
Towards Explainable Joint Models via Information Theory for
Multiple Intent Detection and Slot Filling

Xianwei Zhuang*, Xuxin Cheng*, Yuexian Zou†

School of ECE, Peking University, China
{xwzhuang, chengxx}@stu.pku.edu.cn, zouyx@pku.edu.cn

Abstract

Recent joint models for multi-intent detection and slot filling
have obtained promising results through modeling the unidi-
rectional or bidirectional guidance between intent and slot.
However, existing works design joint models heuristically
and lack some theoretical exploration, including (1) theoreti-
cal measurement of the joint-interaction quality; (2) explain-
ability of design and optimization methods of joint models,
which may limit the performance and efficiency of designs. In
this paper, we mathematically define the cross-task informa-
tion gain (CIG) to measure the quality of joint processes from
an information-theoretic perspective and discover an implicit
optimization of CIG in previous models. Based on this, we
propose a novel multi-stage iterative framework with theo-
retical effectiveness, explainability, and convergence, which
can explicitly optimize information for cross-task interac-
tions. Further, we devise an information-based joint model
(InfoJoint) that conforms to this theoretical framework to
gradually reduce the cross-task propagation of erroneous se-
mantics through CIG iterative maximization. Extensive ex-
periment results on two public datasets show that InfoJoint
outperforms the state-of-the-art models by a large margin.

Introduction
Spoken language understanding (SLU) is a critical task in di-
alog systems (Young et al. 2013), which generally includes
two subtasks: intent detection (ID) and slot filling (SF) (Tur
and De Mori 2011). Recently, joint models (Goo et al. 2018;
Qin et al. 2019; Cheng et al. 2023c; Zhu et al. 2023a,b) for
ID and SF have achieved impressive performance, and have
proved that there exists a strong correlation between this two
tasks (Weld et al. 2022). The recent studies (Gangadharaiah
and Narayanaswamy 2019) recognize that a single utterance
often contains multiple intentions in real-world scenarios,
i.e., Multi-Intent SLU. Thus, joint multi-intent SLU gradu-
ally attracting increasing attention. One of the mainstream
insights works on devising attention mechanisms against
joint tasks. AGIF (Qin et al. 2020, 2021b) explore unidirec-
tional joint models from ID to SF based on graph attention
(GAT) for multi-intent SLU. Cheng, Yang, and Jia (2023)
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Figure 1: Comparison of statistical results based on the per-
spective of cross-task information (in color). We run each
model five times on the MixATIS (Qin et al. 2020) to ob-
tain statistical results, and observe that: (i) There is an im-
plicit positive correlation between the performance of prior
joint models and the CIG. (ii) Our joint model explicitly op-
timizes cross-task information to obtain higher interactive
information and better performance.

proposes a variant of attention for reducing error propaga-
tion. Co-guiding Net (Xing and Tsang 2022) proposes het-
erogeneous attention (HGAT) to achieve bidirectional inter-
action. These works heuristically design cross-task interac-
tion modules to improve performance.

Although promising progress has been made in previous
works, these studies regrettably lack exploration of some
core issues at the theoretical level, including:

(1) Why does the joint SLU model work better and how
to quantitatively measure the enhancement quality of joint
models in theory? Our work innovatively defines the cross-
information gain (CIG) to measure the interaction quality of
the beneficial information between ID and SF, and explains
that the process of joint optimization is the process of maxi-
mizing CIG and minimizing the information gap between
dual-task branches. Based on this perspective, we discover
that previous works implicitly improve CIG although they
do not explicitly mention CIG (i.e., there is a positive corre-
lation between CIG and performance, as shown in Fig. 1).

(2) How to design an explainable model for the joint pro-
cesses? Existing joint models are essentially single-stage
models (Fig. 2a and b) which perform single interaction,
and lack theoretical guidance. We construct the model as a
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Figure 2: Comparison of different joint frameworks for multi-intent SLU at the abstract level. (a) The framework of vanilla
joint models. The model only models the unidirectional guidance from multi-intent detection to SF in a single process. (b) The
framework considers mutual guidance between the two tasks, but only heuristically designs various modules in a single stage to
achieve dual-task interaction. (c) Our framework models the dual-task interaction process as a Markov process and ensures the
effectiveness, theoretical interpretability, and convergence of bidirectional guidance from an information theoretic perspective.
Our framework implements iterative enhancement of the dynamic interaction for multi-intent SLU.

multi-stage Markov model (Fig. 2c) and claim the method
can iteratively optimize in the positive direction and out-
perform single-stage models under some theoretical con-
straints. We further analyze the theoretical constraints for its
effectiveness and convergence.

Furthermore, we devise a novel information-based joint
model (InfoJoint) which satisfies the above theoretical con-
straints. Specifically, InfoJoint utilizes multi-level cross-
task contrastive learning to maximize CIG. In addition, di-
rectional constraints and entropy weighting strategies are
developed to facilitate positive optimization and balance
learning in each batch, respectively. Finally, InfoJoint op-
timizes CIG through iterative training to achieve deep in-
teraction and gradually eliminate error propagation between
the joint tasks. In summary, our framework has several ap-
pealing facets: (1) Explainability: Joint models are guided
by theory to fully explore relevance through iterative en-
hancement. (2) Convergence: The convergence of joint
optimization is theoretically guaranteed. (3) Universality:
This framework is architecture-independent (component-
independent) and compatible with previous works. The main
contributions of this paper are presented as follows:

(1) (Theory) We propose a novel explainable multi-stage
joint framework for multi-intent SLU with theoretical quan-
tifiability, effectiveness, and convergence. (2) (Methodol-
ogy) Based on the information-based principled framework,
we devise an iterative-enhancement model termed InfoJoint,
which adopts multi-level cross-task contrastive learning, di-
rectional constraints, and entropy weighting to achieve the
effective interaction and performance improvement. (3) (Ex-
periments) Extensive experiments on two public multi-
intent SLU datasets MixATIS and MixSNIPS demonstrate
that InfoJoint significantly outperforms the best baselines in
terms of all evaluation metrics.

Related Work
Joint model for intent detection and slot filling. Early
studies (Yao et al. 2014; Kurata et al. 2016; Zhang and Wang
2016) recognize that there is a close connection between ID

and SF. Motivated by this, some studies (Goo et al. 2018; E
et al. 2019; Liu et al. 2019a; Qin et al. 2019; Zhang et al.
2019; Wu et al. 2020; Qin et al. 2021a; Ni et al. 2023) start
to model the relationship between ID and SF in a multi-
task manner to improve the performance. However, these
works ignore the multi-intent context in real-world scenar-
ios, which are more challenging.
Joint model for multi-intent SLU. Kim, Ryu, and Lee
(2017) start to explore multi-intent scene recognition and
Gangadharaiah and Narayanaswamy (2019) propose the first
joint model for multi-intent SLU. Qin et al. (2020, 2021b)
propose GAT-based joint models to improve interaction per-
formance, and Xing and Tsang (2022) propose a HGAT-
based model to achieve the bidirectional interaction. GISCO
(Song et al. 2022) considers the global correlation between
ID and SF. SSRAN (Cheng, Yang, and Jia 2023) proposes
a scope-sensitive attention network to model the dual-task
interaction. Different from the above methods, we empha-
size maximizing CIG iteratively to achieve the explainable
cross-task interaction, which gives a significant insight on
improving the performance of multi-intent SLU.

Theoretical Analysis
Problem Definition
We design a joint-learning network Ψ(·; θ) that directly con-
sumes a input utterance U = {ui}ni=1 for multi-intent SLU.
The model obtains predictions for multi-label intent classi-
fication OI = {oIi }mi=1 and slot labels OS = {oSi }ni=1 that
map the utterance U , where m denotes the number of intents
in a given utterance and n denotes the utterance length. We
further define the training set of utterances as DU = {U}.

Theoretical Formulation
Markov Modeling. As shown in Fig. 2a and Fig. 2b, to
go beyond the single-stage heuristic modeling of dual-task
interaction, we model the joint enhancement process as a
multi-stage Markov process which is illustrated in Fig. 2c.
This means that the hidden state random variables in the next
stage t+ 1 are only related to the current state t for t ∈ N .
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Formally, we obtain the context-sensitive hidden states
X0

I = {x0
[I,i]}

n
i=1 and X0

S = {x0
[S,i]}

n
i=1 through the shared

encoder, where I and S represent ID and SF respectively.
Note that the two tasks share the same semantics features
in the initial stage, i.e., X0

I = X0
S . We further define the

task-specific features obtained in the t-th iteration stage of
the intent-detection branch and slot-filling branch as random
variables Xt

I = {xt
[I,i]}

n
i=1 and Xt

S = {xt
[S,i]}

n
i=1.

Cross-Task Information Gain. To explicitly express the
relationship between the two tasks, we consider quantifying
the degree of joint enhancement from an information the-
oretic perspective, and mathematically defining the CIG of
the two tasks (implicit random variable Xi and Xj):

CIG(Xi;Xj) = Hθ(Xi)−Hθ(Xi | Xj), (1)
where Hθ(·) denotes information entropy under the model
θ, and i = I, j = S or i = S, j = I . CIG is mathematically
symmetric and non-negative, which shows a reduction of the
uncertainty of the variable (task) Xi given another variable
(task) Xj . Based on this, the assumption that the two tasks
Xi and Xj are mutually reinforcing can be expressed as:

CIG(Xi;Xj) = CIG(Xj ;Xi) > 0. (2)
From this perspective, we explain that the designs of

previous joint models essentially strive to improve CIG to
obtain task-specific bidirectional information and thereby
improve prediction performance.

Optimization Constraints. Our model exploits CIG to im-
prove performance on the premise that the following three
constraints are satisfied during the optimization process:
Proposition 1 (Intrinsic Constraint) Suppose t is the num-
ber of steps for the iterative optimization process, ∀t ∈ N+,

CIG(Xt
i ;X

t−1
j ) > 0, (3)

where i = I, j = S or i = S, j = I .
Proposition 1 is the foundation of the joint model, which

mathematically describes that the amount of beneficial infor-
mation provided by one task to another is always positive.
Proposition 2 (Directional Constraint) Suppose tx and ty
are the number of steps for the iterative optimization pro-
cess, ∀tx, ty ∈ N+, if tx > ty , then,

CIG(Xtx
i ;Xtx−1

j ) > CIG(Xty
i ;X

ty−1
j ), (4)

where i = I, j = S or i = S, j = I .
Proposition 2 constrains the function CIG(Xt

i ;X
t−1
j ) to

monotonically increase w.r.t. the number of iterations t. In-
tuitively, a better expression of the current task will provide
more information gain for another. This proposition ensures
that the model is positively optimized in each iteration.
Proposition 3 (Upper-bound Constraint) The non-
continuous set function CIG(Xt

i ;X
t−1
j ) w.r.t the number of

iterative steps t has a supremum MI(OI , OS), i.e.,

sup {CIG(Xt
i ;X

t−1
j ) : t ∈ N+} = MI(OI , OS), (5)

where MI(OI , OS) is defined as the mutual information
between intent-detection labels OI and slot-filling labels
OS , and i = I, j = S or i = S, j = I .

Proposition 3 is a boundary condition that describes
the existence of an upper bound on the information gain
provided by the two tasks to each other. Further, this upper
bound is determined by the optimal predictions (i.e., labels
OI and OS) of the two tasks.

Convergence Analysis. We next show the convergence
ability of our joint model for universal optimization during
the iteration process. By the convergence of functions, in-
tuitively, a model should approach the limit value, i.e., the
optimal value, after sufficient limited optimization steps.
Theorem 1 (Convergence Property) Suppose T = {t : t ∈
N+}, CIG : T → R+ is a non-continuous set function w.r.t
the number of iterative steps t and simultaneously satisfies
Proposition 1-3, then, ∀ϵ > 0, ∃δ > 0, for t ∈ T , if t > δ,

| CIG(Xt
i ;X

t−1
j )−MI(OI ;OS) |< ϵ. (6)

Proof. Through Proposition 1-3, we can derive that the non-
continuous set function CIG(Xt

i ;X
t−1
j ) is a monotonically

increasing bounded function. According to Monotone Con-
vergence Theory (Yeh 2006), it can be further derived that
the function converges to the supremum MI(OI ;OS).

Theorem 6 theoretically demonstrates the convergence of
our framework. To further measure convergence, the follow-
ing energy function E(·) can be defined to estimate the iter-

ation situation as E(t) =
CIG(Xt

i ;X
t
j)

MI(OI ;OS) . We note that there is
no explicit analytical expression of CIG about t, and there-
fore the energy function E(t) cannot be directly calculated.
Following previous works (Bugliarello et al. 2020; Ji et al.
2022a), we introduce a Monte Carlo estimator in the training
set DU to approximate E(t).

Method
Architecture Overview
In this section, we describe the overview of InfoJoint as
shown in Fig. 3a and introduce the relationship between
theory and design. Firstly, to avoid overparameterization
caused by a large number of decoders, we encode the
time t and then concatenate it with the input embedding
of decoders to achieve parameter reuse. Secondly, Xt

i

and Xt−1
j are obtained asynchronously. We realize that

CIG(Xt
i ;X

t−1
j ) → CIG(Xt

i ;X
t
j) when the model is suf-

ficiently iterated. Therefore, we utilize CIG(Xt
i ;X

t
j) to ap-

proximate CIG(Xt
i ;X

t−1
j ) to achieve the synchronous opti-

mization. Thirdly, inspired by Ji et al. (2022b); Cheng et al.
(2023a), we utilize contrastive learning to minimize the In-
foNCE loss to maximize a lower bound on CIG.

Following the above rules, the general framework of our
InfoJoint is shown in Fig. 3, which consists of four core
components: a shared encoder, a time encoding module, a
multi-level cross-task contrastive learning (MCCL) module
and bidirectional information extraction modules. We utilize
MCCL and bidirectional information extraction modules to
gradually extract and improve the CIG through t iterations.
Instead of treating all input utterances indiscriminately, we
propose an entropy-based weighting strategy to balance ut-
terance information in each batch.
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Shared Encoder and Time Encoding
Following Qin et al. (2020, 2021b); Xing and Tsang (2022),
we adopt a bidirectional LSTM (BiLSTM) to produce a se-
ries of context-sensitive hidden states H = {hi}ni=1 over the
word embeddings Û = {ûi}ni=1, and a self-attention mech-
anism to capture context-aware features A ∈ Rn×dk :

hi = BiLSTM(ûi, hi−1, hi+1),

A = softmax(
QK⊤
√
dk

)V,
(7)

where Q, K and V are matrices obtained by mapping the
input word vector through different linear projections, and
dk denotes the dimension of keys K.

We finally fuse these two representations as the encod-
ing features: E0

I = E0
S = H||A, where || is a concatena-

tion operation. To distinguish the decoder states at differ-
ent stages, we utilize sine position encoding (Vaswani et al.
2017) to encode the iteration time t into a time encoding
vector T ∈ Rn×2dk . Then, we sum the basic semantics
(i.e., Et−1

I or Et−1
S ) and time encoding T = {Ti}ni=1 as

the features of stage t to participate in iterative optimization,
where t > 1 indicates that the semantic feature E is from
the previous stage instead of the encoder. The iteration time
t will auto-increment during optimization before it exceeds
the maximum time Tmax. Based on this, we further obtain
task-specific features Xt

k = {xt
[k,i]}

n
i=1 for multi-intent de-

tection I and slot filling S through a layer of BiLSTM:
xt
[k,i] = BiLSTMk(E

t−1
[k,i] + Ti, x

t
[k,i−1], x

t
[k,i+1]), (8)

where k = I and k = S represent ID and SF respectively.

Bidirectional Information Extraction
These two modules (shown in Fig. 3b) are mainly proposed
to extract the valuable information which is conducive to ob-
taining better expression from the two tasks, namely extract-
ing CIG(Xt

i ;X
t−1
i , Xt−1

j ). We employ the Heterogeneous
Graph Attention Network (HGAT) (Velickovic et al. 2018;
Wang et al. 2019) to implement this bidirectional guidance.

Specifically, to explicitly leverage slot information to
guide multi-intent detection, we obtain the estimated slot la-
bels sequence St = {St

i}ni=1 by a pre-decoder, and construct
a slot-to-intent semantic graph GS2I = (VS2I , ES2I) similar
to Xing and Tsang (2022). Further, we feed the node se-
mantics Ht

I = {ht
[I,i]}

n
i=1 = {xt

i, ϕ
emb(St

i )}ni=1 into HGAT
with K attention heads and finally produce more effective
representation Et

I = {Et
[I,i]}

n
i=1:

F
(
ht
[I,i], h

t
[I,j]

)
= a[k,r]

⊤ [
W

[k,r]
I ht

[I,i]∥W
[k,r]
I ht

[I,j]

]
,

(9)

α
[k,r]
ij =

exp
(
σ
(
F
(
ht
[I,i], h

t
[I,j]

)))
∑

j′∈Ni
exp

(
σ
(
F
(
ht
[I,i], h

t
[I,j′]

))) ,
Et

[I,i] =
K

||
k=1

σ

∑
j∈Ni

α
[k,r]
ij W

[k,r]
I ht

[I,j]

 ,

(10)

where ϕemb(·) is a projector; r denotes the type of edge from
node j to node i; σ represents the activation function; set
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Ni is the first-order neighbors of node i on graph GS2I ; and
a[k,r] and W

[k,r]
I are trainable matrix of r on the k-th head.

We can adopt a similar approach to extract intent-to-slot
information and obtain a more abstract feature Et

S for Eq. 8.

Maximize Cross-Task Information Gain
Based on the existing theoretical discovery (Poole et al.
2019) that InfoNCE loss (Oord, Li, and Vinyals 2018)
lower bound the mutual information, we propose MCCL (as
shown in Fig. 3c) to estimate bidirectional information (i.e.,
CIG) in practice. Specifically, we adopt a memory bank
strategy (He et al. 2020) to obtain more effective negative
samples. At each iteration, the model samples a set of
matching pairs MX = {(XI,k̃, XS,k̃)}

|MX |
k̃=1

in the memory
queue. Subsequently, we perform contrastive learning at the
levels of utterance and token to fully estimate and optimize
CIG:

Utterance level. We map the matching sample set MX

to the dU -dimension space and obtain a matching set in em-
bedding space SU = {(ZI

k̃
, ZS

k̃
)}|S

U |
k̃=1

through the utterance-
level projector, where ZI

k̃
, ZS

k̃
∈ R1×dU . The utterance-

level contrastive loss LU can be formulated as:

LU = − 1

|SU |

|SU |∑
k̃=1

log
exp(ZI

k̃
· ZS

k̃
/τ1)∑|SU |

j=1,j ̸=k̃
exp(ZI

k̃
· ZS

j /τ1)
, (11)

where τ1 denotes the temperature coefficient.
Token level. We map MX to the dT -dimension space and
obtain K̃ embeddings ẐI

k̃
= {ẑI

k̃,i
}ni=1 and ẐS

k̃
= {ẑS

k̃,i
}ni=1

through the projector, where ẑI
k̃,i

, ẑS
k̃,i

∈ R1×dT . We further
integrate the tokens of all utterances to form a token-level
matching set ST = {(ẑIk′ , z̃Sk′)}K̃×n

k′=1 . The token-level con-
trastive loss LT can be formulated as:

LT = − 1

|ST |

|ST |∑
k′=1

log
exp(ẑIk′ · ẑSk′/τ2)∑|ST |

j=1,j ̸=k′ exp(ẑIk′ · ẑSj /τ2)
, (12)

where τ2 denotes the temperature coefficient.

Training and Inference
Entropy weighting. We find that the information of utter-
ances trained synchronously in a batch is imbalanced. To al-
leviate this issue, we propose a weighting strategy based on
information entropy. Specifically, we define semantic uncer-
tainty H̃ as the indicator of utterance importance, and further
obtain the weight αU of the utterance U in the batch B:

H̃(U) = −
n∑

i=1

pui log p
u
i , αU =

H̃(U)∑
U∈B H̃(U)

, (13)

where pui denotes the statistic frequency of i-th word ui in
the U under the training set DU .

Directional constraints. To further ensure each iteration
of our InfoJoint model is positively optimized (i.e., satisfy-
ing Proposition 2), we define an Exponential Decay Func-
tion φmg(t) as a margin penalty for MCCL method, where,
φmg(t) = a · e−kt, a = 0.9 and k = 2. Therefore, the total
contrastive loss for stage t is:

Lt
mccl = φmg(t) · Lclc = φmg(t) · (LU + LT ). (14)

For stage t, Et
I and Et

S are fed to intent and slot post-
decoder, producing the intent and slot label distributions for
each utterance: Yt

I and Yt
S . Then, the loss of intent Yt

I and
slot Yt

S predictions can be calculated by the binary cross-
entropy loss and negative log-likelihood loss: Lt

I and Lt
S .

Intuitively, the predictions in the t stage should be better than
those in the t − 1 stage. We further design another margin
penalty Lt

mg for this rule (i.e., Proposition 2):

Lt
mg = max{0,Lt−1

I −Lt
I}+max{0,Lt−1

S −Lt
S}. (15)

Therefore, the joint loss function of InfoJoint is:

Lt = αLt
I + (1− α)Lt

S + βLt
mg + λLt

mccl, (16)

where α, β and λ are trade-off hyper-parameters.
Details. In the training stage, InfoJoint adopts Eq. 8 to
perform iterative optimization from t = 1 to t = Tmax for
each batch. For efficiency, we manually define Tmax instead
of using the Energy function to determine convergence. In
the inference stage, the iteration process and MCCL can be
discarded without affecting the inference speed. We can di-
rectly obtain inference results by setting t as the optimal
Tmax. And the final outputs OI and OS are obtained via
applying the Top-K strategy over Yt

I and argmax over Yt
S .

Experiments
Experimental Settings
Datasets and Metrics. Following previous works, we
conduct our experiments on two public multi-intent SLU
datasets1 to evaluate the effectiveness of InfoJoint, i.e., the
cleaned version of MixATIS and MixSNIPS (Hemphill,
Godfrey, and Doddington 1990; Coucke et al. 2018; Qin
et al. 2020). MixATIS and MixSNIPS include 13162, 759,
828 utterances and 39776, 2198, 2199 ones for training, val-
idation and testing respectively. For a fair comparison with
previous works, we also adopt accuracy(Acc), F1 score and
overall accuracy as metrics for multi-intent detection, SF
and sentence-level semantic frame parsing, respectively.
Settings. The hyper-parameters α, β and λ of loss (Eq. 16)
are set as 0.7, 0.2 and 0.4 on MixATIS, and 0.6, 0.2 and
0.4 on MixSNIPS. We adopt grid search to determine hy-
perparameters for optimal performance. The temperature τ1
and τ2 in Eq. 11 and 12 are empirically set as 0.05. We uti-
lize Adam (Kingma and Ba 2015) with a learning rate of
0.001 and a weight decay of 1e−6 to train InfoJoint for both
datasets. We train all models from scratch with 100 epochs.
For batch size, we set 16 and 32 for MixATIS and MixS-
NIPS. All experiments are conducted on 4 RTX3090 GPUs.

1https://github.com/LooperXX/AGIF
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Model MixATIS MixSNIP
Intent Slot Overall Intent Slot Overall

Bi-Model (Wang, Shen, and Jin 2018) 70.3 83.9 34.4 95.6 90.7 63.4
Stack-Propagation (Qin et al. 2019) 72.1 87.8 40.1 96.0 94.2 72.9
Joint Multiple ID-SF (Gangadharaiah and Narayanaswamy 2019) 73.4 84.6 36.1 95.1 90.6 62.9
AGIF (Qin et al. 2020) 74.4 86.7 40.8 95.1 94.2 74.2
GL-GIN (Qin et al. 2021b) 76.3 88.3 43.5 95.6 94.9 75.4
GISCO (Song et al. 2022) 75.0 88.5 48.2 95.5 95.0 75.9
Co-guiding Net (Xing and Tsang 2022) 79.1 89.8 51.3 97.7 95.1 77.5
SSRAN (Cheng, Yang, and Jia 2023) 77.9 89.4 48.9 98.4 95.8 77.5
ChatGPT (OpenAI 2023) 66.1 43.7 34.2 94.9 59.4 39.6
InfoJoint(Tmax=5) 79.8 90.6 51.9 97.9 96.9* 78.2
InfoJoint(Tmax=10) 80.6* 91.4* 52.5* 99.2* 96.9* 78.9*

Table 1: Quantitative comparison results on MixATIS and MixSNIPS. * denotes the improvement of InfoJoint over all baselines
is statistically significant with p < 0.05 under t-test. The best results are in bold and the second best ones are underlined.

Multi-level
Contrastive Loss

Directional
constraints.

Time
Coding

Entropy
Weighting

MixATIS MixSNIPS
Intent Slot Overall Intent Slot Overall

(a) × × × × 74.7 88.2 43.2 96.1 94.4 74.5
(b) LT φmg(t) + Lmg Sinusoidal ✓ 76.8 88.5 46.2 96.8 94.6 76.4
(c) LU φmg(t) + Lmg Sinusoidal ✓ 78.6 89.5 49.7 97.6 95.2 77.5
(d) LU + LT × Sinusoidal ✓ 77.5 88.7 47.6 96.8 95.3 76.9
(e) LU + LT Lmg Sinusoidal ✓ 77.8 88.9 48.4 97.3 95.6 77.3
(f) LU + LT φmg(t) + Lmg Sinusoidal × 79.7 91.5 51.8 98.4 96.5 78.2
(g) LU + LT φmg(t) + Lmg Sinusoidal ✓ 80.6 91.4 52.5 99.2 96.9 78.9

Table 2: Ablation study on both datasets for quantitatively evaluating the contribution of different components to InfoJoint. We
repeat this experiment five times to obtain the statistical mean.

Main Results and Analysis
The main experimental results are shown in Table 1. We can
see that InfoJoint with Tmax = 10 outperforms all baselines
on both datasets. And we have more detailed observations:

(1). Our multi-stage joint model is significantly superior
to the baselines with single-stage unidirectional and bidi-
rectional guidance in all metrics of both datasets. Com-
pared with the unidirectional-guided state-of-the-art model
SSRAN, InfoJoint achieves 2.7% improvement on Slot (F1),
2.0% improvement on Intent (Acc), 3.6% improvement on
Overall (Acc) on the MixATIS dataset, and 0.3% improve-
ment on Slot (F1), 1.1% improvement on Intent (Acc), 1.4%
improvement on Overall (Acc) on the MixSNIPS dataset.
Compared with the bidirectional-guided best model Co-
guiding Net, InfoJoint also achieves significant and consis-
tent performance improvements on all metrics.

(2). InfoJoint achieves a significant improvement in terms
of overall accuracy. We could observe that the bidirectional
models can perform better in overall accuracy than the unidi-
rectional ones. This suggests that the bidirectional guidance
achieves calibration and alignment of dual tasks, thereby
obtaining better semantic parsing results. And InfoJoint en-
sures a gradual increase of beneficial information in bidirec-
tional interaction through iterative enhancement. This grad-
ually reduces cross-task propagation of erroneous semantics,
thereby further facilitating sentence-level semantic analysis.

(3). We adopt a method similar to He and Garner (2023) to
evaluate the performance of ChatGPT on these two datasets.

As shown in Table 1, although ChatGPT has a strong ability
for zero-shot learning in ID, it still lags far behind InfoJoint
in overall accuracy. This difference suggests that ChatGPT
may struggle to SF and comprehend the abstract connection
between ID and SF. Hence, our work on joint multi-intent
SLU remains of significant value to the community.

Ablation Study
We conduct a set of ablation experiments (shown in Table 2)
to verify the effectiveness of our theoretical framework.
Effect of maximizing CIG. We conduct experiments to
study the impact of MCCL on InfoJoint as illustrated in Ta-
ble 2 with groups (a)(b)(c)(g). It can be seen that the perfor-
mance of InfoJoint significantly decreases without MCCL to
improve the cross-task information gain. Moreover, the lack
of any level of contrastive loss (LU or LT ) can also affect
prediction performance. This verifies that (1) MCCL is ca-
pable of extracting CIG sufficiently and effectively. (2) Max-
imizing CIG can effectively model semantic-level and word-
level interactions of dual tasks to improve performance.
Effect of directional constraints. To further examine the
effectiveness of margin penalty strategies, we show the ab-
lation study on groups (d)(e)(g) in Table 2. We observe that
the absence of any strategy (φmg(t) or Lmg), especially
φmg(t), can result in a significant decrease in predictive per-
formance. This indicates that the margin penalty φmg(t) and
Lmg can effectively constrain the model to optimize in the
positive direction (i.e., satisfying Proposition 2).
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Figure 4: Analysis Experiments of InfoJoint on MixATIS dataset (in color). (a) We conduct statistical analysis on the dynamic
change of CIG during training on different models and find the universality of CIG optimization. (b) We analyze the effects
of different decay functions and maximum iterations Tmax on the performance of InfoJoint. (c) We demonstrate the impact of
hyperparameters λ and β on model performance.

Effect of entropy weighting. By comparing the groups (f)
and (g) of Table 2, we can further verify the effectiveness of
the entropy weighting strategy in improving performance.

Method Analysis
Dynamic analysis of information gain. To further analyze
the universality of the information-theoretic perspective and
how InfoJoint works, We conduct an analysis experiment
in MixATIS, which adopts a Monte Carlo estimator to ob-
tain the CIG estimator of different models in each epoch (as
shown in Fig. 4a). For AGIF and Co-guiding Net, we treat
the output of the corresponding decoder as task random vari-
ables (i.e., XI and XS), and discover that these two models
implicitly optimize the CIG during training. And InfoJoint
explicitly and significantly optimizes CIG to ensure deep
alignment and interaction, resulting in better performance.
Analysis of iteration and decay function. We further an-
alyze the effects of φmg(t) and Tmax as shown in Fig. 4b.
We analyze three different types of functions: the exponen-
tial decay function (a ·e−kt), the power function ( 1

1+tγ ), and
the step function with an initial value of 0.5 and a decrease
of 0.05 each time, where a, k, γ = 0.9, 2, 3. We find that the
exponential function converges the fastest, possibly because
it has the highest decay rate (gradient). We further observe
that the larger Tmax, the more sufficient cross-task interac-
tion, and the higher the prediction performance.
Analysis of hyperparameter. As shown in Fig. 4c, we
perform grid search on λ and β in the MixATIS dataset. We
first fix β = 0.2 to balance MCCL and SLU tasks and ob-
serve that λ = 0.4 achieves the optimal balance between the
main task and the information enhancement task. We then
fix λ = 0.4 and find that β = 0.2 is the optimal trade-off.
Qualitative analysis. Following Zhu et al. (2023c), to bet-
ter understand what the iterative interaction learns, we visu-
alize the attention weight of InfoJoint and Co-guiding Net
for comparison, as shown in Fig. 5. We observe that after
sufficient iterations (Tmax = 10), InfoJoint properly aggre-
gates the intent AddToPlaylist at slots add, song, to,
and siesta. This demonstrates InfoJoint successfully fo-
cuses weight on the correct slots during optimization and has
a better interactive ability compared to prior methods.

add song^ to
siesta* and i rate

shadow of
suribachiat five stars

Co-guiding

Ours  Tmax  =1 

Ours  T   max      =10A
dd

To
Pl

ay
lis

t
Figure 5: Attention heatmap in different approaches. ∧ and
∗ denote specific slots B-music and B-playlist.

Experiments with Pre-training Model

Model MixATIS MixSNIPS
RoBERTa 49.7 80.2
AGIF+RoBERTa 50.0 80.7
SSRAN+RoBERTa 54.4 83.1
Co-guiding Net+RoBERTa 57.5 85.3
InfoJointTmax=10+RoBERTa 58.6 86.1
BERT 51.6 83.0
SSRAN+BERT 55.3 85.6
InfoJointTmax=10+BERT 58.9 86.4

Table 3: Overall (Acc) performance for pre-trained models
with different architectures.

Following Qin et al. (2020); Cheng et al. (2023b), we use
the pre-trained RoBERTa (Liu et al. 2019b) and BERT (De-
vlin et al. 2019) encoders to replace the original shared en-
coder. As shown in Table 3, InfoJoint outperforms all base-
lines when utilizing RoBERTa and BERT as encoders by a
large margin, which further shows the universality and effec-
tiveness of our iterative joint method on multi-intent SLU.

Conclusion
In this paper, we quantify the quality of joint interaction in
multi-intent SLU from the perspective of information theory,
and propose a principled framework with explainability and
convergence. Based on this, we devise a novel joint model
termed InfoJoint to model multi-stage dynamic interaction.
Extensive experiments on two public datasets and analyses
verify the effectiveness of InfoJoint.
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