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Zero-Shot Temporal Action Detection by Learning
Multimodal Prompts and Text-Enhanced

Actionness
Asif Raza , Bang Yang , and Yuexian Zou , Senior Member, IEEE

Abstract— Zero-shot temporal action detection (ZS-TAD), aim-
ing to recognize and detect new and unseen video actions, is an
emerging and challenging task with limited solutions. Recent
studies have adapted the vision-language pre-trained model CLIP
for this task in a parameter-efficient fine-tuning fashion to achieve
open-vocabulary detection. However, they suffer from insufficient
vision-text alignment because of the dual-stream structure of
CLIP and yield inferior TAD results due to the lack of accurate
action prior. In this paper, we target the above limitations and
propose to learn multimodal Prompts and Text-Enhanced Action-
ness (mProTEA) for ZS-TAD. Specifically, we insert learnable
layer-wise prompts into the vision and text branches of the
frozen CLIP and establish a strong coupling between them,
resulting in multimodal prompts that can boost cross-modal
alignment. To ease computation costs, we propose to conduct
multimodal prompt learning on an image recognition dataset with
rich concepts (e.g., ImageNet) first and then keep them frozen
during TAD fine-tuning. For improving TAD, we introduce text-
enhanced actionness modeling, where we leverage the concise
semantics of text to assist the calculation of class-agnostic
actionness scores, to offer accurate prior information for both
action classification and localization. With the above designs,
our mProTEA excels in extensive TAD experiments, surpassing
the strong competitor STALE by 5.1% on ActivityNet under
the zero-shot setting and achieving state-of-the-art performance
in conventional supervised scenarios. Ablation studies confirm
the effectiveness of our proposals and show superior domain
generalization of multimodal prompts learned on ImageNet
against the other 10 image recognition datasets.

Index Terms— Zero-shot, temporal action detection, multi-
modal prompt learning, actionness modeling.

I. INTRODUCTION

TEMPORAL action detection (TAD) is one of the funda-
mental tasks in video understanding that aims to predict
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the semantic label and the time range of every action instance
in an untrimmed video. Traditional TAD methods [1], [2], [3],
[4], [5], [6] follow a supervised learning paradigm and assume
that the action categories within the training and testing sets
remain identical. Nonetheless, this assumption confines the
applicability of TAD to new and diverse scenarios, often
necessitating model re-training to accommodate novel actions.
To deploy TAD systems in the real world, the concept of
open-vocabulary detection becomes imperative. In response,
zero-shot TAD (ZS-TAD) is introduced [7], [8], [9], and it
poses a distinctive challenge – no overlap exists between
action categories in the training and testing sets. Consequently,
addressing ZS-TAD requires an effective backbone network
encompassing a broad spectrum of world knowledge beyond
specific datasets, which can be obtained via, e.g., pre-training.

Recently, vision-language pre-trained models (PTMs) like
CLIP [10] have demonstrated impressive open-vocabulary
classification and zero-shot transfer abilities in a wide
range of vision-language tasks [11], [12], [13], [14] due
to the flexibility of representing curated categories in the
text format and the semantic alignment between the vision
and text modalities. Although these abilities of CLIP-like
PTMs make them suitable for ZS-TAD, adapting PTMs to a
downstream task risks the loss of knowledge with improper
fine-tuning techniques. Prior ZS-TAD methods, e.g., the
state-of-the-art STALE [8], tackle this challenge with the
emerging parameter-efficient fine-tuning technique [15].
As illustrated in Figure 1(a), STALE freezes the PTM (i.e.,
CLIP) to preserve its internal knowledge, jointly trains text
prompts and TAD modules, and specifically improves action
classification by learning mask representations from videos.
Despite its effectiveness, STALE suffers from two major
demerits: 1) insufficient vision-text interactions because of
the dual-stream structure of CLIP and 2) inaccurate TAD
results due to the lack of accurate action prior.

In this paper, we target the above limitations and aim to
develop a novel ZS-TAD network with multimodal Prompts
and Text-Enhanced Actionness (mProTEA) by drawing inspi-
ration from recent advances in prompting PTMs [9], [15],
[16], [17], [18] and video understanding [19], [20], [21].
Figure 1(b) illustrates the diagram of mProTEA. In particular,
we insert learnable layer-wise prompts into the vision and
text branches of the frozen CLIP and establish a strong
coupling between them, resulting in multimodal prompts that
can boost cross-modal alignment. To ease computation costs,
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Fig. 1. Comparison with the prior work STALE [8] for ZS-TAD. (a): Prior
work fails to establish sufficient vision-language interactions and specifically
improves action classification by learning mask representations from videos.
(b): Our work bridges text and vision branches by pre-training multimodal
prompts on a recognition dataset with rich concepts (e.g., ImageNet) and intro-
duces text-enhanced actionness modeling to boost both action classification
and localization. Bottom: our approach yields superior TAD results against
STALE.

we propose to pre-train multimodal prompts on an image
recognition dataset with rich concepts (e.g., ImageNet [22])
first and then keep them frozen during TAD fine-tuning.
For improving TAD, we introduce text-enhanced actionness
modeling, where we leverage the concise semantics of text
to assist the calculation of class-agnostic actionness scores,
to offer accurate prior information for both action classifi-
cation and localization. By incorporating these core designs,
our mProTEA excels in both ZS-TAD and supervised TAD
tasks on two widely adopted TAD benchmarks, i.e., Activi-
tyNet [23] and THUMOS14 [24]. One example is given at
the bottom of Figure 1, where compared with the state-of-
the-art STALE, our mProTEA suppresses the over-prediction
of background clips and boosts the responses of action clips.
With a comprehensive ablation study, we gain insights into
the inner workings of mProTEA and find that learning mul-
timodal prompts on image recognition datasets with rich
visual concepts demonstrates a superior domain generalization
ability.

To summarize, Our main contributions are as follows.
1) Multimodal Prompt Learning: Our mProTEA involves

a novel multimodal prompting strategy to bridge the gap
between visual and language encoders and promote their
synergy. Meanwhile, the proposed multimodal prompt
learning can be agnostic to downstream TAD tasks.

2) Text-Enhanced Actionness Modeling: Our mProTEA
diverges from conventional methods by assembling with
text-enhanced actionness modeling, which can accom-
modate both class-independent and inter-class variations
to produce action priors and thus facilitate precise TAD.

3) Effective Solution for Open-Vocabulary TAD: mPro-
TEA’s efficacy in addressing open vocabulary challenges
in TAD is validated through extensive experiments
on ActivityNet and THUMOS14 datasets. It surpasses
state-of-the-art ZS-TAD methods and attains good gen-
eralization abilities from diverse image recognition
datasets.

II. RELATED WORK

A. Vision-Language (VL)

In recent years, significant research has focused on
Vision-language (VL) models, merging computer vision
and natural language processing strengths for tasks like
image-text retrieval, visual captioning, and visual question-
answering [25], [26], [27], [28]. Studies on image-text bonds
include paired documents [29] and joint image-text embedding
with category annotations [30], [31]. CLIP, a large-scale
pretrained VL model developed by Radford et al. [10], has
been a game-changer with 400 million visual-text pairs.
CLIP and variants like ALIGN [32] and [33] learn potent
visual representations from paired data. VL models show
impressive adaptation in zero-shot classification [8], [9].
Yet, VL adaptation to video tasks, e.g., text-based action
localization [34] and action recognition [35], often rely on
error-prone classification-based methods involving cropping
and propagating errors, semantic gaps, and generalization
issues. To address this, we propose a unified classification and
localization approach, optimizing pre-trained CLIP for video
understanding techniques to preserve information and boost
model performance.

B. Prompt Learning

Prompting guides pre-trained language models by using
a few examples to demonstrate desired outputs. GPT-3 [36]
showcases robust generalization through handcrafted prompt
templates in few-shot or zero-shot learning. However, crafting
these templates requires expertise and limits flexibility [15],
[37]. While complete fine-tuning might harm previously
acquired knowledge, the joint V-L representation and linear
probing helps retain CLIP’s zero-shot capability [38]. Recent
prompt engineering trends can be categorized as discrete [39],
[40], [41], [42] and continuous prompts [17], [38], [43].
Building on prompt learning in NLP [16], [17], [43], [44],
researchers suggest enhancing V-L models through end-to-end
training of prompt tokens. CoOp [17] refines CLIP for few-
shot transfer by optimizing a continuous set of prompt vectors
in the language branch. Addressing CoOp’s [17] generalization
on new classes, Co-CoOp [43] explicitly conditions prompts
on image instances. Gao et al. propose optimizing multiple
prompt sets by learning their distribution [39]. Nag et al. tailors
CLIP for video understanding [8] using prompt learning,
and Huang et al. perform visual prompt tuning on CLIP
through the vision branch of CLIP [44]. Recent research has
explored prompt learning for transferable representation and
text-based action localization in videos [8], [9], [39], [45].
Existing methods typically focus on unimodal solutions and
learn prompts in either CLIP’s language or vision branch.
Motivated by the success of continuous prompt learning [17],
[38], [43], and noting limited success in video domains [8], [9],
we investigate whether complete prompting (in both language
and vision branches) is better for CLIP adaptation, given its
multimodal nature. We address this question and explore the
effectiveness of multimodal prompt learning for improving
alignment between VL representations in Zero-Shot Temporal
Action Detection (ZS-TAD). Notably, we propose a pretrained
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CLIP tuning scheme on 11 different image recognition datasets
to enhance generalization and bridge the gap between efficient
knowledge transfer and domain adaptation. Our approach also
facilitates efficient adaptation from image to video tasks in
ZS-TAD.

C. Temporal Action Detection

Recent advancements in Temporal Action Detection (TAD)
[2], [6], [46], [47], [48] showcase notable progress. For
instance, R-C3D [49] employs a region-convolutional 3D net-
work for activity localization in video streams, utilizing anchor
boxes from static images [50] to create and classify propos-
als. TSM [51] proposes a mapping operation to represent
the video’s temporal-spatial features as a 2D VideoMap for
effective modeling. CSL [52] proposed the semantic boundary
detection method by formulating it as a reinforcement learning
problem. while CBMN [46] enhances proposal generation with
confidence maps to form a capsule boundary network based
on U-BlockConvCaps for dense temporal action proposal
generation.

Gao et al. introduced RapNet for accurate temporal action
proposal generation, capturing global contextual information
for actions with varying durations [53]. SMEN [54] employs a
slow-motion enhanced network comprised of a mining module
to mask slow action and a localization module for detec-
tion. Zhang et al. proposed TD-3DCNN, utilizing temporal
dropout during training to identify frame inconsistencies [55].
Chen et al. advanced skeleton-based action recognition with
FDGCN, integrating attention mechanisms and transformer
encoder layers for effective spatial-temporal context [56].
Hu et al. addressed open-set temporal action localization
with GOTAL, utilizing a Transformer network and sharpness
minimization algorithm for generalized action representations
[57]. ASK [47] improves the proposal’s ask-adaptive attention
for image Captioning. Gait [48] learns action representations
of subjects from multi-scale features using a cross-view spa-
tiotemporal aggregation network. In contrast to the above
sequential localization and classification pipeline methods,
TAGS [6] introduces a parallel strategy of localization and
classification. The above techniques are supervised and rely
on extensive training datasets, making it problematic in low-
data settings on TAD. Therefore, we extend the parallel
strategy by integrating a dedicated modality refiner regulated
by actionness score modeling for TAD.

D. ZS-TAD

Zero-shot learning (ZSL) aims to recognize new, unseen
classes by transferring shared knowledge from known to
unknown categories [58]. In contrast, traditional approaches
often rely on learning from multiple noisy annotators to
improve classifier performance, a strategy known for its
robustness across various datasets [59]. However, ZSL presents
a novel perspective, highlighting the significance of leveraging
prior knowledge. One common approach involves creating a
shared representation space for both seen and unseen cate-
gories, such as attribute space [58], [60], [61] or semantic
space [58], [62], [63]. Alternatively, some methods synthesize

features for unseen actions [64] or use objects to establish
a shared space for unseen actions [6]. In attribute space,
researchers rely on prior information like visual attributes
(e.g., color, shape) [65]. Parikh et al. [66] focused on learning
relative attributes, a promising but less scalable approach due
to manual attribute definition. In semantic space, researchers
use semantic embeddings of seen and unseen concepts as prior
information. These embeddings are typically learned unsuper-
vised using Word2Vec [67] or GloVe [68]. Zhang et al. [7]
pioneered the application of Word2Vec to ZSL on TAD,
marking a significant milestone. Likewise, recent work [8], [9]
employed image-text pre-training from CLIP to address zero-
shot action recognition, particularly in ZS-TAD. We propose
an interactive stepwise training scheme that adapts CLIP
on diverse image datasets, leveraging shared representation
spaces and semantic embeddings for efficient generalization,
conserving computational resources. Our study improves ZS-
TAD performance, addressing its limitations and offering the
potential solution for Open Vocabulary in TAD tasks.

III. METHOD

In this section, we introduce our mProTEA model for ZS-
TAD. The overall framework is shown in Figure 2. As we can
see, the key of mProTEA lies in three factors: 1) a vision-
language pre-trained model that supports open-vocabulary
classification (i.e., CLIP [10]), 2) multimodal prompts that
bridge vision and text branches to enhance cross-modal align-
ment, and 3) text-enhanced actionness modeling that provides
accurate action prior for TAD. In the following, we will first
review how to use CLIP as the backbone to solve ZS-TAD in
Section III-A, followed by the introduction of our proposed
multimodal prompt learning in Section III-B. Next, we will
elaborate on our mProTEA and detail text-enhanced actionness
modeling in Section III-C. Finally, we will present the training
procedure of our approach in Section III-D.

A. Preliminaries of TAD

1) Problem Definition: Given a dataset D with training set
Dtrain and validation set Dval, each untrimmed training video
V in Dtrain is associated with temporal segmentation 9 =

(ψ j , ξ j , yi )
M
j=1 with M tuples, where ψ j and ξ j represent the

start and end time of the j-th action and y j ∈ Y denote the
action category. TAD considers both closed-set and open-set
scenarios. The action categories for training and evaluation
are identical in the closed-set setting (i.e., YDtrain = YDval )
but are disjoint in the open-set case (i.e., YDtrain ∩ YDval = ∅).
In particular, TAD under the open-set scenario, a.k.a. ZS-TAD,
is a more practical and challenging setup. The goal of TAD
is to localize the action snippets of the video accurately and
classify them into correct action categories.

2) CLIP as the Backbone: Recent studies [8], [9] have
treated CLIP [10] as the backbone to facilitate ZS-TAD due
to its impressive zero-shot transfer ability. In particular, CLIP
is pre-trained on a dataset of 400 million image-text pairs,
allowing images and texts to be mapped into a common latent
space. For TAD, K action categories Y (i.e., K = |Y |) are
represented in text format for recognition, akin to replacing the
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Fig. 2. Overview of our approach for zero-shot temporal action detection. (a): mProTEA builds upon a frozen vision-language pre-trained model (i.e.,
CLIP) and consists of two key components: (1) multimodal prompts that bridge text and vision encoding and (2) text-enhanced actionness modeling that
offers accurate action prior for action classification and localization. (b): To ease computational costs, multimodal prompts can be pre-trained on a recognition
dataset of rich visual concepts (e.g., ImageNet).

[ACTION] in the template “a video of [ACTION]” with each
y ∈ Y , resulting in text representations T = {t1, . . . , tK } ∈

RK×d :

tk = TextEncoder(ET (yk)), k ∈ [1, K ], (1)

where ET (yk) produces the token embeddings associated with
yk and d denotes the feature dimension. Besides, recogniz-
ing background snippets is necessary for TAD. Therefore,
we add an additional “background” class, randomly initialize
its embedding, and prepend the embedding to T to obtain
T+ ∈ R(K+1)×d . For visual encoding, we uniformly sample
N frames from the video V , i.e., V = {v1, . . . , vN }, and
use the image encoder of CLIP to extract visual features
F = { f1, . . . , fN } ∈ RN×d :

fn = ImageEncoder(E I (vn)), n ∈ [1, N ], (2)

where E I (vn) produces the patch embeddings of vn . After
encoding, T and F are fed into the TAD network and interact
with each other, as we will introduce later.

3) Prompting CLIP for Better Representations: To effec-
tively adapt CLIP for a specific domain, the common
practice [17], [43] is to insert learnable continuous prompts
PT ∈ RC×dT before the text encoder of CLIP, where C denotes
the number of soft prompts and dT the text model dimension.
Thus, Eq. (1) is modified as follows:

tk = TextEncoder([PT ; E(yk)]), k ∈ [1, K ], (3)

where [; ] denotes the concatenation operation along the
sequence dimension.

B. Multimodal Prompt Learning

Unlike prior text-only prompting methods indicated by
Eq. (3), we propose multimodal prompting to achieve the
maximum use of CLIP’s knowledge. Our proposal involves
two core designs: 1) branch- and layer-wise prompting that
adjusts the intermediate activations of image and text encoders

of CLIP to learn new knowledge efficiently and 2) vision-
language prompt coupling that enables early interactions
between vision and text modalities by using prompts as a
bridge.

1) Branch- and Layer-Wise Prompting: Inspired by the
literature [17], [38], [43], [69], we highlight the importance
of deep prompt learning. We propose to insert learnable soft
prompts in the initial J layers of both branches of CLIP.
These hierarchical prompts aim to amplify CLIP’s embedded
knowledge to learn contextual representations suitable for
ZS-TAD. Let’s denote the CLIP text encoder is composed of
LT blocks and one projection head. We modify Eq. (1) and
decompose it into the following two equations:

[ P̃ ( j)
T ; W̃ ( j)

]=


Block( j)

T ([P ( j)
T ; E(yk)]), j = 1

Block( j)
T ([P ( j)

T ; W̃ ( j−1)
]), j ∈ [2, J ]

Block( j)
T ([ P̃ ( j−1)

T ; W̃ ( j−1)
]), j ∈ (J, LT ]

(4)

tk = HeadT (w̃
(LT )
[EOS]

), (5)

where P ( j)
T ∈ RC×dT means the soft prompts inserted into

the j-th text block and the final text feature tk of the k-th
class is obtained from the position of the special token [EOS].
Similarly, for the image branch, let’s assume the CLIP image
encoder comprises of L I blocks and one projection head.
We modify Eq. (2) and decompose it into the following two
equations:

[ P̃ ( j)
I ; Ṽ ( j)

] =


Block( j)

I ([P ( j)
I ; E(vn)]), j = 1

Block( j)
I ([P ( j)

I ; Ṽ ( j−1)
]), j ∈ [2, J ]

Block( j)
I ([ P̃ ( j−1)

I ; Ṽ ( j−1)
]), j ∈ (J, L I ]

(6)

fn = HeadI (ṽ
(L I )
[CLS]

), (7)

where P ( j)
I ∈ RC×dI means the soft prompts inserted into the

j-th image block and the final visual feature fn of the n-th
frame is obtained from the position of the special token [CLS].
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Fig. 3. Illustration of the proposed text-enhanced actionness modeling.
It comprises query aggregation, actionness score prediction, thresholding and
indexing to obtain the final foreground action features.

2) Vision-Language Prompt Coupling: Instead of using the
disjoint image and text prompts, we propose to establish cross-
modal connections between two branches by learning image
prompts {P ( j)

I }
J
j=1 from text prompts {P ( j)

T }
J
j=1 with a fully-

connected (FC) layer acting as V-L prompt coupling:

P ( j)
I = FC(P ( j)

T ), j ∈ [1, J ]. (8)

V-L prompt coupling is mapping of dT dimensional text
prompts to dI of vision prompts. By doing so, we encourage
mutual gradient propagation and interaction of two modalities,
ensuring mutual synergy to optimize pre-trained CLIP. The
reason to choose an explicit conditioning image prompt on
text prompt is computational cost and trend [17], [43] as
the processing of text is quite lighter than an image. Note:
the dimension of vision prompts is always greater than the
dimension of text prompts.

C. mProTEA

Besides the aforementioned multimodal prompt learning,
mProTEA also contains several modules dedicated to TAD,
as introduced next.

1) Temporal Modeling: Given the visual features F ∈

RN×d produced by Eq. (7), we employ Transformer [70] to
learn the temporal dependencies among N frames, resulting
in temporal-aware visual features F+ ∈ RN×d .

2) Text-Enhanced Actionness Modeling: Actionness refers
to the likelihood of containing a human action for each video
snippet. Different from the prior work [8] that uses Nq virtual
queries with ambiguous meanings to aggregate visual features
F+ ∈ RN×d for actionness modeling, we propose to create
action-relevant queries from textual semantics, thereby sup-
pressing background interference. The diagram of our proposal
is illustrated in Figure 3. Let denote the original query features
with no explicit meanings as Q ∈ RNq×d , we refine Q with
video- and text-related semantics as follows:

Q+ = Aggregation(Q, F+, T+) ∈ RNq×d , (9)

where for q+ ∈ Q+ and q ∈ Q, the aggregation process is
formulated as:

q+ = q + FC([Mean(F+); Mean(T+)]), (10)

where Mean(·) denotes mean pooling. With aggregated action
queries Q+, we then predict actionness scores m as follows:

m = FC(σ (Q+ · F⊤
+ )) ∈ RN , (11)

where σ denotes the sigmoid activation and FC(·) is a fully
connected layer. Next, we convert m into grayscale using
a threshold θgrey to obtain binary class-agnostic actionness
scores, denoted as mfg. The obtained mfg aids the model in
emphasizing crucial video activity features. Therefore, we can
obtain foreground action features Ffg ∈ RNa×d by indexing
F+ based on mfg, where Na ≤ N . This yields class-agnostic
foreground action features initially optimized for seen classes,
yet designed for robust generalization to unseen classes.

3) Actionness-Guided Refinement: Instinctively, incorporat-
ing action priors will likely augment the text and visual
representations, leading to a richer and more comprehensive
understanding of the data. Motivated by this, we introduce
Text Refinement Transformer (TRT) to perform cross-attention
between text features T+ and action features Faction in the
following (query, key, value) configuration:

T̂+ = TRT(T+, Ffg, Ffg) ∈ R(K+1)×d , (12)

where T+ is designed to find related action clues across
foreground snippets. Similarly, we refine visual features F+

via Visual Refinement Transformer (VRT) as follows:

F̂+ = VRT(F+, Ffg, Ffg) ∈ RN×d . (13)

4) Action Classification and Localization: To achieve the
classification, we first compute the dot product of refined text
and visual features:

S = T̂+ · F̂⊤
+ (14)

where S ∈ R(K+1)×N . Then, we apply the SoftMax activation
on the first dimension of S to obtain P , where each element
p j,i ∈ P denotes the possibility of the i-th a temporal snippet
belonging to the j-th class.

To achieve action localization, we follow previous
works [6], [8], so this branch predicts 1-D masks of action
instances across the entire temporal span of the video. These
masks are conditioned on the temporal location i , therefore
leveraging the dynamic convolution filters [71] to learn the
context of action (foreground) and background instances at
each snippet location individually. To clarify, given the i-th
snippet (F̂+), the dynamic decoupled filters head outputs a 1-D
mask vector A = [k1, . . . , kT ] ∈ RT ×1, where each element
ko ∈ [0, 1] indicates the foreground probability of the i-th
snippet. This is achieved through a stack of three 1-D dynamic
convolution layers Cm , to predict action instances across the
entire temporal range of the video as follows:

A = sigmoid(LocalizationHead(Cm(F̂+)) ∈ RN , (15)

where i-th column of A is the temporal action mask vector
showcases the action probability of a specific i-th video
snippet, and Cm is a stack of 3 convolution layers [71]
implemented as a localization head.
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D. Two-Stage Training

The training procedure of our mProTEA is carried out in
two distinct stages to reduce GPU memory costs and save
computation resources.

In the first stage, we freeze the pre-trained CLIP and
conduct multimodal prompt learning (Section III-B) on an
image recognition dataset with rich concepts (e.g., ImageNet).
Given the text features of all K classes T ∈ RK×d using the
template “a photo of [CLASS]”, the feature of an input image
f ∈ Rd , and the corresponding label y, We train the model
by minimizing the following Cross-Entropy:

L1 = CrossEntropy(SoftMax(T · f ), y). (16)

In the second stage, we keep the pre-trained CLIP fixed as
usual and also freeze the multimodal prompts learned in the
first stage. We train the model on the training set of a TAD
dataset Dtrain in a standard supervised learning manner.

To train mProTEA, ground-truth data is organized into
the designed format. Each snippet within a training video
is labeled with the corresponding action class or as back-
ground, based on temporal intervals and class labels. Action
snippets are assigned instance-specific binary masks, with all
snippets of the same action instance sharing the same mask.
Following [8], we use comprehensive training objectives that
combine 1) the Cross-Entropy loss Lce between the predicted
probabilities P ∈ R(K+1)×N and the ground-truth label for
action recognition, 2) the binary dice loss Lm between the
predicted mask m̂ ∈ RN and the ground-truth mask for action
localization, 3) the action completeness loss Lcomp to predict
foreground masks that closely match the complete temporal
extent of the action instances m f g , as the binary cross-entropy
between the binarized predicted foreground mask (m f g) and
the ground-truth one-hot foreground mask (g):

Lcomp = −
(
g · log(m f g)+ (1 − g) · log(1 − tm f g)

)
(17)

and 4) the inter-branch consistency Lconst to ensure fore-
ground consistency between the classification and localization
branches. This loss encourages the classification features
(F̂cl f ) to be similar to the features derived from the predicted
foreground mask (m f g), computed as the cosine similarity:

Lconst = 1 − cosine(Fcl f ,m f g) (18)

where Fcl f is the features obtained from top-scoring topk
foreground snippets obtained classification output same as [8].
Therefore, the overall loss function in the second phase is
formulated as follows:

L2 = Lce + Lm + Lcomp + Lconst. (19)

By disentangling the optimization of multimodal prompts
and the TAD network, our mProTEA can achieve ZS-TAD
efficiently.

IV. EXPERIMENTS

A. Datasets

mProTEA introduces a novel two-stage training approach
to enhance model generalization and training efficiency.
In the first stage, we learn multimodal prompts on one

of 11 diverse image recognition datasets: ImageNet [22],
Caltech101 [72], Oxford-Pets [73], Stanford-Cars [74], Flow-
ers102 [75], Food101 [76], FGVC-Aircraft [77], SUN397
[78], UCF-101 [79], DTD [80], and Euro-Sat [81]. This stage
improves the model’s ability to recognize various objects and
scenes, fostering robustness. In the second stage, we conduct
training of the rest model on two widely-used temporal action
detection benchmarks: ActivityNet [23], and THUMOS14
[24]. ActivityNet comprises 19,994 videos across 200 action
classes and is split into 2:1:1 training, validation, and testing
sets. THUMOS14 comprises 200 validation videos and 2 test-
ing videos across 20 categories, each labeled with temporal
boundaries and action classes.

B. Implementations

Stage 1: We use a pre-trained ViT-B/16 CLIP model for
prompt optimization with dV = 768, dT = 512 and dVT = 512.
The prompt depth is set to 9, and the prompt length is fixed
at 3. We train models for 5 epochs with a batch size of 4 and
a learning rate of 0.0026. Training was performed on a single
NVIDIA A100 GPU using the SGD optimizer. The first layer
of text prompts uses pre-trained CLIP word embeddings for
the template “a video of [CLASS]”, whereas the rest prompts
are randomly initialized from a normal distribution. Consistent
hyperparameters are maintained for fair comparisons and
reliable evaluations. Stage 2: Video frames are pre-processed
to 224 × 224 spatial resolution before encoding. The feature
sequence F of each video is rescaled to T = 100/256 snippets
for ActivityNet and THUMOS14 using linear interpolation.
During training, our model undergoes 15 epochs using the
Adam optimizer, with a learning rate of 10−4 for ActivityNet
and 10−5 for THUMOS14, respectively.

C. Comparison With State-of-the-Art Methods

1) Zero-Shot Setting: The action categories of training and
testing sets are mutually exclusive in this setting. We follow
the dataset splits and evaluation settings by [8] and [9]. Specif-
ically, we conduct two evaluation settings on THUMOS14
and ActivityNet: 1) training with 75% action categories and
testing on the remaining 25%; 2) training with 50% categories
and testing on the other 50%. We carry out 10 runs for each
evaluation setting to confirm statistical worth.

Competitors: As ZS-TAD is a relatively new problem,
we have limited and competitive works as [8], [9] and [82],
[83], [84], [85] for fair comparison based on similar set-
tings (data-split, related approach). Particularly, the absence
of open-source implementation necessitates replicating their
reported [9] baselines for our evaluation, similar to [8]. Two
baselines are introduced by extended existing TAD methods
using CLIP as B-I and B-II.B-I represents a two-stage TAD
baseline using BMN [86] with the proposal generator and
CLIP. B-II: represent one-stage baseline using CLIP + TAD.
The text encoders remain identical for both baselines using
CLIP pre-training weights. Unfortunately, we cannot compare
with the earlier zero-shot TAD method, ZS-TAD [7], due to
the unavailability of code and a lack of common data-split
between [7] and [9].
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TABLE I
RESULTS OF ZERO-SHOT TEMPORAL ACTION DETECTION ON THUMOS14 AND ACTIVITYNET DATASETS. IN THIS SETTING, WE TRAIN AND TEST

MODELS WITH A PORTION OF SEEN AND UNSEEN ACTION CATEGORIES. *CLIP+ PRETRAINED VISUAL MODEL, **CLIP+LLM

Performance: The performance of various methods in zero-
shot temporal action detection (ZS-TAD) experiments is
detailed in Table I. Our proposed mProTEA demonstrates
strong performance across both THUMOS14 and Activi-
tyNet v1.3 datasets. In the 75% seen and 25% unseen split,
mProTEA achieves the highest average mAP of 27.6 on
THUMOS14 and 27.91 on ActivityNet, surpassing all other
methods. Even in the more challenging 50% seen and
50% unseen split. Interestingly, the one-stage baseline (B-II)
exhibits a more significant performance gap than the two-
stage baseline (B-I), with a substantial decrease in mAP
as the amount of labeled data increases. This suggests the
potential for the one-stage baseline to improve with more data.
Moreover, it also reveals that localization uncertainty prop-
agation can be problematic in low-data scenarios. STALE’s
performance also drops on THUMOS14 with stricter met-
rics, possibly due to the localization head struggling with
foreground imbalance. while mProTEA may exhibit a partial
performance decrease compared to the 3 encoder mod-
els, it remains competitive, particularly on the THUMOS14
dataset. This indicates that mProTEA competes effectively
with these models in scenarios where the data skew is not
as pronounced, such as in the 75%-25% split. It’s noteworthy
that the complexity of the ActivityNet v1.3 dataset may
contribute to this partial performance decrease. Nevertheless,
mProTEA still outperforms baseline methods B-II, B-I, Eff-
Prompt, STALE, and MUPPET across both splits, showcasing
strong generalizability and a class-agnostic property by learn-
ing multimodalby leveraging a pre-trained large multimodal
model for ZS-TAD tasks.

2) Conventional Supervised Setting: Training and testing
sets consist of identical action categories in this setting.
We adhere to the exact dataset splits in the existing literature
to ensure a fair and consistent comparison.

Competitors: Besides STALE [8] and EffPrompt [9],
we additionally consider seven representative TAD meth-
ods using the I3D [87] encoder backbone: TALNet, GTAN,
MUSES, VSGN, Context-Loc, and BU-TAL. We also create

three baselines: B-I (CLIP + sequential-TAD), B-II (CLIP +

parallel-TAD), and B-III (CLIP single stage+ visual encoder
replaced with Kinetics pretrained Video-Encoder I3D).

Performance: Analysis of the results in Table II unequiv-
ocally establishes the superior performance of our proposed
approach across diverse settings. Notably, our method con-
sistently outperforms existing TAD methods across different
modes, including “RGB + Flow” and “RGB,” as well as
with varying encoder backbones, encompassing both I3D and
CLIP. This consistency in superior performance underscores
the efficacy and adaptability of our approach in the domain
of temporal action detection. Particularly, our mProTEA con-
sistently outperforms not only STALE but also its counterpart
model B-III, utilizing the I3D backbone. On the THUMOS14
dataset, mProTEA achieves a substantial mAP improvement
of 1.9 over B-III. Similarly, on the ActivityNet dataset, this
improvement widens to 2.1. These findings underscore the
efficacy of our multimodal approach and text-enabled action
modeling to enhance temporal action detection accuracy.
Furthermore, Table II bottom half depicts the performance
comparison of models utilizing I3D and CLIP backbones,
where mProTEA leads with the A2Net model by a huge
margin. This highlights the importance of selecting an appro-
priate architecture to be more effective for temporal action
detection tasks. In essence, our comparative analysis reaffirms
the effectiveness of mProTEA, emphasizing the crucial role
of multimodal prompts and the selection of an optimal back-
bone architecture in achieving state-of-the-art performance
in temporal action detection. The results presented in this
table provide valuable insights into the relative strengths of
the investigated models, demonstrating the advantages of the
mProTEA approach over alternative backbone architectures for
this particular task. By carefully examining these performance
metrics, researchers and practitioners can make informed deci-
sions about which models and techniques to prioritize when
tackling temporal action detection challenges.

3) Qualitative Analysis of mProTEA: Figure 4 presents six
qualitative examples, with ZS-TAD results from ground truths,
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TABLE II
RESULTS OF SUPERVISED TEMPORAL ACTION DETECTION ON THUMOS14 AND ACTIVITYNET DATASETS. IN THIS SETTING, THE ACTION CATEGORIES

OF THE TRAINING SET ARE IDENTICAL TO THOSE OF THE TESTING SET

Fig. 4. Qualitative comparison of ZS-TAD results between mProTEA and prior work (i.e. STALE). “GT” is short for ground truth. The Left and right
examples are from Activitynet and THUMOS, respectively. Compared with STALE, our mProTEA mitigates the over-prediction of background snippets and
the miss-prediction of action activities.

the prior work – STALE, and our mProTEA. We can observe
that mProTEA effectively resolves the issues of the prior work
and contributes to a reduction in the over-prediction of back-
ground snippets and correction of miss-prediction instances.
These visualized results emphasize the potential of mProTEA
to enhance the precision and reliability of ZS-TAD.

4) Impact of Image-Text Interaction and Action Prior: In
this section, we delve into the crucial discussion of image-
text interaction in large pre trained model CLIP and action
prior in the context of temporal action detection (TAD).
Our analysis highlights their significance in enhancing model
performance and providing a deeper understanding of the
underlying dynamics in TAD systems. Our empirical analysis,
as depicted in Table II, highlights the significance of these
factors in determining the performance of TAD models. When
comparing mProTEA with its counterpart, B-III, utilizing the

same I3D backbone pre-trained on Kinetics, the disparity in
performance can be attributed to the efficacy of action model-
ing within the TAD head. B-III’s weaker action modeling leads
to suboptimal detection in untrimmed videos, underscoring the
importance of robust TAD modeling. Similarly, the absence
or strength of image-text interaction becomes evident when
comparing our method with others in Table I. Models like
STALE and UNloc solely leverage text information, resulting
in inferior visual-text interaction and performance. In contrast,
later methods like MUFFET strive to enhance multimodal
interaction through prompting and meta-learning, albeit with
limited success. Additionally, our comparison with MP-TAL in
Table I reveals the trade-off between computational feasibility
and accuracy. While MP-TAL leverages triple encoders for
improved accuracy, it comes at the cost of computational
complexity. In contrast, mProTEA’s dual encoder approach
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TABLE III
ANALYSIS OF COMPUTATIONAL COMPLEXITY OF OUR MPROTEA WITH

THE STATE-OF-THE-ART METHODS

TABLE IV
EFFECT OF LEARNING MULTIMODAL PROMPTS ON DIFFERENT IMAGE

RECOGNITION DATASETS. WE CAN SEE THAT PROMPTS LEARNED ON
IMAGENET EXHIBIT STRONG DOMAIN GENERALIZATION ABILITY

achieves competitive accuracy while maintaining computa-
tional efficiency.

5) Computational Complexity: The computational com-
plexity analysis of our mProTEA model, as depicted in
Table III, reveals several advantageous features. Notably, our
model showcases remarkable efficiency in training, completing
the process in a mere 1.42 hours. This efficiency is further
underscored by its early convergence, requiring only 5 epochs
compared to the 15 epochs needed by Efficent-prompt and
STALE. Such swift convergence is facilitated by our inno-
vative plug-and-play module, which integrates the TAD head
with an optimized pre-trained CLIP model as a multimodal
prompt with coupling. This specialized module not only
streamlines the training process but also enhances the model’s
ability to extract meaningful representations from diverse data
modalities. Despite possessing a slightly higher parameter
count than STALE, our model maintains competitive inference
times, further solidifying its appeal. This combination of effi-
cient training, early convergence, and multimodal optimization
makes mProTEA exceptionally well-suited for temporal action
detection, while also highlighting its potential for facilitating
advancements in other visual downstream tasks with its inno-
vative approach.

D. Ablation Study

In the following, we delve deeper into various mProTEA’s
designs and conduct experiments on the “50% Seen and 50%
Unseen” setting of ActivityNet.

1) Effective Datasets for Learning Multimodal Prompts:
We here conduct experiments on eleven diverse image recog-
nition datasets. From Table IV, observations reveal that not
all datasets exhibit a generic nature. For instance, the Euro-
Sat and FGVC-Aircraft datasets contain key content features

that are unfamiliar to action-related activities, resulting in the
poorest performance when transferring the learned multimodal
prompts for ZS-TAD. By contrast, ImageNet, which holds a
prominent position and is our preferred choice, outperforms
other datasets in our framework. This superiority can be
attributed to its rich visual concepts, which facilitate robust
multimodal prompt learning.

2) Effective Prompting Method: Our mProTEA model
bridges vision and text encoding via branch-aware multimodal
prompting and prompt coupling. We consider four variants
here: (a) no prompting, (b) deep vision prompting (DVP), (c)
deep language prompting (DLP), and (d) independent vision
and language prompting (I-VLP). Table V shows that (c)
demonstrates improvement over (b), indicating better adap-
tation of CLIP where the semantic information learned in the
language branch is richer than the visual branch. Although
(d) further enhances the performance of ZS-TAD through
integrating (b) and (c), it struggles to interchange information
between vision and text branches. Based on (d), our approach
(e) conditions vision prompts on the text ones and thus
performs the best among all variants.

In addition, the computational complexity of different
prompting methods plays a crucial role in the efficiency
and practicality of implementing our model mProTEA and
optimization of its backbone, the pre-trained CLIP. Table VI
provides a comparative analysis of the computational com-
plexities of different prompting methods employed in the
mProTEA backbone. The metrics evaluated include GFLOPS
(Giga Floating Point Operations Per Second), Parameters (in
millions M), average Training time (in minutes m), and Frames
Per Second (FPS). DLP has a relatively lower GFLOPS
requirement (19) compared to other prompting methods. Con-
versely, DVP exhibits a notably higher GFLOPS requirement,
suggesting intensive computational processing, leading to
higher FPS. This indicates that the popular use of language
prompts is common as a cheaper option. Notably, mProTEA
with Independent Visual and Language Prompting (I-VLP)
showcases a comparable computational demand to DVP while
maintaining superior performance as well as training epoch (5,
half as of DVP and DLP), as evidenced by Table VI. This
signifies an optimized balance between computational com-
plexity and performance. Moreover, mProTEA with prompt
coupling demonstrates a slight increase in computational com-
plexity compared to its counterpart with I-VLP. However, this
marginal increment is justified by the improved performance
and synergy achieved in visual and language encoders through
coupling, as highlighted in Table V. Thus, it is imperative
to strike a balance between computational demands alongside
model efficacy to ensure the practical applicability and scala-
bility of our proposed approach.

3) Performance Impact of Prompts in CLIP Pre-Training
and mProTEA Training: In our article, we acknowledge
differences in prompts used during pre-training of CLIP and
training of mProTEA could indeed impact the performance
of the model. Since CLIP is trained on web-based image-
text pairs, while mProTEA is trained on the Imagnet dataset
while fine-tuned on datasets (ActivityNet and THUMOS-14)
with specific content and context relevant to temporal actions.
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TABLE V
EFFECT OF DIFFERENT PROMPTING METHODS

TABLE VI
COMPUTATIONAL COMPLEXITY OF DIFFERENT PROMPTING METHODS ON

MPROTEA BACKBONE

TABLE VII
EFFECT OF DIFFERENT PROMPT INITIALIZATION METHODS

Therefore, the prompts learned during mProTEA training may
be more specialized and optimized for recognizing actions
within videos.

Experiments in Table IV and V also validate successful
domain adoption and the boost in performance of mProTEA
compared to original CLIP in temporal action detection tasks.
Especially IV highlights the significance of dataset character-
istics in prompt learning. This suggests that the specialized
prompts learned during mProTEA, aligned with the temporal
action detection task at hand, lead to enhanced performance
compared to generic prompts from CLIP pre-training. Addi-
tionally, mProTEA addresses the resource-intensive challenge
(data collection) of video tasks as video-text pairs are harder
to collect than image-text pairs and may suffer from mis-
alignment. Computational Demands: Video tasks require more
computational power than image tasks. Leveraging pre-trained
models like mProTEA enhances computational efficiency.
Temporal Dependencies: Videos have temporal dependencies
effectively captured by image-based models like mProTEA.

4) Effective Prompt Initialization Method: In addition to
prompt design, the effectiveness of prompt initialization sig-
nificantly impacts the performance of our mProTEA model,
as demonstrated in Table VII. Three different initialization
strategies are compared:

1) All layers initialized with “a video of”
2) Random initialization for all layers
3) Only the first layer initialized with “a video of”, with

the rest initialized randomly

The results indicate that the approach where only the first
layer is initialized with “a video of [action]” while the rest are

TABLE VIII
EFFECT OF DIFFERENT TEMPORAL MODELING NETWORKS

TABLE IX
EFFECT OF DIFFERENT ACTIONNESS MODELING METHODS TO PROVIDE

ACTION PRIORS

Fig. 5. UMAP visualization of learned features in a “Cliff Diving” video.
Green dots represent action segments, while gray dots signify background
segments. Our approach learns well-aligned features with text-enhanced
actionness modeling.

initialized randomly yields the best performance, achieving a
mean average precision (mAP) of 41.8 (Table VII).

Interpreting these results, we find that initializing all layers
with the same generic template (a) leads to inferior perfor-
mance, suggesting redundancy as prompts in higher layers may
redundantly learn concepts already captured in the first layer.
Conversely, complete random initialization surprisingly pro-
vides competitive performance, indicating the model’s ability
to learn effective prompts independently. The combination of a
specific template in the first layer (providing initial guidance)
and random initialization in subsequent layers (allowing for
adaptation) seems to strike an optimal balance, resulting in the
best performance for mProTEA. This outcome underscores the
hierarchical nature of prompt learning [17], [43], as well in
implementation, keeping the number of learnable prompts is
fewer than the total words in the initial template, then only
the first-word embeddings are considered learnable, with the
remaining word embeddings treated as fixed inputs to the text
encoder. Therefore, a proper prompt initialization method is
crucial to enhance our model’s capability.

5) Effective Temporal Modelling Network: We assess the
selection of Transformer along with two alternatives for tem-
poral modeling: (a) a one-dimensional CNN comprising two
layers, each with dilation rates of 1, 3, and 5, and (b) a multi-
stage Temporal CNN known as MS-TCN [88]. All of these
options can be tailored to fit our approach easily. Table VIII
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Fig. 6. Comparison of CLIP and CLIP with the proposed multimodal prompt
learning on zero-shot image classification. Our approach enhances image-text
alignment effectively, boosting the prediction of “airliner” while reducing
irrelevant predictions like “airship” and “peafowl”.

shows that Transformer demonstrates a better ability to learn
long-range dependencies than CNN variants. Note, that we
follow the transformer without positional encoding as the
previous work [8] does.

6) Effective Actionness Modeling Method: To investigate
the role of actionness modeling (AM), we here consider four
variants: (a) the absence of AM, (b) AM achieved by a
standard 1D-CNN approach, (c) AM achieved by using mean-
ingless queries and temporal features, and (d) AM enhanced
by text clues (i.e., using Q+ as the queries, indicated by
Eq. (9)). As we can observe from Table IX, the setting (a)
obtains extremely poor performance, showing the importance
of action prior. Moreover, our approach (d) surpasses settings
(b) and (c), indicating that leveraging textual semantics can
offer more accurate action prior. In addition to quantitative
analysis, we employ UMAP visualization to underscore the
impact of the AM on action detection in Figure 5. As we
can see, without our text-enhanced AM, action segments are
often mistakenly included alongside background segments.
In contrast, the influence of our approach is evident in correctly
classifying action segment features.

7) Discussion on Efficiency: The efficiency of our model,
mProTEA, is a crucial aspect to consider in its perfor-
mance evaluation. Based on the data presented in presented
in Table III and Table VI provides valuable insights into
the efficiency of our mProTEA model compared to state-
of-the-art methods. Firstly, in terms of model parameters
and training time, mProTEA stands out as a competitive
option and exhibits a favorable balance between model size,
training time, and inference speed. Despite having a slightly
larger parameter count compared to other methods, mPro-
TEA significantly outperforms in training time, requiring only
1.42 hours, which is nearly three times faster than Efficent-
Prompt and STALE, which require 3.24 hours and 3.96 hours
respectively. mProTEA achieves a commendable inference
time of 2.71 minutes, which is competitive with other methods
while training efficiency is further underscored by its reduced
epochs required for convergence. Moreover, when considering
backbone optimization time separately, mProTEA still main-
tains its efficiency advantage. With only 13.7 minutes required
for backbone optimization, mProTEA’s overall training time
remains substantially lower than competitors, showcasing its

rapid convergence and effectiveness. The empirical evidence
highlights mProTEA’s superiority as an efficient approach
for training Zero-Shot Temporal Action Detection (ZS-TAD)
networks and positioning it as a promising solution for visual
downstream tasks.

8) Discussion on Broader Implications: Although ZS-TAD
is the target task in this paper, our approach can be extended
to various tasks. Taking the zero-shot image classification
task as an example, we compare CLIP with or without our
proposed multimodal prompt learning in Fig 6. We can see
that our model can align images and text well and produce
more reasonable predictions than CLIP, e.g., higher response
for the accurate class “airliner” and lower response for the
irrelevant classes “airship” and “peafowl”. This suggests that
our approach can serve as a unified framework benefiting
different tasks.

9) Limitation: Implementing the mProTEA model involves
several considerations and trade-offs. Optimizing the mPro-
TEA backbone on image datasets highlights the influence
of dataset nature on domain adaptation and generalization.
For temporal action detection got varying responses, among
11 datasets, ImageNet demonstrated the best performance.
So this choice needs a trial method to choose a dataset.
Balancing model complexity with computational efficiency
is crucial. Exploring techniques to enhance CLIP backbone
optimizing other than prompt and simplify the detection head
is a priority. Addressing these challenges will refine the model
and optimize resources for more efficient temporal action
detection.

V. CONCLUSION

This paper has introduced mProTEA, an effective approach
for zero-shot temporal action detection (ZS-TAD). mPro-
TEA mitigates critical limitations in ZS-TAD by learning
multimodal prompts for improved vision-text alignment and
modeling text-enhanced actionness for accurate detection.
mProTEA achieves state-of-the-art performance on bench-
mark datasets and meanwhile maintains efficiency due to
the proposed step-wise training procedure. Besides, ablation
studies reveal the importance of the source for multimodal
prompt learning, appropriate prompt design, actionness mod-
eling method, etc., all of which contribute to the superiority of
mProTEA. Although we evaluate our approach solely on the
CLIP model and the TAD task, we posit that our idea holds
the potential to be adaptable to various vision-language pre-
trained models and different tasks. In our future study, we will
delve deeper into the role of prompts in cross-dataset transfer,
with a specific focus on image-to-video transfer.
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