposed solution successfully promotes the performance of all the
strong baselines across all metrics over the board, with the most
significant improvement up to 10% and 9%, in terms of CIDEr and
SPICE, respectively. The results demonstrate the generalization
ability of our approach to a wide range of existing systems. The
qualitative analysis and the SPICE sub-categories scores show that
the generated captions are complete and coherent in comparison
with existing methods. Besides, we further validate the importance
of modeling the relationships between vision and language domains,
rather than simple incorporating them.
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