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Abstract
Recent Audio-Text Retrieval (ATR) models have achieved

progressive results, which pursue semantic interaction upon au-
dio and text pairs. To clarify this coarse-grained global interac-
tion and move a step further, we have to encounter challenging
shell-breaking interactions for fine-grained cross-modal learn-
ing between audio and text. In this paper, we present GPA
for ATR to achieve both Global (coarse-grained) and Prototype
(fine-grained) Alignment. In detail, apart from performing
vanilla global contrast between audio and text pairs, we model
the frames in audio and words in text as prototypes, and align
the prototypes to generate a prototype similarity matrix. Based
on this, we introduce a Learnable Attention Similarity Scoring
module, which can fully consider the information between dif-
ferent prototype pairs and obtain the retrieval score. Finally,
we incorporate the Sinkhorn-Knopp algorithm to modify the re-
trieval score. Experimental results on two benchmark datasets
with superior performance justify the efficacy of our proposed
GPA.
Index Terms: audio-text retrieval, fine-grained alignment,
learnable attention

1. Introduction
Audio-Text Retrieval (ATR) is a significant and challenging task
in cross-modal interaction [1, 2, 3, 4, 5], which has received
widespread attention in recent years [6]. Given a text (audio)
query, the goal of ATR is to retrieve the corresponding audio
(text) in the candidate pool. Existing ATR methods [7, 8, 9]
predominantly focus on devising cross-modal interactions un-
der a joint latent space and calculating the global cosine simi-
larity score for retrieval. Therein, [7] introduced audio retrieval
benchmarks and provides baseline results through multi-modal
video retrieval methods. [8] demonstrated that audio features
extracted using pre-trained model PANNs [10] outperform com-
monly used static features such as log-mel spectrogram (LMS)
and mel-frequency cepstral coefficients (MFCC) [11]. [9] eval-
uated the impact of different metric learning objectives on re-
trieval performance based on pre-trained models.

Although these studies have made significant progress, we
find that they still face two key issues: (1) Neglecting fine-
grained alignment. As shown in Figure 1, previous studies uti-
lize vanilla contrastive learning strategy to perform global align-
ment between acoustic and textual features obtained through au-
dio and text encoders, respectively. As illustrated in Figure 1(b),
there exists a more compact and complex correspondence rela-
tionship between audio clips and textual tokens, Capturing this

This paper was partially supported by NSFC(No:62176008).
* Yuexian Zou is the corresponding author.

A dog barks twice and then whimpers

A dog barks twice and then whimpers

Global 
Alignment

Prototype Alignment

(a)

(b)

Figure 1: An example of Audio-Text Retrieval. (a) audio text
alignment adopted by existing methods (Global Alignment). (b)
there is a correspondence between the fine-grained information
in audio and text.

correspondence is essential for establishing the intrinsic rela-
tionship between audio and text modalities. However, previ-
ous methods neglect this fine-grained alignment of clip-level
acoustic features and token-level textual features. (2) Retrieval
score imbalance in Audio-to-Text Retrieval. A large num-
ber of previous experiments [8, 12] and empirical studies have
identified an imbalance phenomenon [13] within the Audio-to-
Text retrieval task. Specifically, the cumulative retrieval scores
associated with a particular text across all audio instances sig-
nificantly surpass those for other texts. This imbalance leads to
an over-selection of certain texts in the retrieval process, which
adversely impacts the overall retrieval performance.

To solve the aforementioned issues, in this paper, we
present GPA for ATR to achieve both Global (coarse-grained)
and Prototype (fine-grained) Alignment. For the first issue, we
model the collections of audio frames as audio prototypes and
the collections of words as text prototypes and consider fine-
grained alignment at the prototype level. As shown in Figure 2,
we use the mask-based method to generate prototypes and get
the similarity matrix by aligning them. Furthermore, we pro-
pose a Learnable Attention Similarity Scoring module (LASS)
that assigns a weight to each value in the prototype similarity
matrix and transforms the prototype similarity matrix into a pro-
totype similarity score. The retrieval score can be obtained by
adding the global similarity score and the prototype similarity
score. For the second issue, we introduce the Sinkhorn-Knopp
algorithm [14] to correct imbalance issues and further improve
retrieval performance. In detail, we use the training query set as
an approximation of the test set and apply the Sinkhorn-Knopp
algorithm to calculate instance bias to adjust the cross-modal
retrieval score so that each instance is fairly represented during
the retrieval process. We outperform the state-of-the-art perfor-
mance on the AudioCaps [15] and Clotho [16] datasets by 6.7%
and 9.0% relative improvements on Text-to-Audio retrieval, and
12.2% and 14.8% on Audio-to-Text retrieval.

Overall, our contributions in this work are three-fold:

• We capture the fine-grained information in audio and text to
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Figure 2: Illustration of the proposed GPA model. The input sentences are processed by a text encoder and a prototype generator
to generate global-level and prototype-level text representations. The input audio is processed by an audio encoder and a prototype
generator to generate global-level and prototype-level audio representations. Based on these representations, we compute the similarity
score at the global level and prototype level, and introduce the Sinkhorn-Knopp algorithm to correct the retrieval score.

generate prototypes and align the prototypes to obtain the
prototype similarity matrix. Our proposed LASS can well
aggregate prototype similarity matrix and obtain the similar-
ity score for audio and text prototypes.

• We aggregate the similarity scores at the global and prototype
levels to get the retrieval score, and we are the first to intro-
duce the Sinkhorn-Knopp algorithm to correct the imbalance
problem in the Audio-to-Text task.

• Experimental results show that our algorithm effectively im-
proves the performance of the ATR task, and shows steady
improvement on two benchmark datasets.

2. Method
In this section, we elaborate on each component of our proposed
GPA, whose architecture is shown in Figure 2.

2.1. Problem Definition

Let D = {(ai, ti)}Ni=1 be an audio captioning dataset of N
examples, where ai is an audio clip and ti is the paired cap-
tion. Therefore, (ai, ti) is regarded as a positive pair while
(ai, tj,j ̸=i) is a negative pair. The goal of the ATR task is
to train retrieval models by calculating the audio-text retrieval
score and making the retrieval score of positive pairs rii higher
than that of negative pairs rij .

2.2. Prototype and Global Feature Alignment

Audio and Text Encoder. Following [9], the ResNet-38 [17]
in PANNs [10] is employed as the audio encoder, where the last
two linear layers are discarded. And pre-trained BERT [18] is
employed as the text encoder.
Prototype Generator. We denote a ∈ RNa×Da as the frame
representations extracted from the audio encoder, and t ∈
RNt×Dt as the word embeddings extracted from the text en-
coder, where Na is the number of audio frames and Nt is the

number of words. Da and Dt are the feature dimensions.
There are many ways to generate text and audio prototypes,

including attention [19, 20, 21], graph neural networks [22, 23,
24, 25], and other methods [26, 27, 28, 29, 30, 31]. In this work,
we use a simpler mask-based method to generate prototypes.
The kth text prototype is formulated as follows:

ptk =

Nt∑
j=1

tj · fmask(tj)k, (1)

where tj , fmask represents the jth token feature of t, mask-
generating function. fmask is implemented by a linear layer,
followed by the relu function. In general, the class token fea-
ture obtained by identifier [CLS] can represent the final output
of BERT. So we expand ptk+1 = tcls, which means we have
K + 1 text prototypes. Similarly, we use the output of the
average and max pooling layers as audio [CLS] to generate
K + 1 audio prototypes. Through the prototype generator, we
obtain the prototypes of the audio pa ∈ R(K+1)×Da and text
pt ∈ R(K+1)×Dt . Finally, the MLP block is used to project
audio and text features into the shared embedding space.
Global and Prototype Similarity Matrix. For an audio-text
pair, the global similarity score sg is obtained by the cosine sim-
ilarity of global features. Similarly, we calculate cosine similar-
ity for different prototypes and obtain the fine-grained cosine
similarity matrix sp ∈ [K + 1,K + 1].

2.3. Learnable Attention Similarity Scoring Module

For the similarity matrix at the prototype level, using mean
pooling to aggregate prototype information ignores the impor-
tance of different acoustic and textual prototypes. We pro-
pose the Learnable attention similarity scoring module (LASS),
which captures the interaction between different audio and text
prototypes and assigns different weights to different similarity
values. Since the prototype similarity matrix sp contains the
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similarity of K+1 audio prototypes and K+1 text prototypes,
we perform two learnable attention (LA) operations on the ma-
trix. The first attention goal is to obtain audio prototype and text
prototype similarity vectors. Audio prototype similarity vector
sa can be formulated as follows:

wa =
exp(sp(i,∗))∑K+1

j=1 exp(sp(j,∗))
. (2)

We add a linear layer La based on the weight wa, then we
get the learnable weights wLineara :

wLineara =
exp(La(wa)(i,∗))∑K+1

j=1 exp(La(wa)(j,∗))
. (3)

We assign the weight wLineara to each value in the proto-
type similarity matrix:

sa =

K+1∑
i=1

wLineara(i,∗)sp(i,∗), (4)

where ∗ represents all content in the dimension, sa ∈
R1×(K+1) is the audio-level similarity vector. Specifically,
sa ∈ R1×(K+1) shows the similarity score between the au-
dio and K + 1 text prototypes in the sentence. To obtain audio
prototype-level similarity score s′a, we conduct the second LA
operation on the audio-level vector sa:

wt =
exp(sa(1,i))∑K+1

j=1 exp(sa(1,j))
, (5)

wLineart =
exp(Lt(wt)(1,i))∑K+1

j=1 exp(Lt(wt)(1,j))
, (6)

s′a =

K+1∑
i=1

wLineart(1,i)sa(1,i). (7)

Then we gain audio prototype-level similarity score s′a ∈
R1. Text prototype-level similarity score s′t can be formulated
in the same way: perform first LA use Lt, then gain text-level
vector st, then perform second LA use La, then gain prototype-
level similarity score s′t ∈ R1. We use the sum value as the
prototype-level similarity score s′p:

s′p = s′a + s′t. (8)

2.4. Retrieval Score Correction

As shown above, we describe the similarity score of an audio-
text pair, with a global-level score sg and a prototype-level score
s′p. The actual situation is that we have Q audio queries and
J texts, and we calculate the global similarity scores as Sg ∈
RQ×J and prototype similarity scores as S′

p ∈ RQ×J of all
audio queries and texts, where Sij is the score for the ith audio
query and jth text. We add the global-level and prototype-level
similarity scores to get retrieval scores:

R = Sg + S′
p. (9)

In order to solve the imbalance phenomenon in the Audio-
to-Text task, we follow [13] and introduce the Sinkhorn-Knopp
algorithm [14] to correct the imbalance. We refer the readers to
Appendix for more details about Sinkhorn-Knopp algorithm.

Even though we can access all text and audio during the
testing phase, we can only get one audio query at a time for

audio-to-text retrieval. Thus we use the training audio query to
simulate the test audio. Specifically, assuming we have G train-
ing queries and J test texts, we obtain the retrieval score R′ be-
tween the training query and the test text by the aforementioned
method. We further add the test text bias to the retrieval score
matrix R ∈ RQ×J generated from Q test queries and J test
texts. Specifically, we calculate the text bias in an alternating
iterative manner to obtain the modified matrix R∗ as:

Rij∗ = Rij + SKnorm(R′)j , (10)

where, SKnorm(·) means the Sinkhorn-Knopp operation.
Please refer to the supplementary material for the specific al-
gorithm. Note that we only apply Equation 10 in the inference
phase, Text-to-audio retrieval does not suffer from similar prob-
lems, and we verify the effectiveness of our Sinkhorn-Knopp
algorithm in ablation experiments.

2.5. Training Objective

During training, given a batch of B audio-text pairs, the model
generates a B×B retrieval score matrix. [9] evaluate the effects
of multiple loss functions, and we select two of them to train our
model. We use Triplet-sum and NT-Xent [32] loss functions
respectively to optimize the retrieval model.

Ltriplet =
1

B

B∑
i=1

∑
j ̸=i

[m+Rij −Rii]+ + [m+Rji −Rii]+,

(11)
where [x]+ = max(0, x) and m is a distance margin.

Lnt−xent = − 1

B

(
B∑

i=1

log
exp(Rii/τ)∑B

j=1 exp (R
ij/τ)

+

B∑
i=1

log
exp(Rii/τ)∑B

j=1 exp (R
ji/τ)

)
,

(12)

where τ is a temperature hyper-parameter.

3. Experiments
3.1. Datasets, Metrics and Implementation Details

Datasets. We evaluate GPA on two ATR benchmarks: Au-
dioCaps [15] and Clotho [16]. AudioCaps is a large caption-
ing dataset containing approximately 50K 10-second long audio
clips. Its training set has 49274 audio clips, and each audio clip
is equipped with one human-annotated caption; the validation
set and test set have 494 and 957 audio clips respectively, and
each audio clip is equipped with five human-annotated captions.
Clotho v2 contains 6974 audio samples between 15 and 30 sec-
onds in length. Each audio sample has five human-annotated
captions. The number of training samples, validation samples,
and test samples are 3839, 1045, and 1045 respectively.
Metrics. The evaluation metric R@k we used is fully named
Recall at rank k, including R@1, R@5, and R@10 to validate
the effectiveness of our GPA. R@k evaluates the proportion of
desired outcomes that appear within the top k-ranked results,
indicating that a higher score reflects superior performance.
Implementation Details. We follow the same process as in
[9] to train our network, adopting ResNet-38 in PANNs as the
audio encoder and pre-trained BERT as the text encoder. The
model is trained using the Adam [33] optimizer for 50 epochs,
and the learning rate is attenuated to 0.1 of itself every 20
epochs. For the AudioCaps dataset, the batch size is set to

5080



Table 1: Results of the experiments. DP (baseline) represents existing methods that use global similarity to represent retrieval scores.

Dataset Methods Objective Text-to-Audio Audio-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

AudioCaps
DP [9] Triplet-sum 32.2±0.3 68.2±0.6 81.6±0.5 36.1±1.2 69.2±1.3 81.4±1.7

NT-Xent 33.9±0.4 69.7±0.2 82.6±0.3 39.4±1.0 72.0±1.0 83.9±0.6

GPA Triplet-sum 35.3±0.2 71.0±0.1 83.2±0.3 42.6±0.1 74.5±0.4 86.7±0.2

NT-Xent 36.2±0.2 71.4±0.1 82.9±0.2 44.2±0.2 75.9±0.3 86.7±0.4

Clotho
DP [9] Triplet-sum 14.2±0.5 36.6±0.5 49.3±0.7 16.1±0.7 37.5±1.2 50.7±1.0

NT-Xent 14.4±0.4 36.6±0.2 49.9±0.2 16.2±0.7 37.5±0.9 50.2±0.7

GPA Triplet-sum 15.7±0.1 39.0±0.1 51.3±0.3 18.2±0.3 40.9±0.8 53.9±0.4

NT-Xent 15.7±0.1 39.1±0.1 50.9±0.1 18.6±0.1 42.4±0.4 55.3±0.3

Table 2: Ablation study of Prototype Generator.

Methods K Text-to-Audio Audio-to-Text
R@1 R@5 R@1 R@5

Baseline 0 33.9 69.7 39.4 72.0
Attention 3 35.1 70.6 44.3 75.4

Mask 3 36.2 71.4 44.2 75.9
Mask 1 35.1 70.8 43.2 74.9
Mask 2 35.5 70.8 45.1 74.7
Mask 4 35.3 70.1 45.6 74.2
Mask 5 36.1 70.6 43.9 75.8
Mask 10 35.7 70.5 43.2 74.8

32 and the learning rate is set to 1 × 10−4. For the Clotho
dataset, the batch size is set to 24 and the learning rate is set to
5 × 10−5. For Triplet-sum loss, the distance margin m is set
to 0.2, and the temperature hyper-parameter τ in the NT-Xent
loss is set to 0.07. In the Sinkhorn-Knopp algorithm, we set the
number of iterations as 10 across all datasets. All experiments
are conducted on 8 RTX3090 GPUs.

3.2. Main Results

ATR is divided into Text-to-Audio retrieval (T2A) and Audio-
to-Text retrieval (A2T) tasks. As shown in Table 1, we com-
pare the proposed GPA with the baseline on the AudioCaps
and Clotho datasets, where DP [9] (baseline) represents existing
methods that use global similarity to represent retrieval scores.

As can be seen from Table 1, whether using NT-Xent or
Tript-sum loss, our method is better than the baseline. When
NT-Xent is selected as the learning objective, on the dataset Au-
dioCaps, the R@1 index of T2A has improved by 6.7% and the
R@1 index of A2T has improved by 12.2%. The size of the
training data in the Clotho dataset is limited, and the text cor-
responding to the audio is more diverse, making the ATR task
on the Clotho dataset more difficult. On the dataset Clotho, the
R@1 index of T2A has improved by 9.0%, and the R@1 index
of A2T has improved by 14.8%. Our model brings significant
gains on different loss functions and different datasets, proving
the effectiveness of our model.

3.3. Model Analysis

The experiments in this section are conducted on the AudioCaps
dataset and use NT-Xent as the loss function.
Different Prototype Generator and the number of proto-
types. Our GPA introduces a Mask-based prototype genera-
tion method. To verify the effect of this Mask-based method, we
design an Attention-based prototype generation method. The
Attention-based method uses the Self-Attention method to gen-
erate K prototypes. As shown in Table 2, the Mask-based
method is significantly better than the Attention-based method
on T2A Task, increasing by 3.1% on R@1 and 1.1% on R@5.

Table 3: Ablation study of prototype similarity scoring model.

Methods Text-to-Audio Audio-to-Text
R@1 R@5 R@1 R@5

Mean Pooling 34.7 69.1 41.6 73.5
Softmax Weight 35.3 70.7 43.7 74.4

LASS 36.2 71.4 44.2 75.9

Table 4: Ablation study of Sinkhorn-Knopp algorithm.

Methods Audio-to-Text
R@1 R@5 R@10

w/o SK norm 43.5 74.9 86.2
w SK norm 44.2 75.9 86.7

The performance of the method of adding prototypes is better
than the baseline, which shows that there is a connection be-
tween the rich fine-grained information in audio and text, which
is beneficial to improving retrieval performance. The selection
of the number of prototypes is crucial. K = 3 performs better
than K = 1, 2, 4, 5, 10. An appropriate number of prototypes
can capture key information in audio and text.
Different ways to calculate prototype scores. In the above,
we propose LASS to aggregate the prototype similarity matrix
into the prototype similarity score. We utilize the non-learnable
average pooling aggregation method and softmax weight aggre-
gation method to verify the effectiveness of LASS. As shown in
Table 3, our proposed LASS outperforms average pooling and
softmax weight in various indicators, which shows that our pro-
posed LASS can effectively capture the interaction between dif-
ferent audio and text prototypes, and reasonably assign different
weights to different similarity values.
Effectiveness of Sinkhorn-Knopp algorithm. We compare
our GPA model with removing Sinkhorn-Knopp algorithm in
the GPA. As can be seen from Table 4, introducing Sinkhorn-
Knopp algorithm can effectively improve the performance of
the Audio-to-Text task, improving the R@1 by 1.6% and the
R@5 1.3%. The Sinkhorn-Knopp algorithm we introduced can
effectively correct the imbalance problem in the A2T task.

4. Conclusions
In this paper, we propose GPA, an end-to-end framework for
Audio-Text Retrieval. It automatically generates prototypes on
both audio and text sides to represent rich information and pro-
poses a learnable attention similarity scoring module to calcu-
late prototype similarity score. In addition, we also introduce
the Sinkhorn-Knopp algorithm into the ATR task, further im-
proving the performance of the model. Experimental results on
AudioCaps and Clotho datasets demonstrate the effectiveness
and versatility of our proposed model.

5081



5. References
[1] X. Li, X. Yin, C. Li, P. Zhang, X. Hu, L. Zhang, L. Wang, H. Hu,

L. Dong, F. Wei et al., “Oscar: Object-semantics aligned pre-
training for vision-language tasks,” in Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXX 16. Springer, 2020, pp. 121–137.

[2] V. Gabeur, C. Sun, K. Alahari, and C. Schmid, “Multi-modal
transformer for video retrieval,” in Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part IV 16. Springer, 2020, pp. 214–229.

[3] K. Li, Y. Zhang, K. Li, Y. Li, and Y. Fu, “Visual semantic reason-
ing for image-text matching,” in Proceedings of the IEEE/CVF in-
ternational conference on computer vision, 2019, pp. 4654–4662.

[4] Z. Wang, Y.-L. Sung, F. Cheng, G. Bertasius, and M. Bansal,
“Unified coarse-to-fine alignment for video-text retrieval,” in Pro-
ceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 2816–2827.

[5] C. Lin, A. Wu, J. Liang, J. Zhang, W. Ge, W.-S. Zheng, and
C. Shen, “Text-adaptive multiple visual prototype matching for
video-text retrieval,” 2022.

[6] A. S. Koepke, A.-M. Oncescu, J. Henriques, Z. Akata, and S. Al-
banie, “Audio retrieval with natural language queries: A bench-
mark study,” IEEE Transactions on Multimedia, 2022.

[7] A.-M. Oncescu, A. Koepke, J. F. Henriques, Z. Akata, and S. Al-
banie, “Audio retrieval with natural language queries,” arXiv
preprint arXiv:2105.02192, 2021.

[8] S. Lou, X. Xu, M. Wu, and K. Yu, “Audio-text retrieval in con-
text,” in ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022,
pp. 4793–4797.

[9] X. Mei, X. Liu, J. Sun, M. D. Plumbley, and W. Wang, “On met-
ric learning for audio-text cross-modal retrieval,” arXiv preprint
arXiv:2203.15537, 2022.

[10] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumb-
ley, “PANNs: Large-scale pretrained audio neural networks for
audio pattern recognition,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 28, pp. 2880–2894, 2020.

[11] D. Li, I. K. Sethi, N. Dimitrova, and T. McGee, “Classification of
general audio data for content-based retrieval,” Pattern Recogn.
Lett., vol. 22, no. 5, p. 533–544, apr 2001. [Online]. Available:
https://doi.org/10.1016/S0167-8655(00)00119-7

[12] X. Cheng, H. Lin, X. Wu, F. Yang, and D. Shen, “Improving
video-text retrieval by multi-stream corpus alignment and dual
softmax loss,” 2021.

[13] Y. Park, M. Azab, B. Xiong, S. Moon, F. Metze, G. Kundu, and
K. Ahmed, “Normalized contrastive learning for text-video re-
trieval,” 2022.

[14] M. Cuturi, “Sinkhorn distances: Lightspeed computation of opti-
mal transportation distances,” 2013.

[15] C. D. Kim, B. Kim, H. Lee, and G. Kim, “AudioCaps: Generat-
ing captions for audios in the wild,” in Proceedings of the 2019
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies,
2019, pp. 119–132.

[16] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: An audio cap-
tioning dataset,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 736–
740.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2015.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short
Papers), 2019, pp. 4171–4186.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
2023.

[20] H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image
recognition,” 2020.

[21] X. Zhuang, X. Zhu, H. Hu, J. Yao, W. Li, C. Yang, L. Wang,
N. Feng, and D. Xu, “Residual swin transformer unet with consis-
tency regularization for automatic breast ultrasound tumor seg-
mentation,” in 2022 IEEE International Conference on Image
Processing (ICIP), 2022, pp. 3071–3075.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” 2017.

[23] Z. Zhu, X. Cheng, H. Li, Y. Li, and Y. Zou, “Dance with
labels: Dual-heterogeneous label graph interaction for multi-
intent spoken language understanding,” in Proceedings of the
17th ACM International Conference on Web Search and Data
Mining, ser. WSDM ’24. New York, NY, USA: Association for
Computing Machinery, 2024, p. 1022–1031. [Online]. Available:
https://doi.org/10.1145/3616855.3635782

[24] X. Zhuang, X. Cheng, and Y. Zou, “Towards explainable joint
models via information theory for multiple intent detection and
slot filling,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 38, no. 17, 2024, pp. 19 786–19 794.

[25] Z. Zhu, X. Zhuang, Y. Zhang, D. Xu, G. Hu, X. Wu, and Y. Zheng,
“Tfcd: Towards multi-modal sarcasm detection via training-free
counterfactual debiasing,” in Proceedings of the Thirty-Third In-
ternational Joint Conference on Artificial Intelligence, 2024.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, pp. 1735–1780, 1997.

[27] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and
A. Joulin, “Unsupervised learning of visual features by contrast-
ing cluster assignments,” 2021.

[28] Z. Wang, Y. Gou, J. Li, Y. Zhang, and Y. Yang, “Region seman-
tically aligned network for zero-shot learning,” in Proceedings
of the 30th ACM International Conference on Information &
Knowledge Management, ser. CIKM ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 2080–2090.
[Online]. Available: https://doi.org/10.1145/3459637.3482471

[29] Z. Wang, Y. Gou, J. Li, L. Zhu, and H. T. Shen, “Language-
augmented pixel embedding for generalized zero-shot learning,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 33, no. 3, pp. 1019–1030, 2023.

[30] X. Zhuang, Z. Wang, X. Cheng, Y. Xie, L. Liang, and Y. Zou,
“Macsc: Towards multimodal-augmented pre-trained language
models via conceptual prototypes and self-balancing calibration,”
in Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics. As-
sociation for Computational Linguistics, 2024.

[31] Z. Chen, Z. Zhao, Z. Zhu, R. Zhang, X. Li, B. Raj, and H. Yao,
“Autoprm: Automating procedural supervision for multi-step rea-
soning via controllable question decomposition,” in Proceedings
of the 2024 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Tech-
nologies, 2024.

[32] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A sim-
ple framework for contrastive learning of visual representations,”
2020.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2017.

5082


