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Abstract

Automatically generating radiology reports can improve

current clinical practice in diagnostic radiology. On one

hand, it can relieve radiologists from the heavy burden of

report writing; On the other hand, it can remind radi-

ologists of abnormalities and avoid the misdiagnosis and

missed diagnosis. Yet, this task remains a challenging

job for data-driven neural networks, due to the serious

visual and textual data biases. To this end, we propose

a Posterior-and-Prior Knowledge Exploring-and-Distilling

approach (PPKED) to imitate the working patterns of ra-

diologists, who will first examine the abnormal regions and

assign the disease topic tags to the abnormal regions, and

then rely on the years of prior medical knowledge and prior

working experience accumulations to write reports. Thus,

the PPKED includes three modules: Posterior Knowledge

Explorer (PoKE), Prior Knowledge Explorer (PrKE) and

Multi-domain Knowledge Distiller (MKD). In detail, PoKE

explores the posterior knowledge, which provides explicit

abnormal visual regions to alleviate visual data bias; PrKE

explores the prior knowledge from the prior medical knowl-

edge graph (medical knowledge) and prior radiology re-

ports (working experience) to alleviate textual data bias.

The explored knowledge is distilled by the MKD to gener-

ate the final reports. Evaluated on MIMIC-CXR and IU-

Xray datasets, our method is able to outperform previous

state-of-the-art models on these two datasets.

1. Introduction

Medical images like radiology and pathology images are

widely-used in disease diagnosis and treatment [7]. Given

a radiology image, radiologists first examine both the nor-

mal and abnormal regions and then use the learned medical

knowledge and accumulated working experience to write a

coherent report to note down the findings [32, 10]. Given
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Lungs are clear. No pleural effusions or pneumothoraces. Heart and 

mediastinum of normal size and contour. 1scoliosis.

1There is a scoliosis. No acute cardiopulmonary abnormality. There is no 

pleural effusion. No evidence of pneumothorax. The lungs are clear. There is 

no focal airspace consolidation. 

Heart size is normal. There is a moderate right sided pneumothorax with tip in 

the right atrium. There is a moderate right sided pneumothorax with large 

pleural effusion. No pneumothorax masses. No pneumothorax masses. No 

acute bony abnormalities.

Ground Truth:

HRNN:

Ours:

1The heart size is enlarged. 2The aorta is tortuous. The pulmonary 

vasculature appears normal. Lungs are otherwise clear bilaterally. No pleural 

effusions or pneumothorax. No bony abnormalities. 

1Heart size is enlarged. 2Tortuosity of the aorta. No pleural effusion. There is 

no focal airspace consolidation. There is no pneumothorax. No bony 

abnormalities.

1Cardiomegaly with pulmonary vascular congestion and interstitial edema. 

There is a moderate right sided pneumothorax with large pleural effusion. No 

bony abnormalities. There is no pneumothorax. There is no pneumothorax.

Ground Truth:

HRNN:

Ours:

Figure 1. Two examples of ground truth reports and reports gen-

erated by HRNN [19] and our method. The Red colored text in-

dicates the abnormalities in reports. The Blue colored text stands

for the similar sentences used to describe the normalities in ground

truth reports. There are notable data bias and the HRNN fails to de-

pict some rare but important abnormalities and generates some er-

ror sentences (Underlined text) and repeated sentences (Italic text).

the large volume of radiology images, writing reports be-

come a heavy burden for radiologists. Furthermore, for less

experienced radiologists, some abnormalities in radiology

images may be ignored and consequently not included in the

reports [4]. To relieve radiologists from such heavy work-

load and remind inexperienced radiologists of abnormali-

ties, automatically generating radiology reports becomes a

critical task in clinical practice.

In recent years, automatic radiology report generation

has attracted extensive research interests [47, 22, 41, 14, 6].

Most existing methods, like [15, 43, 46] follow the stan-

dard image captioning approaches and employ the encoder-

decoder framework, e.g., CNN-HRNN [15, 23]. In the en-

coding stage, the image features are extracted by CNN from

the entire image; In the decoding stage, the whole report

is generated by HRNN. However, directly applying image

captioning approaches to radiology images has the follow-
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ing problems: 1) Visual data deviation: the appearance of

normal images dominate the dataset over that of abnormal

images [36]. As a result, this unbalanced visual distribution

would distracting the model from accurately capturing the

features of rare and diverse abnormal regions. 2) Textual

data deviation: as shown in Figure 1, in a report, radiol-

ogists tend to describe all the items in an image, making

the descriptions of normal regions dominate the entire re-

port. Besides, many similar sentences are used to describe

the same normal regions. With this unbalanced textual dis-

tribution, training with such dataset makes the generation

of normal sentences dominant [14, 43, 46], disabling the

model to describe specific crucial abnormalities. In brief, as

shown in Figure 1, the widely-used HRNN [19] generates

some repeated sentences of normalities and fails to depict

some rare but important abnormalities.

To ensure these rare but important abnormal regions cap-

tured and described, the urgent problem is to solve such se-

rious data deviation [36, 22, 14, 20, 47]. In our work, we

propose the Posterior-and-Prior Knowledge Exploring-and-

Distilling (PPKED) framework, which imitates the radiol-

ogists’ working patterns to address above problems. Given

a radiology image, radiologists will examine the abnormal

regions and assign the disease topic tags to the abnormal re-

gions; then accurately write a corresponding report based

on years of prior medical knowledge and prior working ex-

perience accumulations [10, 7]. In order to model above

working patterns, the PPKED introduces three modules,

i.e., Posterior Knowledge Explorer (PoKE), Prior Knowl-

edge Explorer (PrKE) and Multi-domain Knowledge Dis-

tiller (MKD). The PoKE could alleviate visual data devia-

tion by extracting the abnormal regions based on the input

image; The PrKE could alleviate textual data deviation by

encoding the prior knowledge, including the prior radiology

reports (i.e., prior working experience) pre-retrieved from

the training corpus and the prior medical knowledge graph

(i.e., prior medical knowledge), which models the domain-

specific prior knowledge structure and is pre-constructed

from the training corpus1. Finally, the MKD focuses on dis-

tilling the useful knowledge to generate proper reports. As

a result, as shown in Figure 1, our PPKED has higher rate

of accurately describing the rare and diverse abnormalities.

In summary, our main contributions are as follows:

• In this paper, to alleviate the data bias problem, we pro-

pose the Posterior-and-Prior Knowledge Exploring-

and-Distilling approach, which includes the Posterior

and Prior Knowledge Explorer (PoKE and PrKE), and

Multi-domain Knowledge Distiller (MKD).

• The PoKE explores posterior knowledge by employ-

1For conciseness, in this paper, the prior working experience and the

prior medical knowledge denote the retrieved radiology reports and the

constructed medical knowledge graph, respectively.

ing the disease topic tags to capture the rare, diverse

and important abnormal regions; The PrKE explores

prior knowledge from prior working experience and

prior medical knowledge; The MKD distills the ex-

tracted knowledge to generate reports.

• The experiments and analyses on the public IU-Xray

and MIMIC-CXR datasets verify the effectiveness of

our approach, which is able to outperform previous

state-of-the-art model [6] on these two datasets.

The rest of the paper is organized as follows. Section 2

and Section 3 introduce the related works and the proposed

approach, respectively, followed by the experimental results

(see Section 4) and our conclusion (see Section 5).

2. Related Works

The related works are introduced from three aspects: 1)

Image Captioning, 2) Image Paragraph Generation and 3)

Radiology Report Generation.

2.1. Image Captioning

The task of image captioning [5, 40, 30] has received ex-

tensive research interests. These approaches mainly adopt

the encoder-decoder framework which translates the im-

age to a single descriptive sentence. Such framework have

achieved great success in advancing the state-of-the-arts

[1, 29, 31, 35, 42, 28]. However, rather than only generat-

ing one single sentence, radiology report generation aims to

generate a long paragraph, which consists of multiple struc-

tural sentences with each one focusing on a specific medical

observation for a specific region in the radiology image.

2.2. Image Paragraph Generation

Beyond the traditional image captioning task, image

paragraph generation that produces a long and semantic-

coherent paragraph to describe the input image has recently

attracted increasing research interests [19, 23, 45]. To this

end, a hierarchical recurrent network (HRNN) [19, 23] is

proposed. In particular, the HRNN uses a two-level RNN

model to generate the paragraph based on the image fea-

tures extracted by a CNN. The two-level RNN includes a

paragraph RNN and a sentence RNN, where the paragraph

RNN is used to generate topic vectors and each topic vec-

tor is used by the sentence RNN to produce a sentence to

describe the image. However, the correctness of generat-

ing abnormalities should be emphasized more than other

normalities in a radiology report, while in a natural image

paragraph each sentence has equal importance.

2.3. Radiology Report Generation

Writing a radiology report can be time-consuming and

tedious for experienced radiologists, and error-prone for
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un-experienced radiologists [15]. Similar to image para-

graph generation, most existing works [15, 43, 46] attempt

to adopt a HRNN to automatically generate a fluent report.

However, due to the serious data deviation, these models

are poor at finding visual groundings and are biased towards

generating plausible but general reports without prominent

abnormal narratives [14, 22, 46].

Currently, some approaches [14, 22, 46, 47, 21] have

been proposed to alleviate data deviation. In detail, instead

of only adopting a single sentence-level RNN to generate

both the normal and abnormal sentences, [14] introduced

two RNNs as two different report writers, i.e., Normality

Writer and Abnormality Writer, to help the model to gener-

ate more accurate normal and abnormal sentences, respec-

tively. At the same time, [22] proposed a hybrid model with

template retrieval and text generation module, which focus

on the generation of normal and abnormal sentences, re-

spectively, to enhance the ability of model in describing ab-

normalities. Most recently, [47] designed the medical graph

based on prior knowledge from chest findings, in which

each node is denoted by disease keywords representing one

of the disease findings, so as to increase the capability of

models to understand medical domain knowledge. Concur-

rently to our own work, the auxiliary signals introduced in

[21] is similar to the idea of our approach. In particular, [21]

only consider the medical graph, while we further leverage

the disease topic tags and working experience to enhance

the learning of posterior and prior knowledge, respectively.

Besides, we further provides the evidence of this advantage

of our approach on two public datasets.

It is observed that the data-driven RNNs designed in

[14] and [22] could be easily misled by the rare and di-

verse abnormalities, disabling them from efficiently model-

ing the abnormal sentences. Different from them, our idea

is mainly inspired by radiologists’ working patterns, to ex-

plore and distill the posterior and prior knowledge for accu-

rate radiology report generation, which is missing in their

approaches. For the network structure, we first explore the

posterior knowledge of input radiology image by proposing

to explicitly extract the abnormal regions; Next, inspired

by [22] and [47] which proved the effectiveness of retrieval

module and medical knowledge graph, we leverage the re-

trieved reports and medical knowledge graph to model the

prior working experience and prior medical knowledge. In

particular, instead of only retrieving some sentences in pre-

vious works [22, 20], we propose to retrieve a large amount

of similar reports. Besides, since the templates may change

over time, which was ignored in [22], using fixed templates

will introduce inevitable errors. As a result, we treat the re-

trieved reports as latent guidance. In all, we combine the

merits of retrieval module and knowledge graph in a single

model. Finally, by distilling the useful prior and posterior

knowledge, our approach could generate accurate reports.

3. Posterior-and-Prior Knowledge Exploring-

and-Distilling (PPKED)

We first describe the background of PPKED and then in-

troduce its three core components.

3.1. Backgrounds

The backgrounds are introduced from 1) Problem For-

mulation; 2) Information Sources and 3) Basic Module.

Problem Formulation Given a radiology image encoded

as I , we aim to generate a descriptive radiology report

R = {y1, y2, . . . , yNR
}. As shown in Figure 2, our PPKED

introduces a Posterior Knowledge Explorer (PoKE), a Prior

Knowledge Explorer (PrKE) and a Multi-domain Knowl-

edge Distiller (MKD). Specifically, we introduce the fixed

topic bag T that covers the NT most common abnormalities

or findings to help the PoKE to explore the abnormal re-

gions. The reason is that when radiologists examine the ab-

normal regions, they usually assign the disease topic tags to

the abnormal regions. We also introduce the Prior Working

Experience WPr and the Prior Medical Knowledge GPr ex-

tracted from the training corpus into our PrKE. Finally, the

MKD devotes on distilling the useful information to gener-

ate reports, which can be formulated as:

PoKE : {I, T} → I ′;

PrKE : {I ′,WPr} → W ′

Pr; {I ′, GPr} → G′

Pr

MKD : {I ′,W ′

Pr, G
′

Pr} → R.

(1)

In brief, the proposed PPKED takes I, T,WPr, GPr as input

to generate the robust report R.

Information Sources We now describe how to obtain and

encode the I, T,WPr, GPr from training corpus in detail2.

I: Following [43, 46, 12, 14, 41], we adopt the ResNet-

152 [11] to extract 2,048 7 × 7 image feature maps which

are further projected into 512 7× 7 feature maps, resulting

I = {i1, i2, . . . , iNI
} ∈ R

NI×d (NI = 49, d = 512).

T : In implementation, we choose NT = 20 most com-

mon (abnormality) topics or findings, i.e., cardiomegaly,

scoliosis, fractures, effusion, thickening, pneumothorax,

hernia, calcinosis, emphysema, pneumonia, edema, atelec-

tasis, cicatrix, opacity, lesion, airspace disease, hypoinfla-

tion, medical device, normal, and other. We represent the

topic bag with a set of vectors: T = {t1, t2, . . . , tNT
} ∈

R
NT×d, where ti ∈ R

d refers to the word embedding of the

ith topic.

WPr: To obtain the Prior Working Experience, we first

extract the image embeddings of all training images from

the last average pooling layer of ResNet-152. Then, given

an input image, we again use the ResNet-152 to obtain

the image embedding. At last, we retrieve NK = 100

2Note that all encoded features have been projected by a linear trans-

formation layer into the dimension of d = 512 in this paper.
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Add & Norm

PoKE

normal, cardiomegaly, 

scoliosis, fractures, effusion, 

thickening, pneumothorax, 

hernia, calcinosis, 

emphysema, pneumonia, 

edema, atelectasis, cicatrix, 

opacity, lesion, airspace 

disease, hypoinflation, 

medical device, other

Multi-Head

Attention

Add & Norm

Add & Norm

Feed

Forward

Image

Embedding

Multi-Head

Attention

Add & Norm

Add & Norm

Feed

Forward

Word

Embedding

Multi-Head

Attention

Add & Norm

Add & Norm

Feed

Forward

Report

Embedding

Retrieved Reports

Multi-Head

Attention

Add & Norm

Add & Norm

Feed

Forward

Graph

Embedding

PrKE

Multi-Head

Attention

Add & Norm

Add & Norm

Feed

Forward

Output

Embedding

Adaptive Distilling 

Attention

Add & Norm

Target Report

Linear & Softmax

Output Probabilities

MKD

Graph normal other

cardiomegaly scoliosis

effusion thickening pneumothorax

fractures hernia medical device

airspace diseasehypoinflation

emphysema pneumonia edema atelectasis opacity lesion

calcinosis

cicatrix

Figure 2. Illustration of our proposed Posterior-and-Prior Knowledge Exploring-and-Distilling (PPKED) approach, which includes Poste-

rior Knowledge Explorer (PoKE), Prior Knowledge Explorer (PrKE) and Multi-domain Knowledge Distiller (MKD). Specifically, PoKE

explores the posterior knowledge by extracting the explicit abnormal regions and PrKE explores the relevant prior knowledge for the input

image. At last, MKD distills accurate posterior and prior knowledge and adaptively merging them to generate accurate reports.

images from the training corpus with the highest cosine

similarity to the input image. The reports of the top-NK

retrieved images are returned and encoded as the WPr =
{R1, R2, . . . , RNK

} ∈ R
NK×d. In implementations, we use

a BERT encoder [9, 34] followed by a max-pooling layer

over all output vectors as the report embedding module to

get the embedding Ri ∈ R
d of the ith retrieved report.

GPr: In implementations, we follow [47] to construct and

initialize the medical knowledge graph. Specifically, based

on the training corpus, for all images, we first build a univer-

sal graph GUni = (V,E), which models the domain-specific

prior knowledge structure. In detail, we compose a graph

that covers the most common abnormalities or findings. In

particular, we use the common topics in the topic bag T .

These NT common topics in T are defined as nodes V and

are grouped by the organ or body part that they relate to. For

topics grouped together, we connect their nodes with bidi-

rectional edges, resulting in closely connected related top-

ics. After that, guided by the input image I , we can acquire

a set of nodes V ′ = {v′
1
, v′

2
, . . . , v′NT

} ∈ R
NT×d encoded

by a graph embedding module, which is based on the graph

convolution operation [18]. We regard the encoded V ′ as

the prior knowledge GPr ∈ R
NT×d. Due to space limit,

please refer to [47] for the detailed description of medical

knowledge graph.

Basic Module We implement the proposed method upon

the Multi-Head Attention (MHA) and Feed-Forward Net-

work (FFN) [38]. The MHA consists of n parallel heads

and each head is defined as a scaled dot-product attention:

Atti(X,Y ) = softmax

(

XW
Q
i (Y WK

i )
T

√
dn

)

Y WV
i

MHA(X,Y ) = [Att1(X,Y ); . . . ;Attn(X,Y )]WO (2)

where X ∈ R
lx×d and Y ∈ R

ly×d denote the Query ma-

trix and the Key/Value matrix, respectively; W
Q
i ,WK

i ,WV
i ∈

R
d×dn and WO ∈ R

d×d are learnable parameters, where

dn = d/n. [·; ·] stands for concatenation operation.

Following the MHA is the FFN, defined as follows:

FFN(x) = max(0, xWf + bf)Wff + bff (3)

where max(0, ∗) represents the ReLU activation function;

Wf ∈ R
d×4d and Wff ∈ R

4d×d denote learnable matri-

ces for linear transformation; bf and bff represent the bias

terms. It is worth noticing that both the MHA and FFN are

followed by an operation sequence of dropout [37], residual

connection [11], and layer normalization [2].

Motivation: The MHA computes the association weights

between different features. The attention mechanism allows

probabilistic many-to-many relations instead of monotonic

relations, as in [42, 38, 27]. Therefore, we apply MHA to

correlate the posterior and prior knowledge for the input

radiology image, as well as distilling useful knowledge to

generate accurate reports.
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3.2. Posterior Knowledge Explorer (PoKE)

The PoKE is responsible for extracting the posterior

knowledge from the input image, i.e., abnormal regions. To

this end, the PoKE is conducted as (see Figure 2):

T̂ = FFN(MHA(I, T )); Î = FFN(MHA(T̂ , I)) (4)

In Eq. (4), the image features I ∈ R
NI×d are first used

to find the most relevant topics and filter out the irrelevant

topics, resulting in T̂ ∈ R
NI×d. Then the attended top-

ics T̂ are further used to mine topic related image features

Î ∈ R
NI×d. Since T contains the abnormality topics, the

topic related image features can be referred as the abnormal

regions. In this way, we can not only obtain the abnormal

regions, but also align the attended abnormal regions with

the relevant topics, which imitates the working patterns of

radiologists to assign the disease topic tags to the abnormal

regions when examining the abnormal regions. It is worth

noticing that if we change the order from I → T̂ → Î to

T → Î → T̂ , the performance will drop. The reason is

presumably due to the noisy topics, which contains a large

amount of irrelevant topics in T , thus we should first filter

out the irrelevant topics as the presented in Eq. (4).

Finally, since Î and T̂ are aligned, we directly add them

up to acquire the posterior knowledge of the input image:

I ′ = LayerNorm(Î + T̂ ) (5)

where the LayerNorm denotes the Layer Normalization [2].

Analogical to the process of how radiologists examine radi-

ology images, we refer the acquired I ′ to the first impres-

sion of radiologists after check the abnormal regions.

3.3. Prior Knowledge Explorer (PrKE)

The PrKE consists of a Prior Working Experience com-

ponent and a Prior Medical Knowledge component. Both

components obtain prior knowledge from existing radiology

report corpus and represent them as WPr and GPr respec-

tively. By processing I ′ through these two components, we

can acquire W ′

Pr and G′

Pr which represent the prior knowl-

edge relating to the abnormal regions of the input image. In

implementation, we regard the abnormal features I ′ as the

lookup matrix. According to the attention theorem, the I ′ ∈
R

NI×d is the Query, and the WPr ∈ R
NK×d/GPr ∈ R

NT×d is

the Key and Value, which is defined as follows:

W ′

Pr = FFN(MHA(I ′,WPr)) (6)

G′

Pr = FFN(MHA(I ′, GPr)) (7)

Consequently, the results W ′

Pr ∈ R
NI×d and G′

Pr ∈ R
NI×d

turn out to be a set of attended (i.e., explored) prior knowl-

edge related to the abnormalities of the input image, which

could have potential to alleviate the textual data bias.

3.4. Multi­domain Knowledge Distiller (MKD)

After receiving the posterior and prior knowledge, the

MKD performs as a decoder to generate the final radiology

reports. For each decoding step t, the MKD takes the em-

bedding of current input word xt = wt + et as input (wt:

word embedding and et: fixed position embedding):

ht = MHA(xt, x1:t) (8)

Then, we employ the proposed Adaptive Distilling Atten-

tion (ADA) to distill the useful and correlated knowledge:

h′

t = ADA(ht, I
′, G′

Pr,W
′

Pr) (9)

Finally, the h′

t is passed to a FFN and a linear layer to pre-

dict the next word:

yt ∼ pt = softmax(FFN(h′

t)Wp + bp) (10)

where the Wp and bp are the learnable parameters. Given

the ground truth report R∗ = {y∗
1
, y∗

2
, . . . , y∗NR

}, we can

train the PPKED by minimizing the cross-entropy loss:

LCE(θ) = −
NR
∑

i=1

log
(

pθ
(

y∗i | y∗
1:i−1

))

(11)

Adaptive Distilling Attention (ADA) Intuitively, radiol-

ogy report generation task aims to produce a report based

on the source radiology image I ′, supported with the prior

working experience W ′

Pr and the prior medical knowledge

G′

Pr. Thus, the W ′

Pr and G′

Pr play an auxiliary role during

the report generation. To this end, we propose the ADA to

make the model adaptively learn to distill correlate knowl-

edge:

ADA(ht, I
′, G′

Pr,W
′

Pr) = MHA(ht, I
′ + λ1G

′

Pr + λ2W
′

Pr)

λ1, λ2 = σ (htWh ⊕ (I ′WI +G′

PrWG +W ′

PrWW )) (12)

where Wh,WI ,WG,WW ∈ R
d×2 are learnable parame-

ters. σ and ⊕ denote the sigmoid function and the matrix-

vector addition, respectively. The computed λ1, λ2 ∈ [0, 1]
weight the expected importance of W ′

Pr and G′

Pr for each

target word, respectively.

4. Experiments

In this section, we firstly describe two public datasets as

well as some widely-used metrics and experimental settings

in detail. Then we present the evaluation and analysis of the

proposed approach.

4.1. Datasets, Metrics and Settings

We conduct the experiments on two public datasets, i.e.,

IU-Xray [8] and MIMIC-CXR [16].
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Dataset Methods Year BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

MIMIC-CXR [16]

CNN-RNN [40] 2015 0.299 0.184 0.121 0.084 0.124 0.263

AdaAtt [31] 2017 0.299 0.185 0.124 0.088 0.118 0.266

Att2in [35] 2017 0.325 0.203 0.136 0.096 0.134 0.276

Up-Down [1] 2018 0.317 0.195 0.130 0.092 0.128 0.267

Transformer [6] 2020 0.314 0.192 0.127 0.090 0.125 0.265

MT [6] 2020 0.353 0.218 0.145 0.103 0.142 0.277

PPKED Ours 0.360 0.224 0.149 0.106 0.149 0.284

Dataset Methods Year BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L CIDEr

IU-Xray [8]

HRNN [19] 2017 0.439 0.281 0.190 0.133 0.342 0.261

CoAtt [15] 2018 0.455 0.288 0.205 0.154 0.369 0.277

HRGR-Agent [22] 2018 0.438 0.298 0.208 0.151 0.322 0.343

CMAS-RL [14] 2019 0.464 0.301 0.210 0.154 0.362 0.275

Transformer [6] 2020 0.396 0.254 0.179 0.135 0.342 -

MT [6] 2020 0.470 0.304 0.219 0.165 0.371 -

PPKED Ours 0.483 0.315 0.224 0.168 0.376 0.351

Table 1. Performance of the proposed PPKED and other state-of-the-art methods on the MIMIC-CXR and IU-Xray datasets. Higher value

denotes better performance in all columns. As we can see, the proposed PPKED outperforms previous models under all metrics, which

demonstrates the effectiveness of our approach.

IU-Xray The IU-Xray [8] is a widely-used benchmark

dataset to evaluate the performance of radiology report gen-

eration methods. It contains 7,470 chest Xray images as-

sociated with 3,955 radiology reports. For data prepara-

tion, we first exclude the entries without the findings section

and are left with 6,471 images and 3,336 reports. Then,

following previous works [14, 20, 22], we randomly split

the dataset into 70%-10%-20% training-validation-testing

splits. There is no overlap of patients across train, valida-

tion and test sets. At last, we preprocess the reports by tok-

enizing, converting to lower-cases and removing non-alpha

tokens. The top 1,200 words, which cover over 99.0% word

occurrences in the dataset, are included in our vocabulary.

MIMIC-CXR We further adopt a recently released largest

dataset to date, i.e., MIMIC-CXR [16], to verify the ef-

fectiveness of our approach. The dataset includes 473,057

chest X-ray images and 206,563 reports from 63,478 pa-

tients. Following [6], we use the official splits to report our

results. As a result, the dataset is split into 368,960 train-

ing, 2,991 validation and 5,159 testing instances. There is

no overlap of patients between train, validation and test sets.

Metrics We adopt the widely-used BLEU [33], METEOR

[3], ROUGE-L [25] and CIDEr [39], which are calculated

by the standard evaluation toolkit [5]. In particular, BLEU

[33] and METEOR [3] are originally proposed for machine

translation evaluation. ROUGE-L [24] is designed for mea-

suring the quality of summaries. CIDEr [39] is designed to

evaluate image captioning systems.

Settings We extract image features from both datasets with

a ResNet-152 [11], which is pretrained on ImageNet and

fine-tuned on CheXpert dataset [13]. The extracted features

are 2,048 feature maps in the shape of 7× 7 which are fur-

ther projected into 512 feature maps, i.e. NI is 49 and d
is 512. According the performance on the validation set,

the number of retrieved reports NK and heads in MHA n
are set to 100 and 8, respectively. During training, follow-

ing [47, 15], we first pre-train our approach with a multi-

label classification network and employ a weighted binary

cross entropy loss for tag classification. Then we apply the

Eq. (11) to train our full model. We use the Adam opti-

mizer [17] with a batch size of 16 and a learning rate of

1e-4 for parameter optimization. We also use momentum

of 0.8 and weight decay of 0.999.

4.2. Main Results

We compare our approach with a wide range of state-

of-the-art radiology report generation models, i.e., HRNN

[19], CoAtt [15], HGRG-Agent [22], CMAS-RL [14],

Transformer [6] and MT [6], as well as four image caption-

ing models, namely CNN-RNN [40], AdaAtt [31], Att2in

[35] and Up-Down [1]. Except that the results of HRNN are

implemented by ourselves, for systems designed for radiol-

ogy report generation, we directly report the results from

the original papers; For the MIMIC-CXR dataset, we cite

the results from [6]. As shown in Table 1, our PPKED out-

performs state-of-the-art methods across all metrics on both

MIMIC-CXR and IU-Xray datasets. The improved perfor-

mance of PPKED demonstrate the validity of our practice

in exploring and distilling posterior and prior knowledge for

radiology report generation.

4.3. Quantitative Analysis

We conduct the quantitative analysis to investigate the

contribution of each component in our PPKED.
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Sections Settings PoKE
PrKE MKD Dataset: IU-Xray [8]

PrMK PrWE TD ADA BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L CIDEr

4.3.1
Base 0.439 0.281 0.190 0.133 0.342 0.261

(a)
√

0.449 0.294 0.199 0.144 0.353 0.285

4.3.2

(b)
√

0.441 0.284 0.195 0.136 0.345 0.288

(c)
√

0.449 0.288 0.195 0.146 0.346 0.296

(d)
√ √

0.446 0.287 0.197 0.149 0.349 0.304

4.3.3

(e)
√ √ √

0.458 0.293 0.203 0.150 0.355 0.311

(f)
√ √ √ √

0.476 0.309 0.222 0.165 0.372 0.337

PPKED
√ √ √ √ √

0.483 0.315 0.224 0.168 0.376 0.351

Table 2. Quantitative analysis of our method. The Base model is the implementations of HRNN [19] models.

Categories TieNet [41] DenseNet [13] DenseNet+KG [47] PPKED

Emphysema 0.79 0.89 0.89 0.91

Pneumonia 0.73 0.84 0.86 0.87

Cardiomegaly 0.85 0.87 0.91 0.92

Pneumothorax 0.71 0.82 0.84 0.85

Lesion 0.66 0.60 0.64 0.69

Normal 0.75 0.80 0.81 0.83

Average 0.78 0.78 0.79 0.80

Table 3. Evaluation of abnormality classification results (AUCs).

4.3.1 Effect of Posterior Knowledge Explorer

Comparing the results of Base and (a) in Table 2, we can

find that the incorporating Posterior Knowledge Explorer

(PoKE) substantially boosts the performance of base model,

e.g., 0.261 → 0.285 in CIDEr score. More encouragingly,

the “Base w/ PoKE” even achieves competitive results with

the state-of-the-art models on IU-Xray dataset (see Table 1),

which demonstrates the effectiveness of our PoKE. We hy-

pothesize that this performance gain may due to that PoKE

can provide more accurate abnormal visual regions, which

alleviate the visual data deviation problem. To verify this

hypothesis, following [47, 41], we randomly select five

abnormality categories, i.e., ‘Emphysema’, ‘Pneumonia’,

‘Cardiomegaly’, ‘Pneumothorax’ and ‘Lesion’ from the IU-

Xray dataset, to test the models’ ability of detecting abnor-

malities. As we can see, Table 3 proves our argument and

verifies that PoKE can better recognize abnormalities which

is important in clinical diagnosis.

4.3.2 Effect of Prior Knowledge Explorer

In this section, we evaluate the proposed two components,

i.e., Prior Medical Knowledge (PrMK) and Prior Working

Experience (PrWE), of Prior Knowledge Explorer (PrKE).

Table 2 (b,c) shows that both the PrMK and PrWE can

boost the performance, which prove the effectiveness of our

approach. In detail, the PrMK can help the model learn en-

riched medical knowledge of the most common abnormali-

ties or findings. For the PrWE, it significantly outperforms

the Base model, which verifies the effectiveness of intro-

Normality
λ1 (G′

Pr) λ2 (W ′

Pr)
Abnormality

λ1 (G′

Pr) λ2 (W ′

Pr)

0.27 0.44 0.81 0.63

Table 4. The analysis of our proposed Adaptive Distilling Atten-

tion. We report the average distilling values λ1 and λ2 in Eq. (12)

according to the sentences which describe the normalities and ab-

normalities in the radiology images.

ducing existing similar reports.

By comparing the results of (b) and (c), we can find

that the PrWE brings more improvements than the PrMK.

We speculate the reason is that there are many similar sen-

tences used to describe the normal regions in ground truth

reports. Therefore, the description of normal regions can

benefit from PrWE, especially when the appearance of nor-

mal reports dominate the whole dataset. It also shows that

learning conventional and general writing style of radiolo-

gists is as important as accurately detecting abnormalities

in radiology report generation.

Overall, since the PrMK and PrWE can improve the per-

formance from different perspectives, combining PrMK and

PrWE can lead to an overall improvement (see setting (d)).

At the same time, PoKE and PrKE are able to alleviate the

visual and textual data biases, respectively. The advantages

of PoKE and PrKE can be united (see setting (e)).

4.3.3 Effect of Multi-domain Knowledge Distiller

In implementation, our MKD is based on the Transformer

Decoder (TD) [38] equipped with the proposed Adaptive

Distilling Attention (ADA).

The lower part of Table 2 illustrates that the model with a

LSTM-based Decoder (e) performs worse than model with

a Transformer-based Decoder (f), which directly demon-

strates the effectiveness of the Transformer Decoder can ef-

fectively model long sequences.

Moreover, as shown in the last line of Table 2, it is clear

that our Adaptive Distilling Attention (ADA) successfully

boosts the performance, verifying the effectiveness of our

approach. To further understand ADA’s ability of adap-

tively distilling useful prior and posterior knowledge, we
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Input Image

There is mild cardiomegaly. 

Mediastinal contours appe-

ar within normal limits. The-

re are small bilateral pleur-

al effusions, left greater th-

an right with left basilar op-

acities. No pneumothorax. 

Mild degenerative changes 

of the thoracic spine. 

Ground Truth(Abnormal Regions)

normal, cardiomegaly, 

scoliosis, fractures, effusion, 

thickening, pneumothorax, 

hernia, calcinosis, 

emphysema, pneumonia, 

edema, atelectasis, cicatrix, 

opacity, lesion, airspace

disease, hypoinflation, 

medical device, other

(Abnormal Topics) PPKED

There is mild cardiomegaly. 

There is a small right pleur-

al effusion.Tortuosity of the 

thoracic aorta. There is left 

basilar air space opacity. 

No pneumothorax is seen. 

There is a small left pleural 

effusion. No acute bony 

abnormalities.

cardiomegaly

effusion opacity

(λ1=0.91, 0.85, 0.14) (λ2=0.76, 0.44, 0.57)

The cardiac silhouette is mildly 

enlarged. Mediastinal contours are 

within normal limits. The pulmonary 

vasculaturity is increased. There is 

large right-sided pleural effusion a-

nd probable underlying associated 

compressive atelectasis. Mild peri-

hilar XXXX opacities, XXXX edema. 

No pneumothorax is seen.

Figure 3. We give the visualization of the PPKED. Please view in color. The Red bounding box and Red colored text denote the knowledge

explored (i.e., attended) by our approach; For W ′

Pr, we show the retrieved report with highest attention weight; For G′

Pr, we show the nodes

whose attention weights exceeds 0.2. The Blue, Purple and Green colored numbers in brackets denote the distilling weight values in our

Adaptive Distilling Attention of the Multi-domain Knowledge Distiller when generating corresponding sentences. Underlined text denotes

alignment between the ground truth text and generated/retrieved text.

summarize the average distilling weight values λ1 and λ2

according to the sentence type (normality and abnormality)

in Table 4. Specifically, following [15], we consider sen-

tences which contain “no”, “normal”, “clear”, “stable” as

sentences describing normalities. As expected, the values of

λ1 and λ2 generating the abnormalities are larger than the

values generating the normalities. The reason is that both

G′

Pr and W ′

Pr contains much knowledge about the abnormal-

ities, which indicates our ADA are capable of learning to ef-

ficiently distill the explored prior and posterior knowledge.

It is also worth noticing that since the retrieved reports

in W ′

Pr contains the knowledge about the normalities, λ2

is larger than λ1 when generating the normalities. There-

fore, in addition to distilling the knowledge about the ab-

normalities, our ADA can also capture the most related use-

ful knowledge about the normalities for generating accurate

normality sentences. The ability of distilling the accurate

knowledge about the normalities can be verified by the best

AUC score in terms of the ‘Normal’ category in Table 3,

which proves our argument.

4.4. Qualitative Analysis

In Figure 3, we give an intuitive example to better under-

stand our approach. As we can see, in PoKE, the original

image features find the most relevant topics including the

cardiomegaly, effusion, atelectasis and opacity, which then

attend to the relevant abnormal regions, verifying the capa-

bility of PoKE to extract explicit abnormal visual regions

(Red bounding box).

In particular, the PPKED generates structured and ro-

bust reports, which show significant alignment with ground

truth reports and are supported by accurate abnormal de-

scriptions as well as correspondence with the visualized ab-

normal regions. For example, the generated report correctly

describes “There is mild cardiomegaly”, “There is left basi-

lar air space opacity” and “There is a small right/left pleu-

ral effusion”. In detail, 1) due to higher rate of involving

explicit abnormal visual information provided by the PoKE,

the generated report contains accurate abnormalities and lo-

cations and also share a well balance of normal sentences

and abnormal sentences. This phenomenon shows that our

approach can efficiently alleviate the visual data deviation

problem. 2) The generated report and the explored prior

knowledge show correspondence with the ground truth re-

ports, e.g., cardiomegaly, opacity and effusion, which ver-

ifies that PrKE is capable of exploring the accurate prior

textual knowledge to efficiently alleviate the textual data

bias; 3) The reasonable distilling weight values prove that

the MKD is able to distill accurate information from the ex-

plored posterior and prior knowledge, and adaptively merg-

ing them for generating each accurate sentence.

In brief, the qualitative analysis proves our arguments

and verify the effectiveness of our proposed approach in al-

leviating the data bias problem by exploring and distilling

posterior and prior knowledge.

5. Conclusion

In this paper, we present an effective approach of explor-

ing and distilling posterior and prior knowledge for radi-

ology report generation. Our approach imitates the work-

ing patterns of radiologists to alleviate the data bias prob-

lem. The experiments and analyses on the MIMIC-CXR

and IU-Xray datasets verify our arguments and demonstrate

the effectiveness of our method. In particular, our approach

not only generates meaningful and robust radiology reports

supported with accurate abnormal descriptions and regions,

but also outperforms previous state-of-the-art models on the

two public datasets.
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