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Abstract. Existing video-text retrieval methods predominantly focus
on designing diverse cross-modal interaction mechanisms between cap-
tions and videos. However, those approaches diverge from human learn-
ing paradigms, where humans possess the capability to seek and associate
knowledge from an open set, rather than rote memorizing all text-video
instances. Motivated by this, we attempt to decouple knowledge from
retrieval models through multi-grained knowledge stores and identify two
significant benefits of our knowledge-decoupling strategy: (1) it ensures a
harmonious balance between knowledge memorization and retrieval opti-
mization, thereby improving retrieval performance; and (2) it can pro-
mote incorporating diverse open-world knowledge to augment video-text
retrieval. To efficiently integrate information from knowledge stores, we
further introduce a novel retrieval framework termed KDProR, which uti-
lizes our proposed Expectation-Knowledge-Maximization (EKM) algo-
rithm for optimization. Specifically, in E-step, KDProR obtains relevant
contextual semantics from knowledge stores and achieves efficient knowl-
edge injection through interpolation and alignment correction. During
the K-step, KDProR calculates the knowledge KNN distribution by
indexing the top-K acquired knowledge to refine the retrieval distribu-
tion, and in M-step, KDProR optimizes the retrieval model by maxi-
mizing the likelihood of the objective. Extensive experiments on vari-
ous benchmarks prove that KDProR significantly outperforms previous
state-of-the-art methods across all metrics. Remarkably, KDProR can
uniformly and efficiently incorporate diverse open-world knowledge and
is compatible with different interaction mechanisms and architectures.

Keywords: Video Retrieval · Knowledge Decoupling · Open World

1 Introduction

Video-text retrieval (VTR) is a significant and challenging task in cross-modal
interaction [1,12,31,42], aiming to align video (text) candidates with text (video)
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Fig. 1. The illustration of different VTR paradigms. (a) denotes vanilla VTR methods;
(b) introduces additional data only during training. (c) achieves “open examination”
with knowledge decoupling, thereby enhancing VTR in both closed and open sets.

queries to identify the most relevant instances accurately [61]. The standard
paradigm of VTR for addressing cross-modal matching involves aligning video-
text features acquired through visual and textual encoders via contrastive learn-
ing. With the advent of large-scale image-language pre-trained models [20,44,
60,62], recent VTR methods [3,13,35] have realized substantial advancements in
retrieval performance by leveraging pre-trained image-language models, such as
CLIP [44]. Benefiting from powerful CLIP, most of these methods focus on devis-
ing various cross-modal interaction strategies to enhance visual-text alignment,
including cross-attention [13], multi-grained interaction [36], disentangled repre-
sentation learning [48], etc., and have achieved considerable success.

However, if we conceptualize the training set as a “book” intuitively, this
training-test paradigm for VTR can be likened to “video-text memorization”
and “closed-book VTR examination”, which diverges from the human learning
process [37,65]. Humans possess the capability to seek and associate knowledge
from an open set, rather than relying on rote memorization of all text-video
instances [47]. This “closed-book examination” approach may be further hin-
dered by dense memorization overhead [37] and challenges in memorizing difficult
samples [9,11], echoing the proverb: “The palest ink is better than the best mem-
ory.” Furthermore, previous open-set fine-tuning [18,52] and pre-training [27,59]
methods have shown that incorporating auxiliary data from the open world can
improve VTR performance. These insights encourage us to explore a novel VTR
paradigm: “open-set examination”, which involves constructing knowledge stores
from the closed training set or open-world sources to decouple knowledge. As
shown in Fig. 1, this strategy introduces relevant knowledge from stores as rein-
forcement signals to help the model strike a balance between generalization and
memory. However, this also brings two new challenges: (1) How to decouple
knowledge from models and unify closed- and open-world knowledge; (2) How
to efficiently incorporate decoupled knowledge to improve retrieval performance.

In this work, we propose a novel knowledge-decoupling probabilistic frame-
work for VTR (KDProR), tackling the challenges with the following strategies:
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(1) KDProR utilizes multi-grained stores to decouple knowledge and
standardize closed- and open-world knowledge sources. We con-
struct multi-scale knowledge stores composed of local and global neural
representations to decouple knowledge. This approach allows rare patterns
to be memorized explicitly, rather than implicitly in model parameters. In
addition, knowledge stores can be updated asynchronously and endowed
with knowledge from closed- or open-world sources. In this work, we explore
three different sources of additional knowledge, including spatio-temporal
knowledge from pre-trained models, entity-relation structured knowledge
and outputs of large language models (LLMs, e.g., GPT [40]) prompted by
chain-of-thoughts (CoT) [50]. Moreover, we identify two core advantages
of the knowledge decoupling strategy: it (a) ensures a harmonious balance
between memorization and retrieval optimization; and (b) opens up a unified
interface for injecting diverse open-world knowledge.

(2) KDProR utilizes a novel Expectation-Knowledge-Maximization
algorithm to achieve efficient knowledge injection and retrieval
optimization. We extend the traditional Expectation-Maximization (EM)
algorithm [5] to the Expectation-Knowledge-Maximization (EKM) algo-
rithm for optimizing KDProR. Specifically, in the E-step, KDProR obtains
relevant contextual semantics and achieves efficient knowledge injection
through interpolation and alignment correction. In the K-step, we calculate
the k-nearest neighbor (KNN) distribution by indexing the top-K knowledge
obtained to calibrate the original retrieval distribution. And in the M-step,
we optimize the model by maximizing the likelihood of the target. Addi-
tionally, we provide a theoretical analysis of our KDProR framework from
a probabilistic perspective in Sect. 3.7.

Extensive experiments on four benchmarks, i.e., MSR-VTT [55],
DiDeMo [16], LSMDC [45] and ActivityNet [15], prove that KDProR signifi-
cantly outperforms previous state-of-the-art methods in both closed and open-
world settings. In summary, our KDProR has several appealing facets: (1) Effec-
tiveness: It can significantly improve retrieval performance under both closed-
set and open-set settings. (2) Universality: It can be used to introduce various
open-world knowledge, while being compatible with various interaction mod-
ules and pre-trained foundation models (e.g., [27,59]). (3) Explainability: The
effectiveness and convergence of retrieval optimization via our EKM algorithm
are theoretically guaranteed. The main contributions of this paper are presented
as follows:

(1) We explore a novel knowledge-decoupling paradigm for VTR and con-
struct multi-grained knowledge stores to uniformly introduce knowledge from
closed sets and diverse open-world sources. (2) We propose a novel VTR frame-
work termed KDProR, which utilizes a principled EKM algorithm to inject var-
ious knowledge into the model to improve retrieval performance. Theoretical
analysis provides an underlying insight into the effectiveness and convergence of
KDProR. (3) Experiments conducted on four benchmarks show that KDProR
achieves new state-of-the-art results under both closed- and open-world settings.
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2 Related Work

Feature Representation for Video-Text Retrieval. Recent studies [1,12,
31,42] on VTR employ a bi-encoder architecture to extract text and video rep-
resentation. The selection of text and visual encoders changes with the develop-
ment of research on feature extraction upon NLP and CV, e.g., Word2Vec [38]
and BERT-based models [7,32] for textual representation, and CNN-based [14]
and ViT-based models [8,63,64] for visual tasks. These researches use indepen-
dently pre-trained dual encoders for visual-textual semantic extraction [1,12,
42,57]. Recently, CLIP [43] pre-trained on a large-scale dataset with 400 million
pairs has achieved excellent capability of cross-modal representation. And CLIP-
based VTR methods [3,13,35,53] have rapidly developed and achieved great
success. Our KDProR also benefits from existing pre-training, while exploring a
novel perspective for enhancing representation, i.e., knowledge decoupling.

Interaction Mechanism for Video-Text Retrieval. Many VTR methods
explore different cross-modal interaction mechanisms for cosine similarity [35] to
improve retrieval performance. Some studies [35] seek to enhance the spatiotem-
poral understanding ability of image encoders through LSTM [17] or tempo-
ral Transformers. MoE-based [3] and Cross-Transformers-based [13,54] methods
significantly improve the cross-modal interaction. [25,26,29,36,49,56] explore
hierarchical and multi-grained interactions, respectively. DRL [48] proposes dis-
entangled representation learning for cross-modal interaction. Our KDProR is
compatible with these cross-modal interaction strategies.

Open-World Knowledge for Video-Text Retrieval. The previous meth-
ods mainly introduce open-world knowledge in the pre-training and fine-tuning
stages to enhance VTR performance. CLIP-ViP [59] conducts secondary pre-
training of CLIP on large-scale video-text datasets, and UMT [27] achieves effi-
cient pre-training to improve the spatio-temporal understanding and inject open-
set knowledge into VTR tasks. TEFAL [18] utilizes additional audio features to
enhance VTR retrieval performance and Cap4Video [52] utilizes auxiliary cap-
tions obtained by Web Search or generated by LLMs to enhance cross-modal
interaction. KDProR is compatible with these pre-training methods, and we
do not specify the type of open-world knowledge to be introduced, but instead
achieve universal open-set knowledge injection through knowledge decoupling.

3 Methods

3.1 Settings and Feature Extraction

Following previous work [35,48], we utilize the dual-encoder architecture of
CLIP [44] to achieve video and text feature extraction on training set D =
{xi}Ni = {(Ti, Vi)}Ni , where Ti and Vi represent text and video instances respec-
tively, and N is the size of the training set. Given a text query Ti, we ini-
tially add identifiers [CLS] and [SEP] to the sentence, and leverage the text
encoder of CLIP to encode the text representation: ti = TextEncoder(Ti). For



Knowledge-Decoupling Probabilistic Framework for Video-Text Retrieval 317

baseball player hits ball

Video

Encoder

Text

Encoder

Fine-grained

Knowledge

Store

Asynchronously

Refresh

Video

Features

Text

Features

Corase-

grained

Knowledge

Store

Extraction

KNN

Query

Video

Encoder

Text

Encoder

Entity-

Relation

Structure

GPT

prompt by

CoT

Closed-

World

CLIP

World Knowledge

Knowledge Injection

Cross-

Modility

Interaction

OT-based

Calibration

(E-step) Knowledge Injection

Top-K

 Knowledge

Feature KNN Distribution

(K-step) Distribution Calibration

KNN

Query

Similarity

Score
Similarity Score

Knowledge-guided

Cross-Modal 

Contrastive Loss

(M-step) Retrieval Training

Fig. 2. The illustration of the proposed framework, consisting of (1) constructing a
multi-grained knowledge store using open-world knowledge or closed-world knowledge
(training dataset); (2) EKM algorithm that sequentially implements knowledge injec-
tion, distribution calibration, and target likelihood maximization.

each video Vi, we uniformly select nv frames [F1, · · · , Fnv
] as keyframes, and

employ the transformer-based encoder of CLIP to extract sequential features
vi = VideoEncoder([F1, · · · , Fnv

]).
Extensive work explores various cross-modal interaction strategies to improve

retrieval performance [30,35,48]. Our work focuses on decoupling knowledge
from models and exploring the impact of different knowledge sources on retrieval
performance, rather than pre-training or interaction strategies. Thus we adopt
the weighted token-wise interaction module of DRL [48] to achieve cross-modal
interaction. Note that KDProR is also compatible with other interaction strate-
gies.

3.2 Decoupling Knowledge Store

Our KDProR involves augmenting CLIP-based retrieval models with semantic
information from decoupled knowledge stores. Thus, the first step of our methods
is to build a multi-grained knowledge store. As illustrated in Fig. 2, our stores
contain fine-grained and coarse-grained caches, where each key and value (text-
video) are representations of knowledge.

Fine-Grained Knowledge Store. The fine-grained knowledge store can be
represented as Sf = {Sf

i }Kf

i=1 = {(Kf
i ,Vf

i )}Kf

i=1, where Sf
i = (Kf

i ,Vf
i ) denotes the

i-th key-value pair in the fine-grained knowledge store, and Kf
i is the size of our

fine-grained knowledge store. Under the closed world setting, we utilize text and
visual encoders of CLIP to obtain the feature key-value pairs on the training
dataset as Kf

i = ti and Vf
i =vi.

Coarse-Grained Knowledge Store. The coarse-grained knowledge store is
designed to encapsulate global semantics. It equips retrieval models with global,
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coarse-grained insights from the knowledge store, enhancing the comprehensive
knowledge understanding. Similarly, the coarse-grained storage can be repre-
sented as: Sc = {Sc

i }K
c

i=1 = {(Kc
i ,Vc

i )}K
c

i=1, where Sc
i = (Kc

i ,Vc
i ) denotes the

i-th key-value pair in the coarse-grained knowledge store, and Kc
i is the size of

our coarse-grained knowledge store. We adopt the K-mean strategy to extract
knowledge from fine-grained storage into more advanced representations:

Kc
i = φ

(
cti

)
,∀cti ∈ Ct, Vc

i = φ (cvi ) ,∀cvi ∈ Cv, (1)

where, Ct = {ct1, · · · , ctKc} denotes the cluster set obtained by K-Mean over fine-
grained knowledge {Kf

i }, Cv = {cv1, · · · , cvKc} represents the cluster set obtained
by K-Mean over {Vf

i }, and φ(·) represents the Max-Pooling aggregate function.
Note that our framework is universal, and we will introduce more applications

for constructing diverse knowledge stores in Sect. 3.6.

3.3 E-step for Multi-grained Knowledge Injection

Knowledge Interpolation. In E-step, KDProR initially attempts to inject
fine-grained and coarse-grained knowledge into the model by knowledge interpo-
lation of features. We treat with ti and vi as anchors to retrieve the fine-grained
knowledge store, and obtain two sets of top-K similar vector pairs N f

ti and N f
vi

,
respectively. N f

ti = {(Kf
ti ,Vf

ti)} and N f
vi

= {(Kf
vi

,Vf
vi

)} are two sets of key-value
knowledge pairs, where Kf

ti and Vf
vi

are the nearest neighbors of ti and vi, respec-
tively. After the model retrieves the top-K candidates for each ti and vi, their
corresponding representation Kf

ti and Vf
vi

obtained from knowledge-store will be
incorporated into original features ti and vi to act as demonstration learning.
Specifically, we adopt the nearest neighbor sets to inject decoupled knowledge
into text and video features as:

tfi = ρti + (1 − ρ)

∑
(K,V)∈N f

ti

K
|N f

ti |
, vf

i = ρvi + (1 − ρ)

∑
(K,V)∈N f

vi
V

|N f
vi |

, (2)

where, ρ is a hyperparameter used to express the interpolation ratio. Subse-
quently, we utilize the weighted token-wise interaction module [48] to enhance
textual and visual representations injected with additional knowledge.

However, the textual and visual knowledge within the top-K sets, obtained
by ti and vi respectively, may not correspond on a one-to-one basis due to
their derivation from two independent top-K operations. To mitigate the issue
of mismatched video-text features during knowledge injection, we utilize the
optimal transport (OT) algorithm to facilitate alignment correction within a
batch.

Alignment Correction via Optimal Transport. We first define 〈Q,Sf 〉 =
tr(Q�Sf ) ∈ R

B×B as the similarity matrix calculated from the updated text
and video pairs {(tfi , vf

i )}Bi=1 in a batch. Q ∈ R
B×B represents the corresponding

transport assignment matrix, where Q[i, j] denotes the probabilities of aligning
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tfi with vf
i . The optimal transport aims to establish flexible alignment between

videos and captions by maximizing global text-video similarity tr(Q�Sf ). The
objective of optimal transport can be formulated as:

max
Q∈Q

〈Q,Sf 〉 + εH(Q) s.t. Q =
{
Q ∈ R

B×B | Q1B = μ,Q�1B = ν
}

(3)

where, μ ∈ R
B and ν ∈ R

B indicate the relative importance of each video
and caption, 1B represents the vector of ones in dimension B, H(Q) denotes
a entropy regular term [4] and ε controls its smoothness. Following [46], we
initialize μ and ν to a uniform distribution 1B . The optimal transport problem
in Eq. 3 can be solved using the Sinkhorn-Knopp algorithm [46] to obtain the
optimal assignment scheme Q∗. Based on this, we can obtain the similarity
matrix after adding alignment correction Q∗ as follows:

Sf ∗
= ((1 − β)I + βQ∗)Sf , (4)

where, I is the identity matrix and β is a hyperparameter.
We can implement the coarse-grained knowledge injection and obtain the

realigned similarity matrix Sc∗ in a similar way.

3.4 K-step for Retrieval Distribution Calibration

Existing studies [23,41] have shown that non-parametric KNN classification or
nearest-neighbor interpolation methods have extraordinary potential in improv-
ing robustness and generalization. It is intuitively to leverage the KNN’s retrieval
results as the prior knowledge to guide the parameters training for video-text
pairs that are difficult to establish deep correlations. In practice, we aggregate
the prediction of KNN into the original probability distribution of video-text
retrieval to achieve the multi-grained calibration of retrieval distribution.

Fine-Grained Distribution Calibration. We utilize the set of k-nearest
neighbors N f

ti and N f
vi

retrieved by querying the open-book knowledge store
in E-step as fine-grained top-K knowledge. Subsequently, we calculate the KNN
distribution according to the softmax of the similarity and aggregation proba-
bility mass of each video-text pair in the retrieved target as:

pfknn (vi | ti) =

∑
(K,V)∈Nf

ti

ϕ (vi,V) ed(vi,V)

∑
(K,V)∈Nf

ti

ϕ (vi,V)
, ϕ (vi,V) =

{
1, V ∈ Nf

vi

0, V /∈ Nf
vi

, (5)

where, d(·, ·) ∈ [−1, 1] denotes the cosine similarity function, and ϕ(vi,V) is
an indicator function used to determine whether V is within the top-K nearest
neighbor set Nf

vi
of the vi.

We can further obtain the KNN probability distribution pfknn (ti | vi) for
video-to-text retrieval in a completely symmetrical manner.

Coarse-Grained Distribution Calibration. Consistent with Eq. 5, we
employ the KNN algorithm to obtain top-K knowledge, utilizing closed-world
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or open-world knowledge from the coarse-grained knowledge store to refine the
probability distribution function pertinent to the text-to-video retrieval. Never-
theless, since the coarse-grained knowledge store is derived from the distillation
of fine-grained knowledge, it is impracticable to apply indicator functions (cf.
Eq. 5) to ascertain the presence of an inclusion relation between textual features
and their nearest neighbor sets. To tackle this challenge, we introduce a novel
indicator function, denoted as φ(·, ·), parameterized by a threshold α. φ(·, ·) is
designed to evaluate whether V resides within the top-K nearest neighbor set
N c

vi
of the vi via the cosine similarity function d(·, ·), and is formulated as:

φ (vi,V) =

{
1, d(V,Vc) < α,∃(Kc,Vc) ∈ N c

vi

0, otherwises
. (6)

Based on this, we can obtain a closed-form expression for the KNN distribution
used for coarse-grained distribution calibration as follows:

pcknn (vi | ti) =

∑
(K,V)∈Nc

ti

φ (vi,V) ed(vi,V)

∑
(K,V)∈Nc

ti

φ (vi,V)
. (7)

We can further obtain the KNN probability distribution pcknn (ti | vi) for coarse-
grained video-to-text retrieval in a completely symmetrical manner.

3.5 M-step for Unified Retrieval Optimization

In the M-step, we optimize the whole model by maximizing the retrieval likeli-
hood objective over the realigned similarity matrix. Specifically, we utilize the
re-aligned multi-grained similarity matrix in Eq. 4 obtained from E-step to cal-
culate the InfoNCE loss:

Lt2v = − 1
B

B∑

i

⎛

⎝log
exp

(
Sf ∗

ii

)

∑B
j=1 exp

(
Sf ∗

ij

) + log
exp (Sc∗

ii)∑B
j=1 exp

(
Sc∗

ij

)

⎞

⎠ ,

Lv2t = − 1
B

B∑

i

⎛

⎝log
exp

(
Sf ∗

ii

)

∑B
j=1 exp

(
Sf ∗

ji

) + log
exp (Sc∗

ii)∑B
j=1 exp

(
Sc∗

ji

)

⎞

⎠ ,

(8)

where B is the batch size. Subsequently, we propose utilizing the KNN distri-
bution (cf . Equation 5 and 7) to guide the training process. The KNN calibra-
tor reweights the InfoNCE loss by adjusting the relative loss for the correctly-
matched or mismatched video-text instances identified by KNN, respectively. We
focus on exploiting the results of KNN distribution for calibrating the training
of retrieval models. Specifically, we apply the negative log-likelihood of pfknn in
Eq. 5 and pcknn in Eq. 7 as the calibration factor:

F f
t2v = − log pfknn (vi | ti) , F f

v2t = − log pfknn (ti | vi) ;
F c
t2v = − log pcknn (vi | ti) , F c

v2t = − log pcknn (ti | vi) .
(9)
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Finally, we can optimize the retrieval model by maximizing the following
knowledge-guided cross-modal contrastive loss as:

L∗
v2t = (1 + λ1F

f
v2t + λ2F

c
v2t)Lv2t; L∗

t2v = (1 + λ1F
f
t2v + λ2F

c
t2v)Lt2v, (10)

where λ1 and λ2 are hyper-parameters to determine the proportion of each loss
term. Hence, in the M-step, the complete training objective of KDProR can be
formulated as L=L∗

v2t + L∗
t2v.

3.6 Applications of Our KDProR Framework

In this section, as illustrated in Fig. 3, we present three distinct applications
for constructing open-world knowledge stores, including pre-trained knowledge,
entity-relation structured knowledge, and CoT knowledge within LLMs.
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Fig. 3. The illustration of proposed open-world knowledge stores, including (1) video-
text pretraining knowledge, (2) entity-relation structure knowledge, and (3) knowledge
within LLMs prompted by the CoT technique.

Video-Text Pretraining. As shown in Fig. 3, we utilize CLIP-ViP [59], which
is further pre-trained on HD-VILA-100M [58] dataset, to extract pretraining
video-text knowledge for constructing our knowledge stores.

Entity-Relation Structure. We attempt to parse captions to scene graphs G
through the Scene Graph Parser [51], then employ G to obtain subject-relation-
object triplets. Subsequently, we use these triplets as substitutes for the original
captions and then employ CLIP to extract text-video features to construct stores.

CoT Generation of LLMs. In this work, we attempt to use a strategy similar
to CoT [50] to generate auxiliary captions for each video frame by prompting
LLMs. Subsequently, we utilize CLIP to extract neural representations of auxil-
iary captions and corresponding video frames to construct knowledge stores.

3.7 Theoretical Analysis

From a probabilistic perspective, the optimization goal of the VTR model Θ
trained on dataset D = {xi}Ni = {(Ti, Vi)}Ni is to maximize the log-likelihood
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L(Θ) for text-video pairs. We consider the knowledge introduced from fine-
grained and coarse-grained stores as two related latent variables zfi and zci . In a
closed world, the posterior distribution of zfi and zci can be represented as:

Q(zfi ) = p(zfi ;xi, Θ), Q(zci ) = p(zci ; z
f
i , xi, Θ). (11)

Thus we can rewrite the objective function of the retrieval model Θ according
to Jensen’s inequality [19] as follows:

Θ∗ = arg max
∑

i

∑

zf
i ,z

c
i

Q(zfi )Q(zci ) log p
(
xi, z

f
i , zci ;Θ

)
. (12)

To sum up, the E-step and K-step aim to estimate the posterior probability
Q(zfi ) and Q(zci ) on fine-grained and coarse-grained knowledge stores with given
current Θ(t). Then KDProR achieves efficient alignment of videos and texts and
obtains Θ(t+1) under knowledge guidance at M-step by maximizing the log-
likelihood in Eq. 12 with known Q(zfi ) and Q(zci ), and satisfies the Theorem 1:

Theorem 1. The retrieval model Θ optimized iteratively through the proposed
EKM algorithm of step t satisfies the following properties:

– Monotonic Increasing: ∀t ≥ 0, L(Θ(t+1)) ≥ L(Θ(t)) ;

Table 1. Results on MSR-VTT without any post-processing (e.g., [3] and [2]). + and
� are closed-set settings and denote constructing knowledge stores on the training set
using the original CLIP and the fine-tuned CLIP upon the training set, respectively.
∗, † and ‡ denote pre-trained, structural and CoT knowledge in Sect. 3.6, respectively.

Backbone Method Text-to-Video Retrieval Video-to-Text Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
Non-CLIP CE [31] 20.9 48.8 62.4 6.0 28.2 20.6 50.3 64.0 5.3 25.1

MMT [12] 26.6 57.1 69.6 4.0 24.0 27.0 57.5 69.7 3.7 21.3

Support [42] 27.4 56.3 67.7 3.0 - 26.6 55.1 67.5 3.0 -

Frozen [1] 31.0 59.6 70.5 3.0 - - - - - -

CLIP ViT-B/32 CLIP4clip [35] 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 11.6

X-pool [13] 46.9 72.8 82.2 2.0 14.3 - - - - -

EMCL [21] 46.8 73.1 83.1 2.0 - 46.5 73.5 83.5 2.0 -

TS2-Net [33] 47.0 74.5 83.8 2.0 13.0 45.3 74.1 83.7 2.0 9.2

DRL [48] 47.4 74.6 83.8 2.0 - 45.3 73.9 83.3 2.0 -

STAN [28] 46.9 72.8 82.8 2.0 - - - - - -

UATVR [10] 47.5 73.9 83.5 2.0 12.9 46.9 73.8 83.8 2.0 8.6

PromptSwitch [6] 47.8 73.9 82.2 - 14.1 46.0 74.3 84.8 - 8.5

KDProR+ 48.4 74.4 84.2 2.0 12.2 47.1 74.6 84.4 2.0 8.9

KDProR� 48.7 74.4 84.1 2.0 12.0 47.2 74.6 84.4 2.0 8.7

KDProR∗ 49.2 74.2 84.4 2.0 12.0 47.1 74.0 84.1 2.0 8.9

KDProR† 49.0 74.6 84.3 2.0 12.0 47.3 74.3 83.9 2.0 8.7

KDProR‡ 49.6 75.1 84.4 2.0 11.6 48.2 74.2 84.2 2.0 8.1
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– Convergence: ∀ε > 0,∃δ > 0, if t > δ, | Θ(t+1) − Θ(t) |≤ ε.

Theorem 1 indicates that our EKM algorithm can ensure the model is positively
optimized in each iteration, while also maintaining the convergence properties
of vanilla EM algorithms.

4 Experiments

4.1 Experiments Settings

Datasets. We conduct experiments on four benchmarks for video-text retrieval
tasks including: MSR-VTT [55], DiDeMo [16], LSMDC [45] and ActivityNet [15].
MSR-VTT [55] comprises 10,000 videos with 20 captions each. We train on
9,000 videos and their captions, testing on 1k-A with 1,000 video-text pairs.
DiDeMo [16] provides 10,000 videos annotated with 40,000 sentences. We
concatenate all descriptions of a video into one paragraph for evaluation.
LSMDC [45] includes 118,081 movie-extracted videos, with our dataset par-
titioned into 109,673 for training, 7,408 for validation, and 1,000 for testing.
ActivityNet [15] includes 20,000 YouTube videos. Following [35], we concatenate
all captions similar to DiDeMo and evaluate on the ‘val1’ split.

Table 2. Text-to-Video retrieval results on DiDeMo, ActivityNet and LSMDC datasets
without any post-processing (e.g., [3] and [2]). + and � are closed-set settings and ∗, †

and ‡ are open-world settings, whose meanings are all consistent with those in Table 1.

Method DiDeMo ActivityNet LSMDC

R@1↑ R@5↑ R@10↑ MdR↓R@1↑ R@5↑ R@10↑ MdR↓ R@1↑ R@5↑ R@10↑ MdR↓
Text-to-Video Retrieval using CLIP (ViT-B/32)

CLIP4clip [35] 43.4 70.2 80.6 2.0 40.5 72.4 83.6 2.0 22.6 41.0 49.1 11.0

X-CLIP [36] 45.2 74.0 - - 44.3 74.1 - - 23.3 43.0 - -

TS2-Net [33] 41.8 71.6 82.0 2.0 41.0 73.6 84.5 2.0 23.4 42.3 50.9 9.0

DRL [48] 47.9 73.8 82.7 2.0 44.2 74.5 86.1 2.0 24.9 45.7 55.3 7.0

PromptSwitch [10] - - - - - - - - 23.1 41.7 50.5 -

UATVR [10] 43.1 71.8 82.3 2.0 - - - - - - - -

DiffusionRet [22] 46.7 74.7 82.7 2.0 45.8 75.6 86.3 2.0 24.4 43.1 54.3 8.0

KDProR+ 48.8 76.1 84.1 2.0 45.8 75.4 85.0 2.0 26.1 45.9 57.3 7.0

KDProR� 49.2 75.3 83.6 2.0 46.4 76.2 85.7 2.0 26.5 47.8 57.8 6.0

KDProR∗ 51.7 78.3 84.9 1.0 48.3 76.8 86.1 2.0 26.9 50.2 58.3 5.0

KDProR† 50.5 76.3 85.1 1.0 47.5 76.1 85.7 2.0 27.6 50.6 58.1 5.0

KDProR‡ 53.2 79.2 85.0 1.0 49.1 77.9 86.8 2.0 28.2 50.6 59.2 5.0
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Metrics. Following [35,48], we utilize recall at rank K (R@K), median rank
(MdR) and mean rank (MnR) as metrics to validate the effectiveness of KDProR.

Implementation Details. Following [48], we adopt CLIP’s ViT-B/32 as the
visual encoder and fine-tune the model with 5 epochs on all training sets. We
adopt Adam [24] as the optimizer with a cosine warm-up method [34]. Follow-
ing [35,48], the frame and caption length are 12 and 32 for MSR-VTT and
LSMDC, 64 and 64 for ActivityNet and DiDeMo. The initial learning rate for
vision and text encoder is set to 10−7 and other modules are 10−4. The hyper-
parameter ρ in Eq. 2 is set to 0.2 on MSR-VTT and LSMDC, 0.1 on ActivityNet
and DiDeMo for optimal performance. β in Eq. 4 are set to 0.2, and λ1 and λ2

in Eq. 9 are set to 0.2 and 0.3, respectively. We use grid search to obtain the
optimal parameters. We uniformly set the top-5 relevant knowledge for KNN
retrieval, and the size of the coarse-grained knowledge store Kc is set to 256. We
adopt the gpt-3.5-turbo-1106 [39] to obtain the CoT knowledge in Sect. 3.6.
All experiments are conducted on 2 Tesla A100 GPUs (80G) and 8 RTX 4090
GPUs.

4.2 Main Results

Comparisons to State-of-the-Arts. In this section, we compare KDProR
with state-of-the-art methods on four datasets, as results shown in Table 1 and 2.
Analysis of Table 1 and 2 yields several insights:

(1) Our KDProR, employing multi-grained knowledge stores constructed from
vanilla and fine-tuned CLIP, can achieve performance gains of 1% and
1.3% R@1 on MSR-VTT, 1.6% and 2.2% R@1 on ActivityNet compared to
DRL [48], respectively. This indicates that KDProR can achieve a harmo-
nious balance between memorization and optimization, thereby improving
performance.

(2) The integration of additional open-world knowledge significantly bolsters
the predictive capabilities of retrieval models. KDProR of employing three
open-world knowledge (i.e., pre-trained, structural, and CoT knowledge) in
Sect. 3.6 achieves superior performance, e.g., +1.8%, +1.6% and + 2.2%
R@1 on MSR-VTT, 3.8%, 2.6% and 5.3% R@1 on DiDeMo compared to
DRL [48], respectively. We attribute the performance gain to incorporating
open-set knowledge.

(3) KDProR demonstrates superior performance compared to all baselines
across all benchmarks. This demonstrates that our KDProR offers a twofold
advantage: it can unify and incorporate diverse additional knowledge and
balance memorization and retrieval to significantly improve performance.
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Table 3. Comparisons to Other Baseline Methods in Text-to-Video Retrieval. ‡ denotes
the utilization of open-world CoT knowledge in Sect. 3.6.

Baseline Methods Knowledge Source MSR-VTT LSMDC DiDeMo

R@1↑ R@5↑ MnR↓ R@1↑ R@5↑ MnR↓ R@1↑ R@5↑ MnR↓
Data Augmentation Captions from GPT 47.3 74.7 12.1 26.4 46.9 43.9 49.7 76.3 14.2

Feature Concatenate Pretrained CLIP-ViP 47.8 74.5 11.9 26.1 46.1 44.5 50.3 76.3 13.4

Cap4Video [52] Captions from GPT 49.3 74.3 12.0 - - - 52.0 79.4 10.5

TEFAL [18] Audio Signal 49.4 75.9 12.0 26.8 46.1 44.4 - - -

Our KDProR‡ Captions from GPT 49.6 75.1 11.6 28.2 50.6 34.9 53.2 79.2 10.2

Table 4. Text-to-Video retrieval results on MSR-VTT using our re-implemented
CLIP4clip [35] and EMCL [21] as base models. + and � are closed-set settings, ∗,
† and ‡ are open-world settings, whose meanings are consistent with those in Table 1.

Method CLIP4clip [35] as Base Model EMCL [21] as Base Model

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
Base Model 43.6 70.6 81.0 2.0 16.1 46.6 73.5 82.7 2.0 13.6

+ KDProR+ 45.5 73.4 82.7 2.0 14.1 47.8 73.5 83.1 2.0 13.8

+ KDProR� 46.4 74.0 82.9 2.0 13.8 48.1 74.0 83.5 2.0 13.7

+ KDProR∗ 47.0 74.4 82.9 2.0 13.6 48.7 73.6 83.6 2.0 13.7

+ KDProR† 46.9 74.0 82.8 2.0 13.6 48.4 73.7 83.8 2.0 13.3

+ KDProR‡ 47.3 74.6 83.3 2.0 13.4 49.0 74.8 83.8 2.0 12.9

Comparisons to Other Baseline Methods. We further compare our method
with other baselines in Table 3, including Cap4Video [52] and TEFAL [18]. In
addition, we compare it with two baseline methods that introduce open-world
knowledge, namely using auxiliary captions generated by LLM as data augmen-
tation and directly concatenating the features generated by CLIP-VIP with the
original text-video features. The results indicate that introducing open-world
knowledge can enhance performance, and our KDProR achieves better per-
formance gains than Data Augmentation and Feature Concatenate. Impres-
sively, KDProR significantly outperforms state-of-the-art open-set baselines, e.g.,
+1.4% R@1 by Cap4Video on LSMDC and +1.2% R@1 by TEFAL on DiDeMo.
Generalization Analysis. We further equip KDProR with two powerful base
models in addition to DRL, i.e., CLIP4clip [35] and EMCL [21], and evaluate
on MSR-VTT. Table 4 shows that KDProR can be applied to successfully boost
all baselines as a plug-and-play module under both closed-set or open-world set-
tings. The significant improvements prove the generalization ability of KDProR.
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Table 5. Ablation experiments on MSR-VTT 9k dataset. ‡ denotes the utilization of
open-world CoT knowledge in Sect. 3.6.

G. Method Text-to-Video Retrieval Video-to-Text Retrieval

R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓
1 w/o all Knowledge Stores (baseline) 46.9 74.0 82.4 12.5 45.8 74.0 84.3 8.8

w/o Fine-grained Knowledge Store 48.1 74.4 83.3 12.1 46.8 73.5 84.0 8.5

w/o Coarse-grained Knowledge Store 48.4 74.5 83.7 11.9 47.2 73.8 84.0 8.4

2 w/o the whole E-step 47.7 73.9 83.4 12.0 46.2 73.5 84.1 8.9

w/o Knowledge Interpolation E-step 48.2 73.6 83.7 12.0 47.4 73.9 83.8 8.7

w/o OT Alignment Correction in E-step 48.9 74.6 84.2 11.8 46.6 73.4 83.6 8.9

3 w/o the whole K-step 47.9 73.8 83.1 12.3 47.0 73.6 84.0 8.7

w/o Fine-grained Calibration in K-step 48.7 74.5 83.8 11.8 47.6 73.8 84.0 8.5

w/o Coarse-grained Calibration in K-step 48.5 74.3 83.3 11.8 47.3 73.9 83.6 8.5

4 Our Full KDProR‡ 49.6 75.1 84.4 11.6 48.2 74.2 84.2 8.1

Fig. 4. Ablation experiment on MSR-VTT under closed-world settings. Effect of (a)
the number K of top-K knowledge; (b) the knowledge interpolation coefficient ρ.

4.3 Ablation Study and Analysis

Effect of the Multi-grained Knowledge Store. As shown in Groups 1 and
4 in Table 5, removing either fine-grained or coarse-grained knowledge stores
will result in a significant decrease in retrieval performance, e.g., −1.5% and
−1.2% R@1 text-to-video retrieval on MSR-VTT, respectively. When all stores
are removed, the model will lose the ability to decouple knowledge and introduce
additional knowledge, resulting in a significant drop in performance. This verifies
the effectiveness of our multi-grained knowledge decoupling strategy.

Effect of the Knowledge Injection in E-step. As shown in Groups 2 and 4 in
Table 5, we evaluate the effect of the knowledge injection in E-step (i.e., Eq. 2)
by removing different components. We can observe that when the knowledge
interpolation strategy is removed, the performance drops sharply, indicating that
our strategy can effectively inject knowledge from stores. We further remove the
OT alignment correction strategy (i.e., Eq. 4) and observe a significant decrease
in video-to-text retrieval performance, proving our strategy’s effectiveness.
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Fig. 5. The text-video results on the MSR-VTT 1K-A test set. � and ‡ are close- and
open-world settings respectively, whose meanings are consistent with those in Table 1.

Effect of the Distribution Calibration in K-step. We conduct experiments
to study the effect of the KNN distribution calibration strategy as illustrated in
Table 5 with Groups 3 and 4. It can be seen that the performance of KDProR
significantly decreases without KNN distribution to calibrate the retrieval dis-
tribution in Eq. 9. Moreover, the lack of distribution calibration (fine-grained
or coarse-grained) in the K-step can also affect retrieval performance. This ver-
ifies that the multi-grained distribution calibration strategy can calibrate the
retrieval distribution to inject additional knowledge sufficiently and effectively.

Effect of the Number K of Top-K Knowledge. In Fig. 4 (left), we show
the effect of the number K of top-K knowledge. On the one hand, we find that
fewer K (K < 5) means less knowledge is selected, which limits our KDProR’s
generalization ability for different knowledge. On the other hand, a larger K
(K > 5) requires more retrieval time, which increases the cost of learning.

Effect of the Knowledge Interpolation Coefficient. In Fig. 4 (right), we
show the effect of the knowledge interpolation coefficient ρ on KDProR. We can
observe that KDProR achieves the optimal balance between knowledge injection
and optimization when ρ = 0.2. Deviations from this optimal ρ, either towards a
smaller or larger number, result in performance degradation, which is attributed
to inadequate knowledge acquisition and insufficient optimization, respectively.

Cases Study. We provide two cases of videos retrieved by KDProR and
DRL [48]. As illustrated in Fig. 5, KDProR successfully retrieves ground-truth
videos in both closed- and open-set settings, whereas DRL fails to do so.

5 Conclusion

In this work, we explore a novel knowledge-decoupling VTR paradigm that uti-
lizes multi-grained knowledge stores to unify closed- and open-world knowledge.
This strategy allows VTR models to achieve an efficient balance between memo-
rization and retrieval optimization, while also opening up a unified interface for
injecting various open-world knowledge. We further propose a principled EKM
algorithm to achieve an efficient injection of knowledge. Our method could be
applied to other visual-language tasks, e.g., visual question answering, and inject-
ing various open-world knowledge for augmenting cross-modal understanding.
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